Skip to main content

Toxicological Studies and Regulatory Aspects of Nanobased Foods

  • Chapter
  • First Online:
Bioorganic Phase in Natural Food: An Overview

Abstract

Nanotechnology is a major breakthrough technology that expanded its wings in several dimensions of life. Nanoscale materials found to have a wide range of applications in food sectors by enhancing the palatability, flavor, taste, micronutrient protection and shelf life of the food products. The market of nano-based food products are increasing at an immense rate but uncertainty on safety and risk is also emerging. The current regulatory framework for nano-based food products developed by Europe, United States, and Asia are eager to capture nanotechnology food products. In this chapter, toxicity studies of nanomaterials and knowledge gap between nanoscience and nanotechnology in the food sector are discussed. An overview of nanostructures, potential risk and future perspective of nanomaterials in food sciences is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aguzzi C, Cerezo P, Viseras C, Caramella C (2007) Use of clays as drug delivery systems: possibilities and limitations. Appl Clay Sci 36:22–36

    Article  CAS  Google Scholar 

  • Arisseto AP, Toledo MCDF (2008) Preliminary estimate of acrylamide intake in Brazil [estimativa Preliminar Da Ingestão De Acrilamida No Brasil]. Revista Brasileira de Toxicologia

    Google Scholar 

  • Armentano I, Arciola CR, Fortunati E, Ferrari D, Mattioli S, Amoroso CF, Rizzo J, Kenny JM, Imbriani M, Visai L (2014) The interaction of bacteria with engineered nanostructured polymeric materials: a review. Sci World J 2014:1

    Article  CAS  Google Scholar 

  • Aslan K, Gryczynski I, Malicka J, Matveeva E, Lakowicz JR, Geddes CD (2005) Metal-enhanced fluorescence: an emerging tool in biotechnology. Curr Opin Biotechnol 16:55–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Azeredo HM, Miranda KW, Rosa MF, Nascimento DM, de Moura MR (2012) Edible films from alginate-acerola puree reinforced with cellulose whiskers. LWT-food. Sci Technol 46:294–297

    CAS  Google Scholar 

  • Baek M, Chung HE, Yu J, Lee JA, Kim TH, JM O, Lee WJ, Paek SM, Lee JK, Jeong J, Choy JH (2012) Pharmacokinetics, tissue distribution, and excretion of zinc oxide nanoparticles. Int J Nanomedicine 7:3081–3097

    PubMed  PubMed Central  Google Scholar 

  • Bélafi-Bakó K, Koroknai B (2006) Enhanced water flux in fruit juice concentration: coupled operation of osmotic evaporation and membrane distillation. J Membr Sci 269:187–193

    Article  CAS  Google Scholar 

  • Beumer K, Bhattacharya S (2013) Emerging technologies in India: developments, debates and silences about nanotechnology. Sci Public Policy 40:628–643

    Article  Google Scholar 

  • Beyer FL, Beck Tan NC, Dasgupta A, Galvin ME (2002) Polymer− layered silicate nanocomposites from model surfactants. Chem Mater 14:2983–2988

    Article  CAS  Google Scholar 

  • Bhattacharya K, Davoren M, Boertz J, Schins RP, Hoffmann E, Dopp E (2009) Titanium dioxide nanoparticles induce oxidative stress and DNA-adduct formation but not DNA-breakage in human lung cells. Part Fibre Toxicol 6(1):17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bhattacharya S, Pushkaran JA, Shilpa Bhati M (2012) Knowledge creation and innovation in nanotechnology: contemporary and emerging scenario in India. CSIR- NISTADSStrategy Paper on Nanotechnology. Available form: http://www.nistads.res.in/images/projectreports/Nanotechnology%20Research%20and%20Innovation.pdf

  • Bhushan B (2015) Governance, policy, and legislation of nanotechnology: a perspective. Microsyst Technol 21:1137–1155

    Article  Google Scholar 

  • Bouwmeester H, Dekkers S, Noordam MY, Hagens W, Bulder AS, de Heer PM, ten Voord SEC G, Wijnhoven S, Sips A (2007) Health impact of nanotechnologies in food production (no. 2007.014). RIKILT

