Skip to main content

The Effect of Non-Flat Interfaces On System Dynamics

  • Conference paper
  • First Online:
Nonlinear Dynamics, Volume 1

Abstract

Manufactured surfaces are never completely flat due to a variety of reasons including: variability in manufacturing operations, material behavior and achievable geometric tolerances. The curvature of surfaces is a local geometric effect that affects part-to-part variability of jointed surfaces. Joints with different interface geometries behave in unpredictable ways (Brake (2018) The Mechanics of Jointed Structure: Recent Research and Open Challenges for Developing Predictive Models for Structural Dynamics. Sandia National Laboratories, William Marsh Rice University. Springer, Cham). Among the factors that drive the uncertainty in joint performance are frictional micro and macro sliding events, surface tribology effects, residual stress from manufacturing and assembly, loss of bolt pre-load, changes in contact area and the resulting pressure field variation around the joint. The goal of this research is to identify key variables that account for the measured uncertainty in the dynamics of jointed structures, which may have local regions of conformal and non-conformal contact due to variability inherent in the manufacturing process. Using the standard benchmark system of the Brake-Reuβ beam (BRB), recommendations are made for which design parameters require higher tolerances than others to minimize variability in a cost-effective manner. Conformal beams with strong and weak curvature are studied as well as non-conformal (flat vs. curved) beams. Experimental and numerical approaches model and validate the physical behavior of beams to understand primary causes of non-linearity in joints with different interface geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brake, M.R.W. (ed.): The Mechanics of Jointed Structure: Recent Research and Open Challenges for Developing Predictive Models for Structural Dynamics. Sandia National Laboratories, William Marsh Rice University. Springer, Cham (2018)

    Google Scholar 

  2. Schwingshackl, C.W.: Identification reassembly uncertainties for a basic lap joint. In: Dynamics of Coupled Structures, vol. 4, pp. 53–61. Springer, Cham (2017)

    Chapter  Google Scholar 

  3. Dossogne, T., Jerome, T.W., Lancereau, D.P.T., Smith, S.A., Brake, M.R.W., Pacini, B.R., Reuss, P., Schwingshackl, C.W.: Experimental assessment of the influence of interface geometries on structural dynamic response. In: Dynamics of Coupled Structures, vol. 4, pp. 255–261. Springer, Cham (2017)

    Chapter  Google Scholar 

  4. Bonney, M.S., Robertson, B.A., Schempp, F., Mignolet, M., Brake, M.R.: Experimental determination of frictional interface models, in IMAC XXXIV A Conference and Exposition on Structural Dynamics, (Orlando, FL), February 2016

    Google Scholar 

  5. Sracic, M.W., Allen, M.S., Sumali, H.: Identifying the Modal Properties of Nonlinear Structures Using Measured Free Response Time Histories from a Scanning Laser Doppler Vibrometer, pp. 269–286. Springer, New York (2012)

    Google Scholar 

  6. Schwingshackl, C.W., Di Maio, D.D., Sever, I.I., Green, J.S.: Modeling and validation of the nonlinear dynamic behavior of bolted flange joints. ASME. J. Eng. Gas Turbines Power. 135(12), 122504–122504-8 (2013). https://doi.org/10.1115/1.4025076

    Article  Google Scholar 

  7. Roettgen, D.R., Allen, M.S.: Nonlinear characterization of a bolted, industrial structure using a modal framework. Mech. Syst. Signal Process. 84, 152–170 (2017)

    Article  Google Scholar 

Download references

Acknowledgement

This work was developed during the 6-week 2017 ND-CSI (Nonlinear Dynamics of Coupled Structures and Interfaces) summer research program hosted at the William Marsh Rice University, Mechanical Engineering Department.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. R. W. Brake .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lawal, I., Shah, S., Gonzalez-Madrid, M., Hu, T., Schwingshackl, C.W., Brake, M.R.W. (2019). The Effect of Non-Flat Interfaces On System Dynamics. In: Kerschen, G. (eds) Nonlinear Dynamics, Volume 1. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-74280-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74280-9_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74279-3

  • Online ISBN: 978-3-319-74280-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics