Skip to main content

The Emerging Roles of microRNAs in Stem Cell Aging

  • Chapter
  • First Online:
Exosomes, Stem Cells and MicroRNA

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1056))

Abstract

Aging is the continuous loss of tissue and organ function over time. MicroRNAs (miRNAs) are thought to play a vital role in this process. miRNAs are endogenous small noncoding RNAs that control the expression of target mRNA. They are involved in many biological processes such as developmental timing, differentiation, cell death, stem cell proliferation and differentiation, immune response, aging and cancer. Accumulating studies in recent years suggest that miRNAs play crucial roles in stem cell division and differentiation. In the present chapter, we present a brief overview of these studies and discuss their contributions toward our understanding of the importance of miRNAs in normal and aged stem cell function in various model systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Childs BG, Durik M, Baker DJ, van Deursen JM (2015) Cellular senescence in aging and age-related disease: from mechanisms to therapy. Nat Med 21(12):1424–1435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Smith-Vikos T, Slack FJ (2012) MicroRNAs and their roles in aging. J Cell Sci 125:7–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Victoria B, Nunez Lopez YO, Masternak MM (2017) MicroRNAs and the metabolic hallmarks of aging. Mol Cell Endocrinol 455:131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Gangaraju VK, Lin H (2009) MicroRNAs: key regulators of stem cells. Nat Rev Mol Cell Biol 10(2):116–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17):4663–4670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN (2004) MicroRNA genes are transcribed by RNA polymerase II. EMBO J 23(20):4051–4060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thomson T, Lin H (2009) The biogenesis and function of PIWI proteins and piRNAs: progress and prospect. Annu Rev Cell Dev Biol 25:355–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858

    Article  CAS  PubMed  Google Scholar 

  9. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75:843–854

    Article  CAS  PubMed  Google Scholar 

  10. Pasquinelli AE, Reinhart BJ, Slack F, Martindale MQ, Kuroda MI, Maller B, Hayward DC, Ball EE, Degnan B, Muller P et al (2000) Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature 408:86–89

    Article  CAS  PubMed  Google Scholar 

  11. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature 403:901–906

    Article  CAS  PubMed  Google Scholar 

  12. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75:855–862

    Article  CAS  PubMed  Google Scholar 

  13. Chan B, Manley J, Lee J, Singh SR (2015) The emerging roles of microRNAs in cancer metabolism. Cancer Lett 356:301–308

    Article  CAS  PubMed  Google Scholar 

  14. Davis C, Dukes A, Drewry M, Helwa I, Johnson M, Isales CM, Hill WD, Liu Y, Shi X, Fulzele S, Hamrick MW (2017) MicroRNA-183-5p increases with age in bone-derived extracellular vesicles, suppresses bone marrow stromal (stem) cell proliferation, and induces stem cell senescence. Tissue Eng Part A 23(21-22):1231–1240. https://doi.org/10.1089/ten.TEA.2016.0525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Fei J, Tamski H, Cook C, Santanam N (2013) MicroRNA regulation of adipose derived stem cells in aging rats. PLoS One 8(3):e59238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guo L, Zhao RC, Wu Y (2011) The role of microRNAs in self-renewal and differentiation of mesenchymal stem cells. Exp Hematol 39:608–616

    Article  CAS  PubMed  Google Scholar 

  17. Hammond S, Sharpless N (2008) HMGA2, microRNAs, and stem cell aging. Cell 135(6):1013–1016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hodzic M, Naaldijk Y, Stolzing A (2013) Regulating aging in adult stem cells with microRNA. Z Gerontol Geriatr 46:629–634

    Article  CAS  PubMed  Google Scholar 

  19. Kim S, Rhee JK, Yoo HJ, Lee HJ, Lee EJ, Lee JW, Yu JH, Son BH, Gong G, Kim SB, Singh SR, Ahn SH, Chang S (2015) Bioinformatic and metabolomic analysis reveals miR-155 regulates thiamine level in breast cancer. Cancer Lett 357(2):488–497

