Skip to main content

Biohydrogen Production from Lignocellulosic Feedstocks Using Extremophiles

  • Chapter
  • First Online:

Abstract

Due to the impact of global warming and increasing cost of fossil fuels day by day, development of alternative sources of energy has become important so that the world’s future energy needs can be mitigated. The focus has been given to develop economically viable and environment friendly technologies. Among all the forms of alternate energy sources, biohydrogen (BioH2) is of significant interest due to its carbon neutral combustion. Use of second-generation (lignocelluloses) and third-generation feedstocks (algae) to produce BioH2 can be a promising and efficient method, which fulfills the future demand of energy. Recently, BioH2 production using extremophiles has gained high attention due to fast production rate without any preprocessing or mild processing of plant biomass. Extremophiles are reported to produce BioH2 and other value-added products even from untreated lignocellulosic biomass. This chapter presents a review and in-depth analyses of extremophilic BioH2 production from lignocellulosic biomass. The chapter also provides the knowledge on how to develop a more efficient and economical integrated process for enhanced conversion of lignocellulosic feedstocks to BioH2.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abreu AA, Karakashev D, Angelidaki I (2012) Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed culture. Biotechnol Biofuels 5:1–12

    Article  CAS  Google Scholar 

  • Bae SS, Kim TW, Lee HS et al (2012) H2 production from CO, formate or starch using the hyperthermophilic archaeon, Thermococcus onnurineus. Biotechnol Lett 34:75–79

    Article  CAS  PubMed  Google Scholar 

  • Behera S, Arora R, Nandhagopal N, Kumar S (2014) Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renew Sust Energ Rev 36:91–106

    Article  CAS  Google Scholar 

  • Bhalla A, Bansal N, Kumar S et al (2013) Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresour Technol 128:751–759

    Article  CAS  PubMed  Google Scholar 

  • Blumer-Schuette SE, Kataeva I, Westpheling J et al (2008) Extremely thermophilic microorganisms for biomass conversion: status and prospects. Curr Opin Biotechnol 19:210–217

    Article  CAS  PubMed  Google Scholar 

  • Cara C, Romero I, Oliva JM et al (2007) Liquid hot water of olive tree pruning residues. Appl Biochem Biotechnol 137–140:379–394

    PubMed  Google Scholar 

  • Chang V, Holtzapple M (2000) Fundamental factors affecting biomass enzymatic reactivity. Appl Biochem Biotechnol 86:5–37

    Article  Google Scholar 

  • Chen CC, Chuang YS, Lin CY (2012) Thermophilic dark fermentation of untreated rice straw using mixed cultures for hydrogen production. Int J Hydrog Energy 37:15540–15546

    Article  CAS  Google Scholar 

  • Chou CJ, Jenney FE Jr, Adams WW et al (2008) Hydrogenesis in hyperthermophilic microorganisms: implications for biofuels. Metab Eng 10:394–404

    Article  CAS  PubMed  Google Scholar 

  • d’Ippolito G, Dipasquale L, Vella FM et al (2010) Hydrogen metabolism in the extreme thermophile Thermotoga neapolitana. Int J Hydrog Energy 35:2290–2305

    Article  CAS  Google Scholar 

  • Das D (2009) Advances in biohydrogen production processes: an approach towards commercialization. Int J Hydrog Energy 34:7349–7357

    Article  CAS  Google Scholar 

  • Datar R, Huang J, Maness PC et al (2007) Hydrogen production from the fermentation of corn stover biomass pretreated with steam-explosion process. Int J Hydrog Energy 32:932–939

    Article  CAS  Google Scholar 

  • de Vrije T, Claassen PAM (2003) Dark hydrogen fermentations. In: Reith JH, Wijffels RH, Barten H (eds) Biomethane & bio-hydrogen: status and perspectives of biological methane and hydrogen production. Dutch Biological Hydrogen Foundation, The Hague, pp 103–123

    Google Scholar 

  • de Vrije T, Bakker RR, Budde MAW et al (2009) Efficient hydrogen production from lignocellulosic energy crop Miscanthus by the extreme thermophilic bacteria Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Biotechnol Biofuels 2:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demirbas A (2007) Progress and recent trends in biofuel. Prog Energy Combust 33:1–18

