Skip to main content

Geometric Phase and Interference Effects in Ultracold Chemical Reactions

  • Conference paper
  • First Online:
  • 646 Accesses

Part of the book series: Progress in Theoretical Chemistry and Physics ((PTCP,volume 31))

Abstract

Electronically non-adiabatic effects play an important role in many chemical reactions and light induced processes. Non-adiabatic effects are important, when there is an electronic degeneracy for certain nuclear geometries leading to a conical intersection between two adiabatic Born-Oppenheimer electronic states. The geometric phase effect arises from the sign change of the adiabatic electronic wave function as it encircles the conical intersection between two electronic states (e.g., a ground state and an excited electronic state). This sign change requires a corresponding sign change on the nuclear motion wave function to keep the overall wave function single-valued. Its effect on bimolecular chemical reaction dynamics remains a topic of active experimental and theoretical interrogations. However, most prior studies have focused on high collision energies where many angular momentum partial waves contribute and the effect vanishes under partial wave summation. Here, we examine the geometric phase effect in cold and ultracold collisions where a single partial wave, usually the s-wave, dominates. It is shown that unique properties of ultracold collisions, including isotropic scattering and an effective quantization of the scattering phase shift, lead to large geometric phase effects in state-to-state reaction rate coefficients. Illustrative results are presented for the hydrogen exchange reaction in the fundamental H+H\(_2\) system and its isotopic counterparts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Mead CA, Truhlar DG (1979) J Chem Phys 70:2284; 78:6344E (1983)

    Google Scholar 

  2. Simon B (1983) Phys Rev Lett 51:2167

    Article  Google Scholar 

  3. Bohm A, Boya LJ, Kendrick B (1991) Phys Rev A 43:1206

    Article  CAS  PubMed  Google Scholar 

  4. Mead CA (1992) Rev Mod Phys 64:51

    Article  CAS  Google Scholar 

  5. Berry MV (1984) Proc R Soc Lon Ser A 392:45

    Article  Google Scholar 

  6. Aharonov Y, Bohm D (1959) Phys Rev 115:485

    Article  Google Scholar 

  7. Mead CA (1980) Chem Phys 49:23

    Google Scholar 

  8. Kendrick BK (1997) Phys Rev Lett 79:2431

    Article  CAS  Google Scholar 

  9. Kendrick BK (1997) Int J Quantum Chem 64:581

    Article  CAS  Google Scholar 

  10. Babikov D, Kendrick BK, Zhang P, Morokuma K (2005) J Chem Phys 122:044315

    Article  CAS  Google Scholar 

  11. Kuppermann A, Wu YSM (1993) Chem Phys Lett 205:577; 213:636E (1993)

    Google Scholar 

  12. Wu YSM, Kuppermann A (1995) Chem Phys Lett 235:105

    Article  CAS  Google Scholar 

  13. Kuppermann A, Wu YSM (1995) Chem Phys Lett 241:229

    Article  CAS  Google Scholar 

  14. Kendrick BK (2001) J Chem Phys 114:8796

    Article  CAS  Google Scholar 

  15. Kendrick B, Pack RT (1996) J Chem Phys 104:7475

    Article  CAS  Google Scholar 

  16. Kendrick B, Pack RT (1996) J Chem Phys 104:7502

    Article  CAS  Google Scholar 

  17. Kendrick BK, (2000) J Chem Phys 112:5679; 114:4335E (2001)

    Google Scholar 

  18. Kendrick BK (2003) J Phys Chem 107:6739

    Article  CAS  Google Scholar 

  19. Kendrick BK (2003) J Chem Phys 118:10502

    Article  CAS  Google Scholar 

  20. Juanes-Marcos C, Althorpe SC (2005) J Chem Phys 122:204324

    Article  CAS  PubMed  Google Scholar 

  21. Juanes-Marcos JC, Althorpe SC, Wrede E (2005) Science 309:1227

    Article  CAS  PubMed  Google Scholar 

  22. Althorpe SC (2006) J Chem Phys 124:084105

    Article  CAS  PubMed  Google Scholar 

  23. Althorpe SC, Stecher T, Bouakline F (2008) J Chem Phys 129:214117

    Article  CAS  PubMed  Google Scholar 

  24. von Busch H, Eckel V, Dev H, Kasahara S, Wang J, Demtröder W, Sebald P, Meyer W (1998) Phys Rev Lett 81:4584