    Article  CAS  PubMed  Google Scholar 

  20. Nishino J, Kim I, Chada K, Morrison SJ (2008) Hmga2 promotes neural stem cell self-renewal in young but not old mice by reducing p16Ink4a and p19Arf expression. Cell 135:227–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Seol HS, Akiyama Y, Shimada S, Lee HJ, Kim TI, Chun SM, Singh SR, Jang SJ (2014) Epigenetic silencing of microRNA-373 to epithelial-mesenchymal transition in non-small cell lung cancer through IRAK2 and LAMP1 axes. Cancer Lett 353(2):232–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singh SR, Rameshwar P (2014) MicroRNA in development and in the progression of cancer. Springer, New York

    Book  Google Scholar 

  23. Yi R, Fuchs E (2011) MicroRNAs and their roles in mammalian stem cells. J Cell Sci 124:1775–1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yalcin S, Carty M, Shin JY, Miller RA, Leslie C, Park CY (2014) Microrna mediated regulation of hematopoietic stem cell aging. Blood 124:602

    Google Scholar 

  25. Yu KR, Lee S, Jung JW, Hong IS, Kim HS, Seo Y, Shin TH, Kang KS (2013) MicroRNA-141-3p plays a role in human mesenchymal stem cell aging by directly targeting ZMPSTE24. J Cell Sci 126(Pt 23):5422–5431

    Article  CAS  PubMed  Google Scholar 

  26. Lin H (2008) Cell biology of stem cells: an enigma of asymmetry and self-renewal. J Cell Biol 180(2):257–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Singh SR (2012) Stem cell niche in tissue homeostasis, aging and cancer. Curr Med Chem 19(35):5965–5974

    Article  CAS  PubMed  Google Scholar 

  28. Förstemann K, Tomari Y, Du T, Vagin VV, Denli AM, Bratu DP, Klattenhoff C, Theurkauf WE, Zamore PD (2005) Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol 3(7):e236

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Li N, Long B, Han W, Yuan S, Wang K (2017) microRNAs: important regulators of stem cells. Stem Cell Res Ther 8(1):110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Li Q, Gregory RI (2008) MicroRNA regulation of stem cell fate. Cell Stem Cell 2(3):195–196

    Article  CAS  PubMed  Google Scholar 

  31. Mathieu J, Ruohola-Baker H (2013) Regulation of stem cell populations by microRNAs. Adv Exp Med Biol 786:329–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shcherbata HR, Hatfield S, Ward EJ, Reynolds S, Fischer KA, Ruohola-Baker H (2006) The MicroRNA pathway plays a regulatory role in stem cell division. Cell Cycle 5(2):172–175

    Article  CAS  PubMed  Google Scholar 

  33. Houbaviy HB, Murray MF, Sharp PA (2003) Embryonic stem cell-specific MicroRNAs. Dev Cell 5(2):351–358

    Article  CAS  PubMed  Google Scholar 

  34. Landgraf P, Rusu M, Sheridan R, Sewer A, Iovino N, Aravin A, Pfeffer S, Rice A, Kamphorst AO, Landthaler M, Lin C, Socci ND, Hermida L, Fulci V, Chiaretti S, Foà R, Schliwka J, Fuchs U, Novosel A, Müller RU, Schermer B, Bissels U, Inman J, Phan Q, Chien M, Weir DB, Choksi R, De Vita G, Frezzetti D, Trompeter HI, Hornung V, Teng G, Hartmann G, Palkovits M, Di Lauro R, Wernet P, Macino G, Rogler CE, Nagle JW, Ju J, Papavasiliou FN, Benzing T, Lichter P, Tam W, Brownstein MJ, Bosio A, Borkhardt A, Russo JJ, Sander C, Zavolan M, Tuschl T (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sempere LF, Freemantle S, Pitha-Rowe I, Moss E, Dmitrovsky E, Ambros V (2004) Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation. Genome Biol 5(3):R13