    Article  CAS  Google Scholar 

  • Eriksen NT, Riis ML, Holm NK, Iversen N (2011) Hydrogen synthesis frompentoses and biomass in Thermotoga spp. Biotechnol Lett 33:293–300

    Article  CAS  PubMed  Google Scholar 

  • Evers AA (2008) Actual worldwide hydrogen production from… www.fair-pr.com. Available at: http://www.hydrogenambassadors.com/background/worldwide-hydrogen-production-analysis.php

  • Fan YT, Zhang YH, Zhang SF et al (2006) Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresour Technol 97:500–505

    Article  CAS  PubMed  Google Scholar 

  • Gadow SI, Li YY, Liu Y (2012) Effect of temperature on continuous hydrogen production of cellulose. Int J Hydrog Energy 37:15465–15472

    Article  CAS  Google Scholar 

  • Hallenbeck PC (2005) Fundamentals of the fermentative production of hydrogen. Water Sci Technol 52:21–29

    Article  CAS  PubMed  Google Scholar 

  • Hallenbeck PC (2009) Fermentative hydrogen production: principles, progress andprognosis. Int J Hydrog Energy 34:7379–7389

    Article  CAS  Google Scholar 

  • Hallenbeck PC, Abo-Hashesh M, Ghosh D (2012) Strategies for improving biological hydrogen production. Bioresour Technol 110:1–9

    Article  CAS  PubMed  Google Scholar 

  • Hasyim R, Imai T, Reungsang A et al (2011) Extreme-thermophilic biohydrogen production by an anaerobic heat treated digested sewage sludge culture. Int J Hydrog Energy 36:8727–8734

    Article  CAS  Google Scholar 

  • Ivanova G, Rakhely G, Kovacs KL (2008) Hydrogen production from biopolymers by Caldicellulosiruptor saccharolyticus and stabilization of the system by immobilization. Int J Hydrog Energy 33:6953–6961

    Article  CAS  Google Scholar 

  • Ivanova G, Rakhely G, Kovacs KL (2009) Thermophilic biohydrogen production from energy plants by Caldicellulosiruptor saccharolyticus and comparison with related studies. Int J Hydrog Energy 34:3659–3670

    Article  CAS  Google Scholar 

  • Jayasinghearachchi HS, Sarma PM, Lal B (2012) Biological hydrogen production by extremely thermophilic novel bacterium Thermoanaerobacter mathranii A3N isolated from oil producing well. Int J Hydrog Energy 37:5569–5578

    Article  CAS  Google Scholar 

  • Jones P (2008) Improving fermentative biomass-derived H2-production by engineered microbial metabolism. Int J Hydrog Energy 33:5122–5130

    Article  CAS  Google Scholar 

  • Kanai T, Imanaka H, Nakajima A et al (2005) Continuous hydrogen production by the hyperthermophilic archon, Thermococcuskodakaraensis KOD1. J Biotechnol 116:271–282

    Article  CAS  PubMed  Google Scholar 

  • Kongjan P, Angelidaki I (2010) Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration. Bioresour Technol 101:7789–7796

    Article  CAS  PubMed  Google Scholar 

  • Kotsopoulos T, Zeng RJ, Angelidaki I (2006) Biohydrogen production in granular up-flow anaerobic sludge blanket (UASB) reactors with mixed cultures under hyperthermophilic temperature (70 °C). Biotechnol Bioeng 94:296–302

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Bhalla A, Bibra M et al (2015) Thermophilic biohydrogen production: challenges at the industrial scale. In: Krishnaraj N, Yu JS (eds) Bioenergy: opportunities and challenges. Apple Academic Press, Oakville, pp 3–35

    Chapter  Google Scholar 

  • Lee SH, Doherty TV, Linhardt RJ (2009) Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol Bioeng 102:1368–1376

    Article  CAS  PubMed  Google Scholar 

  • Levin DB, Islam R, Cicek N, Sparling R (2006) Hydrogen production by Clostridium thermocellum 27405 from cellulosic biomass substrates. Int J Hydrog Energy 31:1496–1503

    Article  CAS  Google Scholar 

  • Li Q, He YC, Xian M et al (2009) Improving enzymatic hydrolysis of wheat straw using ionic liquid 1-ethyl-3-methyl imidazolium diethyl phosphate pretreatment. Bioresour Technol 100:3570–3575