    Article  Google Scholar 

  25. Keil M, Krämer H-G, Kudell A, Baig MA, Zhu J, Demtröder W, Meyer W (2000) J Chem Phys 113:7414

    Article  CAS  Google Scholar 

  26. Rohlfing EA, Valentini JJ (1986) Chem Phys Lett 126:113

    Article  CAS  Google Scholar 

  27. Kliner DAV, Adleman DE, Zare RN (1991) J Chem Phys 95:1648

    Article  CAS  Google Scholar 

  28. Adelman DE, Shafer NE, Kliner DAV, Zare RN (1992) J Chem Phys 97:7323

    Article  CAS  Google Scholar 

  29. Kitsopoulos TN, Buntine MA, Baldwind DP, Zare RN, Chandler DW (1993) Science 260:1605

    Article  CAS  PubMed  Google Scholar 

  30. Jankunas J, Sneha M, Zare RN, Bouakline F, Althorpe SC (2013) J Chem Phys 139:144316

    Article  CAS  PubMed  Google Scholar 

  31. Jankunas J, Sneha M, Zare RN, Bouakline F, Althorpe SC, Phys Z (2013) Chemistry 227:1281

    CAS  Google Scholar 

  32. Jankunas J, Sneha M, Zare RN, Bouakline F, Althorpe SC, Herráez-Aguilar D, Aoiz FJ (2014) PNAS 111:15

    Article  CAS  PubMed  Google Scholar 

  33. Sneha M, Gao H, Zare RN, Jambrina PG, Menéndez M, Aoiz FJ (2016) J Chem Phys 145:024308

    Article  CAS  PubMed  Google Scholar 

  34. Krems RV, Stwalley WC, B. Friedrich B (eds) (2009) Cold molecules: theory, experiment, applications. CRC Press, Taylor & Francis Group

    Google Scholar 

  35. Carr LD, DeMille D, Krems RV, Ye J (2009) New J Phys 11:055049

    Google Scholar 

  36. Ospelkaus S, Ni K-K, Wang D, de Miranda MHG, Neyenhuis B, Quéméner G, Julienne PS, Bohn JL, Jin DS, Ye J (2010) Science 327:853

    Article  CAS  PubMed  Google Scholar 

  37. Knoop S, Ferlaino F, Berninger M, Mark M, Nägerl H-C, Grimm R, D’Incao JP, Esry BD (2010) Phys Rev Lett 104:053201

    Article  CAS  PubMed  Google Scholar 

  38. Balakrishnan N (2016) J Chem Phys 145:150901

    Article  CAS  PubMed  Google Scholar 

  39. Levinson N (1949) Kgl. Danske Videnskab Selskab Mat Fys Medd 25:9

    Google Scholar 

  40. Kendrick BK, Hazra J, Balakrishnan N (2015) Nat Commun 6:7918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hazra J, Kendrick BK, Balakrishnan N (2015) J Phys Chem A 119:12291

    Article  CAS  PubMed  Google Scholar 

  42. Kendrick BK, Hazra J, Balakrishnan N (2015) Phys Rev Lett 115:153201

    Article  CAS  PubMed  Google Scholar 

  43. Hazra J, Kendrick BK, Balakrishnan N (2016) J Phys B At Mol Opt Phys 49:194004

    Article  CAS  Google Scholar 

  44. Kendrick BK, Hazra J, Balakrishnan N (2016) New J Phys 18:123020

    Article  Google Scholar 

  45. Kendrick BK, Hazra J, Balakrishnan N (2016) J Chem Phys 145:164303

    Article  CAS  PubMed  Google Scholar 

  46. Simbotin I, Ghosal S, Côté R (2011) Phys Chem Chem Phys 13:19148

    Article  CAS  PubMed  Google Scholar 

  47. Simbotin I, Ghosal S, Côté R (2014) Phys Rev A 89:040701

    Article  CAS  Google Scholar 

  48. Simbotin I, Côté R (2015) N J Phys 17:065003

    Article  CAS  Google Scholar 

  49. Pack RT, Parker GA (1987) J Chem Phys 87:3888

    Article  CAS  Google Scholar 

  50. Kendrick BK, Pack RT, Walker RB, Hayes EF (1999) J Chem Phys 110:6673

    Article  CAS  Google Scholar 

  51. Mead CA (1980) J Chem Phys 72:3839

    Article  CAS  Google Scholar 

  52. Boothroyd AI, Keogh WJ, Martin PG, Peterson MR (1996) J Chem Phys 104:7139

    Article  CAS  Google Scholar 

  53. Mielke SL, Garrett BC, Peterson KA (2002) J Chem Phys 116:4142

    Article  CAS  Google Scholar 

Download references

Acknowledgements

N. B. acknowledges support from the Army Research Office, MURI grant No. W911NF-12-1-0476 and the National Science Foundation, grant No. PHY-1505557. B. K. K. acknowledges that part of this work was done under the auspices of the US Department of Energy under Project No. 20140309ER of the Laboratory Directed Research and Development Program at Los Alamos National Laboratory. Los Alamos National Laboratory is operated by Los Alamos National Security, LLC, for the National Security Administration of the US Department of Energy under contract DE-AC52-06NA25396.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Balakrishnan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balakrishnan, N., Kendrick, B.K. (2018). Geometric Phase and Interference Effects in Ultracold Chemical Reactions. In: Wang, Y., Thachuk, M., Krems, R., Maruani, J. (eds) Concepts, Methods and Applications of Quantum Systems in Chemistry and Physics. Progress in Theoretical Chemistry and Physics, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-319-74582-4_15

Download citation

Publish with us

Policies and ethics