    Article  PubMed  PubMed Central  Google Scholar 

  36. Suh MR, Lee Y, Kim JY, Kim SK, Moon SH, Lee JY, Cha KY, Chung HM, Yoon HS, Moon SY, Kim VN, Kim KS (2004) Human embryonic stem cells express a unique set of microRNAs. Dev Biol 270(2):488–498

    Article  CAS  PubMed  Google Scholar 

  37. Yu Z, Li Y, Fan H, Liu Z, Pestell RG (2012) miRNAs regulate stem cell self-renewal and differentiation. Front Genet 3:191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Melton C, Judson RL, Blelloch R (2010) Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463(7281):621–626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Greene SB, Gunaratne PH, Hammond SM, Rosen JM (2010) A putative role for microRNA-205 in mammary epithelial cell progenitors. J Cell Sci 123:606–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang L, Stokes N, Polak L, Fuchs E (2011) Specific microRNAs are preferentially expressed by skin stem cells to balance self-renewal and early lineage commitment. Cell Stem Cell 8(3):294–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Yi R, Poy MN, Stoffel M, Fuchs E (2008) A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 452(7184):225–229

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhao C, Sun G, Li S, Shi Y (2009) A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol 16(4):365–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cheng LC, Pastrana E, Tavazoie M, Doetsch F (2009) miR-124 regulates adult neurogenesis in the subventricular zone stem cell niche. Nat Neurosci 12(4):399–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liu C, Teng ZQ, Santistevan NJ, Szulwach KE, Guo W, Jin P, Zhao X (2010) Epigenetic regulation of miR-184 by MBD1 governs neural stem cell proliferation and differentiation. Cell Stem Cell 6(5):433–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kim H, Lee G, Ganat Y, Papapetrou EP, Lipchina I, Socci ND, Sadelain M, Studer L (2011) miR-371-3 expression predicts neural differentiation propensity in human pluripotent stem cells. Cell Stem Cell 8(6):695–706

    Article  CAS  PubMed  Google Scholar 

  46. Brett JO, Renault VM, Rafalski VA, Webb AE, Brunet A (2011) The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging 3:108–124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chen JF, Tao Y, Li J, Deng Z, Yan Z, Xiao X, Wang DZ (2010) microRNA-1 and microRNA-206 regulate skeletal muscle satellite cell proliferation and differentiation by repressing Pax7. J Cell Biol 190(5):867–879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Chen CZ, Li L, Lodish HF, Bartel DP (2004) MicroRNAs modulate hematopoietic lineage differentiation. Science 303(5654):83–86

    Article  CAS  PubMed  Google Scholar 

  49. Xiao C, Calado DP, Galler G, Thai TH, Patterson HC, Wang J, Rajewsky N, Bender TP, Rajewsky K (2007) MiR-150 controls B cell differentiation by targeting the transcription factor c-Myb. Cell 131(1):146–159

    Article  CAS  PubMed  Google Scholar 

  50. Guo S, Lu J, Schlanger R, Zhang H, Wang JY, Fox MC, Purton LE, Fleming HH, Cobb B, Merkenschlager M, Golub TR, Scadden DT (2010) MicroRNA miR-125a controls hematopoietic stem cell number. Proc Natl Acad Sci U S A 107(32):14229–14234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen CH, Luhur A, Sokol N (2015) Lin-28 promotes symmetric stem cell division and drives adaptive growth in the adult Drosophila intestine. Development 142(20):3478–3487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Glass C, Singla DK (2011) MicroRNA-1 transfected embryonic stem cells enhance cardiac myocyte differentiation and inhibit apoptosis by modulating the PTEN/Akt pathway in the infarcted heart. Am J Physiol Heart Circ Physiol 301(5):H2038–H2049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang ZP, Neppl RL, Wang DZ (2010) MicroRNAs in cardiac remodeling and disease. J Cardiovasc Transl Res 3(3):212–218