    Article  CAS  PubMed  Google Scholar 

  • Lin ZX, Huang H, Zhang HM (2010) Ball milling pretreatment of corn stover for enhancing the efficiency of enzymatic hydrolysis. Appl Biochem Biotechnol 162:1872–1880

    Article  CAS  PubMed  Google Scholar 

  • Lu W, Fan G, Zhao C et al (2012) Enhancement of fermentative hydrogen production in an extreme-thermophilic (70 °C) mixed-culture environment by repeated batch cultivation. Curr Microbiol 64:427–432

    Article  CAS  PubMed  Google Scholar 

  • Lynd LR, Laser MS, Bransby D, Dale BE et al (2008) How biotech can transform biofuels. Nat Biotechnol 26:169–172

    Article  CAS  PubMed  Google Scholar 

  • Magnusson L, Islam R, Sparling R (2008) Direct hydrogen production from cellulosic waste materials with a single-step dark fermentation process. Int J Hydrog Energy 33:5398–5403

    Article  CAS  Google Scholar 

  • Mars AE, Veuskens T, Budde MAW et al (2010) Biohydrogen production from untreated and hydrolyzed potato steam peels by the extreme thermophiles Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana. Int J Hydrog Energy 35:7730–7737

    Article  CAS  Google Scholar 

  • McMillan JD (1994) Pretreatment of lignocellulosic biomass. In: Himmel ME, Baker JO, Overend RP (eds) Enzymatic conversion of biomass for fuels production. American Chemical Society, Washington, DC, pp 292–324

    Chapter  Google Scholar 

  • Mosier NS, Hendrickson R, Brewer M et al (2005) Industrial scale-up of pH-controlled liquid hot water pretreatment of corn fiber for fuel ethanol production. Appl Biochem Biotechnol 125:77–97

    Article  CAS  PubMed  Google Scholar 

  • Munro SA, Zinder SH, Walker LP (2009) The fermentation stoichiometry of Thermotoga neapolitana and influence of temperature, oxygen, and pH on hydrogen production. Biotechnol Prog 25:1035–1042

    Article  CAS  PubMed  Google Scholar 

  • Negro MJ, Manzanares P, Oliva JM et al (2003) Changes in various physical/chemical parameters of Pinuspinaster wood after steam explosion pretreatment. Biomass Bioenergy 25:301–308

    Article  CAS  Google Scholar 

  • Ngo TA, Nguyen TH, Bui HTV (2012) Thermophilic fermentative hydrogen production by Thermotoga neapolitana DSM 4359. Renew Energy 37:174–179

    Article  CAS  Google Scholar 

  • Nguyen TAD, Kim KR, Kim MS et al (2010) Thermophilic hydrogen fermentation from Korean rice straw by Thermotoga neapolitana. Int J Hydrog Energy 35:13392–13398

    Article  CAS  Google Scholar 

  • Ni M, Leung DYC, Leung MKH (2006) An overview of hydrogen production from biomass. Fuel Process Technol 87:461–472

    Article  CAS  Google Scholar 

  • Okuda K, Oka K, Onda A (2008) Hydrothermal fractional pretreatment of sea algae and its enhanced enzymatic hydrolysis. J Chem Technol Biotechnol 83:836–841

    Article  CAS  Google Scholar 

  • Panagiotopoulos IA, Bakker RR, de Vrije T et al (2010) Pretreatment of sweet sorghum bagasse for hydrogen production by Caldicellulosiruptor saccharolyticus. Int J Hydrog Energy 35:7738–7747

    Article  CAS  Google Scholar 

  • Pauly M, Keegstra K (2008) Cell wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568

    Article  CAS  PubMed  Google Scholar 

  • Radeva G, Valchev I, Petrin S et al (2012) Comparative kinetic analysis of enzyme hydrolysis of steam-exploded wheat straw. Cell Chem Technol 46:61–67

    CAS  Google Scholar 

  • Ragauskas AJ, Williams CK, Davison BH et al (2006) The path forward for biofuels and biomaterials. Science 311:484–489

    Article  CAS  PubMed  Google Scholar 

  • Ren N, Wang A, Gao L et al (2008a) Bioaugmented hydrogen production from carboxymethyl cellulose and partially delignified corn stalks usingisolated cultures. Int J Hydrog Energy 33:5250–5255