    Article  PubMed  Google Scholar 

  54. Liang J, Huang W, Cai W, Wang L, Guo L, Paul C, Yu XY, Wang Y (2017) Inhibition of microRNA-495 enhances therapeutic angiogenesis of human induced pluripotent stem cells. Stem Cells 35(2):337–350

    Article  CAS  PubMed  Google Scholar 

  55. Sluijter JP, van Mil A, van Vliet P, Metz CH, Liu J, Doevendans PA, Goumans MJ (2010) MicroRNA-1 and -499 regulate differentiation and proliferation in human-derived cardiomyocyte progenitor cells. Arterioscler Thromb Vasc Biol 30(4):859–868

    Article  CAS  PubMed  Google Scholar 

  56. Yoo JK, Kim J, Choi SJ, Noh HM, Kwon YD, Yoo H, Yi HS, Chung HM, Kim JK (2012) Discovery and characterization of novel microRNAs during endothelial differentiation of human embryonic stem cells. Stem Cells Dev 21(11):2049–2057

    Article  CAS  PubMed  Google Scholar 

  57. Eskildsen T, Taipaleenmäki H, Stenvang J, Abdallah BM, Ditzel N, Nossent AY, Bak M, Kauppinen S, Kassem M (2011) MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci U S A 108(15):6139–6144

    Article  PubMed  PubMed Central  Google Scholar 

  58. Ham O, Song BW, Lee SY, Choi E, Cha MJ, Lee CY, Park JH, Kim IK, Chang W, Lim S, Lee CH, Kim S, Jang Y, Hwang KC (2012) The role of microRNA-23b in the differentiation of MSC into chondrocyte by targeting protein kinase A signaling. Biomaterials 33(18):4500–4507

    Article  CAS  PubMed  Google Scholar 

  59. Lin X, Wu L, Zhang Z, Yang R, Guan Q, Hou X, Wu Q (2014) MiR-335-5p promotes chondrogenesis in mouse mesenchymal stem cells and is regulated through two positive feedback loops. J Bone Miner Res 29(7):1575–1585

    Article  CAS  PubMed  Google Scholar 

  60. Arantes-Oliveira N, Apfeld J, Dillin A, Kenyon C (2002) Regulation of life-span by germ-line stem cells in Caenorhabditis elegans. Science 295(5554):502–505

    Article  CAS  PubMed  Google Scholar 

  61. Joshi PM, Riddle MR, Djabrayan NJ, Rothman JH (2010) Caenorhabditis elegans as a model for stem cell biology. Dev Dyn 239(5):1539–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boulias K, Horvitz HR (2012) The C. elegans microRNA mir-71 acts in neurons to promote germline mediated longevity through regulation of DAF-16/FOXO. Cell Metab 15:439–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Harandi OF, Ambros VR (2015) Control of stem cell self-renewal and differentiation by the heterochronic genes and the cellular asymmetry machinery in Caenorhabditis elegans. Proc Natl Acad Sci U S A 112(3):E287–E296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lin K, Hsin H, Libina N, Kenyon C (2001) Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet 28:139–145

    Article  CAS  PubMed  Google Scholar 

  65. Lucanic M, Graham J, Scott G, Bhaumik D, Benz CC, Hubbard A, Lithgow GJ, Melov S (2013) Age-related micro-RNA abundance in individual C. elegans. Aging (Albany NY) 5(6):394–411

    Article  CAS  Google Scholar 

  66. Nimmo RA, Slack FJ (2009 Aug) An elegant miRror: microRNAs in stem cells, developmental timing and cancer. Chromosoma 118(4):405–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Shen Y, Wollam J, Magner D, Karalay O, Antebi A (2012) A steroid receptor-microRNA switch regulates life span in response to signals from the gonad. Science 338:1472–1476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wang D, Hou L, Nakamura S, Su M, Li F, Chen W, Yan Y, Green CD, Chen D, Zhang H, Antebi A, Han JJ (2017) LIN-28 balances longevity and germline stem cell number in Caenorhabditis elegans through let-7/AKT/DAF-16 axis. Aging Cell 16(1):113–124

    Article  CAS  PubMed  Google Scholar 

  69. Toledano H, D’Alterio C, Czech B, Levine E, Jones DL (2012) The let-7-Imp axis regulates ageing of the Drosophila testis stem-cell niche. Nature 485:605–610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Foronda D, Weng R, Verma P, Chen YW, Cohen SM (2014) Coordination of insulin and notch pathway activities by microRNA miR-305 mediates adaptive homeostasis in the intestinal stem cells of the Drosophila gut. Genes Dev 28(21):2421–2431

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Wagner W, Horn P, Castoldi M, Diehlmann A, Bork S, Saffrich R, Benes V, Blake J, Pfister S, Eckstein V, Ho AD (2008) Replicative senescence of mesenchymal stem cells: a continuous and organized process. PLoS One 3(5):e2213

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Hackl M, Brunner S (2010) mir-17, mir-19b, mir-20a, and mir-106 are down-regulated in human aging. Aging Cell 9(2):291–296

    Article  CAS  PubMed  Google Scholar 

  73. Lee S, Yu KR, Ryu YS, Oh YS, Hong IS, Kim HS, Lee JY, Kim S, Seo KW, Kang KS (2014) miR-543 and miR-590-3p regulate human mesenchymal stem cell aging via direct targeting of AIMP3/p18. Age 36(6):9724

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Tomé M, Sepúlveda JC, Delgado M, Andrades JA, Campisi J, González MA, Bernad A (2014) miR-335 correlates with senescence/aging in human mesenchymal stem cells and inhibits their therapeutic actions through inhibition of AP-1 activity. Stem Cells 32(8):2229–2244

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Shang J, Yao Y, Fan X, Shangguan L, Li J, Liu H, Zhou Y (2016) miR-29c-3p promotes senescence of human mesenchymal stem cells by targeting CNOT6 through p53-p21 and p16-pRB pathways. Biochim Biophys Acta 1863(4):520–532

    Article  CAS  PubMed  Google Scholar 

  76. Peffers MJ, Collins J, Fang Y, Goljanek-Whysall K, Rushton M, Loughlin J, Proctor C, Clegg PD (2016) Age-related changes in mesenchymal stem cells identified using a multi-omics approach. Eur Cell Mater 31:136–159

    Article  CAS  PubMed  Google Scholar 

  77. Hisamatsu D, Ohno-Oishi M, Nakamura S, Mabuchi Y, Naka-Kaneda H (2016) Growth differentiation factor 6 derived from mesenchymal stem/stromal cells reduces age-related functional deterioration in multiple tissues. Aging (Albany NY) 8(6):1259–1275

    Article  Google Scholar 

  78. Okada M, Kim HW, Matsu-ura K, Wang YG, Xu M, Ashraf M (2016) Abrogation of age-induced MicroRNA-195 rejuvenates the senescent mesenchymal stem cells by reactivating telomerase. Stem Cells 34(1):148–159

    Article  CAS  PubMed  Google Scholar 

  79. Yu JM, Wu X et al (2011) Age-related changes in mesenchymal stem cells derived from rhesus macaque bone marrow. Aging Cell 10(1):66–79

    Article  CAS  PubMed  Google Scholar 

  80. Lee S, Jung JW, Park SB, Roh K, Lee SY, Kim JH, Kang SK, Kang KS (2011) Histone deacetylase regulates high mobility group A2-targeting microRNAs in human cord blood-derived multipotent stem cell aging. Cell Mol Life Sci 68(2):325–336

    Article  CAS  PubMed  Google Scholar 

  81. So AY, Jung JW, Lee S, Kim HS, Kang KS (2011) DNA methyltransferase controls stem cell aging by regulating BMI1 and EZH2 through microRNAs. PLoS One 6(5):e19503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zhao JL, Rao DS, O'Connell RM, Garcia-Flores Y, Baltimore D (2013) MicroRNA-146a acts as a guardian of the quality and longevity of hematopoietic stem cells in mice. elife 2:e00537