    Article  CAS  Google Scholar 

  • Ren NQ, Cao GL, Wang AJ et al (2008b) Dark fermentation of xylose and glucose mix using isolated Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrog Energy 33:6124–6132

    Article  CAS  Google Scholar 

  • Ren NQ, Cao GL, Guo WQ (2010) Biological hydrogen production from corn stover by moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16. Int J Hydrog Energy 35:2708–2712

    Article  CAS  Google Scholar 

  • Rittmann S, Herwig C (2012) A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb. Cell Fact. 11:115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saripan AF, Reungsang A (2013) Biohydrogen production by Thermoanaerobacterium thermosaccharolyticum KKU-ED1: culture conditions optimization using mixed xylose/arabinose as substrate. Electron J Biotechnol 16. https://doi.org/10.2225/vol16-issue1-fulltext-1

  • Shin SJ, Sung YJ (2008) Improving enzymatic hydrolysis of industrial hemp (Cannabis sativa L.) by electron beam irradiation. Radiat Phys Chem 77:1034–1038

    Article  CAS  Google Scholar 

  • Singh L, Siddiqui MF, Ahmad A et al (2013a) Application of polyethylene glycol immobilized Clostridium sp.LS2 for continuous hydrogen production from palm oil mill effluent in upflow anaerobic sludge blanket reactor. Biochem Eng J 70:158–165

    Article  CAS  Google Scholar 

  • Singh L, Wahid ZA, Siddiqui MF et al (2013b) Biohydrogen production from palm oil mill effluent using immobilized Clostridium butyricum EB6 in polyethylene glycol. Process Biochem 48:294–298

    Article  CAS  Google Scholar 

  • Soboh B, Linder D, Hedderich R (2004) A multisubunit membrane-bound [NiFe] hydrogenase and an NADH dependent Fe-only hydrogenase inthe fermenting bacterium Thermoanaerobacter tengcongensis. Microbiology 150:2451–2463

    Article  CAS  PubMed  Google Scholar 

  • Suresh B, Schlag S, Kumamoto T, Ping Y (2010) Hydrogen. SRI Consulting. Chemical Economics Handbook. Available at: http://www.sriconsulting.com/CEH/Public/Reports/743.5000/

  • Taherzadeh MJ, Karimi K (2008) Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int J Mol Sci 9:1621–1651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talluri S, Raj SM, Christopher LP (2013) Consolidated bioprocessing of untreated switch grass to hydrogen by the extreme thermophile C. saccharolyticus DSM 8903. Bioresour Technol 139:272–279

    Article  CAS  PubMed  Google Scholar 

  • Verhaart MRA, Bielen AAM, van der Oost J et al (2010) Hydrogen production by hyperthermophilic and extremely thermophilic bacteria and archaea: mechanisms for reductant disposal. Environ Technol 31:993–1003

    Article  CAS  PubMed  Google Scholar 

  • Willquist K, Zeidan AA, van Niel EWJ (2010) Physiological characteristics of the extreme thermophile Caldicellulosiruptor saccharolyticus: an efficient hydrogen cell factory. Microb Cell Factor 9:89

    Article  CAS  Google Scholar 

  • Xu Q, Singh A, Himmel ME (2009) Perspectives and new direction for the production of bioethanol using consolidated bioprocessing of lignocelluloses. Curr Opin Biotechnol 20:364–371

    Article  CAS  PubMed  Google Scholar 

  • Yang HH, Guo LJ, Liu F (2010) Enhanced bio-hydrogen production from corncob by a two-step process: dark- and photo-fermentation. Bioresour Technol 101:2049–2052

    Article  CAS  PubMed  Google Scholar 

  • Zhao C, Karakashev D, Lu W et al (2010) Xylose fermentation to biofuels (hydrogen and ethanol) by extreme thermophilic (70 °C) mixed culture. Int J Hydrog Energy 35:3415–3422

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rao, R., Sani, R.K., Kumar, S. (2018). Biohydrogen Production from Lignocellulosic Feedstocks Using Extremophiles. In: Sani, R., Krishnaraj Rathinam, N. (eds) Extremophilic Microbial Processing of Lignocellulosic Feedstocks to Biofuels, Value-Added Products, and Usable Power. Springer, Cham. https://doi.org/10.1007/978-3-319-74459-9_5

Download citation

Publish with us

Policies and ethics