    Article  PubMed  PubMed Central  Google Scholar 

  83. Mehta A, Zhao JL, Sinha N, Marinov GK, Mann M, Kowalczyk MS, Galimidi RP, Du X, Erikci E, Regev A, Chowdhury K, Baltimore D (2015) The microRNA-132 and microRNA-212 cluster regulates hematopoietic stem cell maintenance and survival with age by buffering FOXO3 expression. Immunity 42(6):1021–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pandey AC, Semon JA, Kaushal D, O’Sullivan RP, Glowacki J, Gimble JM, Bunnell BA (2011) MicroRNA profiling reveals age-dependent differential expression of nuclear factor κB and mitogen-activated protein kinase in adipose and bone marrow-derived human mesenchymal stem cells. Stem Cell Res Ther 2(6):49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Alt EU, Senst C, Murthy SN, Slakey DP, Dupin CL, Chaffin AE, Kadowitz PJ, Izadpanah R (2012) Aging alters tissue resident mesenchymal stem cell properties. Stem Cell Res 8(2):215–225

    Article  CAS  PubMed  Google Scholar 

  86. López JA, Granados-López AJ (2017) Future directions of extracellular vesicle-associated miRNAs in metastasis. Ann Transl Med 5(5):115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  87. Drummond MJ, McCarthy JJ, Sinha M, Spratt HM, Volpi E, Esser KA, Rasmussen BB (2011) Aging and microRNA expression in human skeletal muscle: a microarray and bioinformatics analysis. Physiol Genomics 43(10):595–603

    Article  CAS  PubMed  Google Scholar 

  88. Soriano-Arroquia A, McCormick R, Molloy AP, McArdle A, Goljanek-Whysall K (2016) Age-related changes in miR-143-3p:Igfbp5 interactions affect muscle regeneration. Aging Cell 15(2):361–369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Redshaw Z, Sweetman D, Loughna PT (2014) The effects of age upon the expression of three miRNAs in muscle stem cells isolated from two different porcine skeletal muscles. Differentiation 88(4-5):117–123

    Article  CAS  PubMed  Google Scholar 

  90. Chen L, Wang GD, Liu JP, Wang HS, Liu XM, Wang Q, Cai XH (2015a) miR-135a modulates tendon stem/progenitor cell senescence via suppressing ROCK1. Bone 71:210–216

    Article  CAS  PubMed  Google Scholar 

  91. Chen L, Liu J, Tao X, Wang G, Wang Q, Liu X (2015b) The role of Pin1 protein in aging of human tendon stem/progenitor cells. Biochem Biophys Res Commun 464(2):487–492

    Article  CAS  PubMed  Google Scholar 

  92. Cai B, Ma W, Bi C, Yang F, Zhang L, Han Z, Huang Q, Ding F, Li Y, Yan G, Pan Z, Yang B, Lu Y (2016) Long noncoding RNA H19 mediates melatonin inhibition of premature senescence of c-kit(+) cardiac progenitor cells by promoting miR-675. J Pineal Res 61(1):82–95

    Article  CAS  PubMed  Google Scholar 

  93. Gu S, Ran S, Liu B, Liang J (2016) miR-152 induces human dental pulp stem cell senescence by inhibiting SIRT7 expression. FEBS Lett 590(8):1123–1131

    Article  CAS  PubMed  Google Scholar 

  94. Boehm M, Slack F (2005) A developmental timing microRNA and its target regulate life span in C. elegans. Science 310(5756):1954–1957

    Article  CAS  PubMed  Google Scholar 

  95. Zou Y, Chiu H, Zinovyeva A, Ambros V, Chuang CF, Chang C (2013) Developmental decline in neuronal regeneration by the progressive change of two intrinsic timers. Science 340(6130):372–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Boyle M, Wong C, Rocha M, Jones DL (2007) Decline in self-renewal factors contributes to aging of the stem cell niche in the Drosophila testis. Cell Stem Cell 1(4):470–478

    Article  CAS  PubMed  Google Scholar 

  97. Wallenfang MR, Nayak R, DiNardo S (2006) Dynamics of the male germline stem cell population during aging of Drosophila melanogaster. Aging Cell 5(4):297–304

    Article  CAS  PubMed  Google Scholar 

  98. Eun SH, Stoiber PM, Wright HJ, McMurdie KE, Choi CH, Gan Q, Lim C, Chen X (2013) MicroRNAs downregulate bag of marbles to ensure proper terminal differentiation in the Drosophila male germline. Development 140(1):23–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Hatfield SD, Shcherbata HR, Fischer KA, Nakahara K, Carthew RW, Ruohola-Baker H (2005) Stem cell division is regulated by the microRNA pathway. Nature 435(7044):974–978

    Article  CAS  PubMed  Google Scholar 

  100. Jin Z, Xie T (2007) Dcr-1 maintains Drosophila ovarian stem cells. Curr Biol 17(6):539–544

    Article  CAS  PubMed  Google Scholar 

  101. Li Y, Maines JZ, Tastan OY, McKearin DM, Buszczak M (2012) Mei-P26 regulates the maintenance of ovarian germline stem cells by promoting BMP signaling. Development 139(9):1547–1556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Neumüller RA, Betschinger J, Fischer A, Bushati N, Poernbacher I, Mechtler K, Cohen SM, Knoblich JA (2008) Mei-P26 regulates microRNAs and cell growth in the Drosophila ovarian stem cell lineage. Nature 454(7201):241–245

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Rager R, Chan B, Forney L, Singh SR (2014) Role of MicroRNAs in stem cell regulation and tumorigenesis in Drosophila. In: Singh SR, Rameshwar P (eds) MicroRNA in Development and in the Progression of Cancer. Springer, New York, pp 69–80

    Chapter  Google Scholar 

  104. Shcherbata HR, Ward EJ, Fischer KA, Yu JY, Reynolds SH, Chen CH, Xu P, Hay BA, Ruohola-Baker H (2007) Stage-specific differences in the requirements for germline stem cell maintenance in the Drosophila ovary. Cell Stem Cell 1(6):698–709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Yang Y, Xu S, Xia L, Wang J, Wen S, Jin P, Chen D (2009) The bantam microRNA is associated with drosophila fragile X mental retardation protein and regulates the fate of germline stem cells. PLoS Genet 5(4):e1000444

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Yu JY, Reynolds SH, Hatfield SD, Shcherbata HR, Fischer KA, Ward EJ, Long D, Ding Y, Ruohola-Baker H (2009) Dicer-1-dependent Dacapo suppression acts downstream of insulin receptor in regulating cell division of Drosophila germline stem cells. Development 136(9):1497–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Biteau B, Karpac J, Supoyo S, Degennaro M, Lehmann R, Jasper H (2010) Lifespan extension by preserving proliferative homeostasis in Drosophila. PLoS Genet 6(10):e1001159

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Wagner W, Ho AD, Zenke M (2010) Different facets of aging in human mesenchymal stem cells. Tissue Eng Part B Rev 16:445–453

    Article  PubMed  Google Scholar 

  109. Renault V, Thornell LE, Eriksson PO, Butler-Browne G, Mouly V (2002) Regenerative potential of human skeletal muscle during aging. Aging Cell 1(2):132–139

    Article  CAS  PubMed  Google Scholar 

  110. Verdijk LB, Koopman R, Schaart G, Meijer K, Savelberg HH, van Loon LJ (2007) Satellite cell content is specifically reduced in type II skeletal muscle fibers in the elderly. Am J Physiol Endocrinol Metab 292(1):E151–E157

    Article  CAS  PubMed  Google Scholar 

  111. Lee KP, Shin YJ, Panda AC, Abdelmohsen K, Kim JY, Lee SM, Bahn YJ, Choi JY, Kwon ES, Baek SJ, Kim SY, Gorospe M, Kwon KS (2015) miR-431 promotes differentiation and regeneration of old skeletal muscle by targeting Smad4. Genes Dev 29(15):1605–1617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Kondo H, Kim HW, Wang L, Okada M, Paul C, Millard RW, Wang Y (2016) Blockade of senescence-associated microRNA-195 in aged skeletal muscle cells facilitates reprogramming to produce induced pluripotent stem cells. Aging Cell 15(1):56–66

    Article  CAS  PubMed  Google Scholar 

  113. Boon RA, Iekushi K, Lechner S, Seeger T, Fischer A, Heydt S, Kaluza D, Tréguer K, Carmona G, Bonauer A, Horrevoets AJ, Didier N, Girmatsion Z, Biliczki P, Ehrlich JR, Katus HA, Müller OJ, Potente M, Zeiher AM, Hermeking H, Dimmeler S (2013) MicroRNA-34a regulates cardiac ageing and function. Nature 495(7439):107–110

    Article  CAS  PubMed  Google Scholar 

  114. Small EM, Olson EN (2011) Pervasive roles of microRNAs in cardiovascular biology. Nature 469:336–342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Messina E, De Angelis L, Frati G, Morrone S, Chimenti S, Fiordaliso F, Salio M, Battaglia M, Latronico MV, Coletta M, Vivarelli E, Frati L, Cossu G, Giacomello A (2004) Isolation and expansion of adult cardiac stem cells from human and murine heart. Circ Res 95(9):911–921

    Article  CAS  PubMed  Google Scholar 

  116. Zhu S, Deng S, Ma Q, Zhang T, Jia C, Zhuo D, Yang F, Wei J, Wang L, Dykxhoorn DM, Hare JM, Goldschmidt-Clermont PJ, Dong C (2013) MicroRNA-10A* and MicroRNA-21 modulate endothelial progenitor cell senescence via suppressing high-mobility group A2. Circ Res 112(1):152–164

    Article  CAS  PubMed  Google Scholar 

  117. Couppe C, Hansen P, Kongsgaard M, Kovanen V, Suetta C, Aagaard P, Kjaer M, Magnusson SP (2009) Mechanical properties and collagen cross-linking of the patellar tendon in old and young men. J Appl Physiol 107(3):880–886

    Article  CAS  PubMed  Google Scholar 

  118. Tan Q, Lui PP, Rui YF (2012) Effect of in vitro passaging on the stem cell-related properties of tendon-derived stem cells-implications in tissue engineering. Stem Cells Dev 21:790–800

    Article  CAS  PubMed  Google Scholar 

  119. Alraies A, Alaidaroos NY, Waddington RJ, Moseley R, Sloan AJ (2017) Variation in human dental pulp stem cell ageing profiles reflect contrasting proliferative and regenerative capabilities. BMC Cell Biol 18(1):12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Gronthos S, Mankani M, Brahim J, Robey PG, Shi S (2000) Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc Natl Acad Sci U S A 97(25):13625–13630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Hara ES, Ono M, Eguchi T, Kubota S, Pham HT, Sonoyama W, Tajima S, Takigawa M, Calderwood SK, Kuboki T (2013) miRNA-720 controls stem cell phenotype, proliferation and differentiation of human dental pulp cells. PLoS One 8(12):e83545

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Vasanthan P, Govindasamy V, Gnanasegaran N, Kunasekaran W, Musa S, Abu Kasim NH (2015) Differential expression of basal microRNAs’ patterns in human dental pulp stem cells. J Cell Mol Med 19(3):566–580

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shree Ram Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dietrich, C., Singh, M., Kumar, N., Singh, S.R. (2018). The Emerging Roles of microRNAs in Stem Cell Aging. In: Mettinger, K., Rameshwar, P., Kumar, V. (eds) Exosomes, Stem Cells and MicroRNA. Advances in Experimental Medicine and Biology, vol 1056. Springer, Cham. https://doi.org/10.1007/978-3-319-74470-4_2

Download citation

Publish with us

Policies and ethics