    Google Scholar 

  • Bouwmeester H, Marvin HJP (2010) Potential risks of nanofood to consumers. In: Chaudhry QL, Castle L, Watkins R (ed) Nanotechnologies in Food. Royal Society of Chemistry Publishers, Cambridge, UK, pp 134–140

    Google Scholar 

  • Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi M, West J, Gordon SC (2015) Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul Toxicol Pharmacol 73:137–150

    Article  CAS  PubMed  Google Scholar 

  • Brown JS, Gordon T, Price O, Asgharian B (2013) Thoracic and respirable particle definitions for human health risk assessment. Part Fibre Toxicol 10:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Bumbudsanpharoke N, Ko S (2015) Nano-food packaging: an overview of market, migration research, and safety regulations. J Food Sci 80:R910

    Article  CAS  PubMed  Google Scholar 

  • Buzby JC (2010) Nanotechnology for food applications: more questions than answers. J Consum Aff 44:528–545

    Article  Google Scholar 

  • Chau CF, Wu SH, Yen GC (2007) The development of regulations for food nanotechnology. Trends Food Sci Technol 18:269–280

    Article  CAS  Google Scholar 

  • Chaudhry Q, Castle L (2011) Food applications of nanotechnologies: an overview of opportunities and challenges for developing countries. Trends Food Sci Technol 22:595–603

    Article  CAS  Google Scholar 

  • Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25:241–258

    Article  CAS  Google Scholar 

  • Chauhan N, Dilbaghi N, Gopal M, Kumar R, Kim KH, Kumar S (2017) Development of chitosan nanocapsules for the controlled release of hexaconazole. Int J Biol Macromol 97:616–624

    Article  CAS  PubMed  Google Scholar 

  • Cho WS, Kang BC, Lee JK, Jeong J, Che JH, Seok SH (2013) Comparative absorption, distribution, and excretion of titanium dioxide and zinc oxide nanoparticles after repeated oral administration. Part Fibre Toxicol 10:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi HS, Liu W, Misra P, Tanaka E, Zimmer JP, Ipe BI, Frangioni JV (2007) Renal clearance of quantum dots. Nat Biotechnol 25:1165–1170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clift MJ, Varet J, Hankin SM, Brownlee B, Davidson AM, Brandenberger C, Stone V (2011) Quantum dot cytotoxicity in vitro: an investigation into the cytotoxic effects of a series of different surface chemistries and their core/shell materials. Nanotoxicology 5:664–674

    Article  CAS  PubMed  Google Scholar 

  • Contado C (2015) Nanomaterials in consumer products: a challenging analytical problem. Front Chem 3:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Coupland JN, Hayes JE (2014) Physical approaches to masking bitter taste: lessons from food and pharmaceuticals. Pharm Res 31:2921–2939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui Y, Kundalwal SI, Kumar S (2016) Gas barrier performance of graphene/polymer nanocomposites. Carbon 98:313–333

    Article  CAS  Google Scholar 

  • De Jong WH, Borm PJ (2008) Drug delivery and nanoparticles: applications and hazards. Int J Nanomed 3:133

    Article  Google Scholar 

  • Diab R, Jaafar-Maalej C, Fessi H, Maincent P (2012) Engineered nanoparticulate drug delivery systems: the next frontier for oral administration. AAPS J 14:688–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donaldson K, Tran L, Jimenez LA, Duffin R, Newby DE, Mills N, MacNee W, Stone V (2005) Combustion-derived nanoparticles: a review of their toxicology following inhalation exposure. Part Fibre Toxicol 2(1):10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dressler F, Kargl F (2012) Towards security in nano-communication: challenges and opportunities. Nano Commun Networks 3:151–160

    Article  Google Scholar 

  • Duncan TV (2011) The communication challenges presented by nanofoods. Nat Nanotechnol 6(11):683

    Article  CAS  PubMed  Google Scholar 

  • Elango, G., Kumaran, S. M., Kumar, S. S., Muthuraja, S., & Roopan, S. M. (2015). Green synthesis of SnO2 nanoparticles and its photocatalytic activity of phenolsulfonphthalein dye. Spectrochim Acta A Mol Biomol Spectrosc 145:176–180

    Article  CAS  Google Scholar 

  • Elango G, Mohana Roopan S, Abdullah Al-Dhabi N, Arasu MV, Irukatla Damodharan K, Elumalai K (2016) Cocos nucifera coir-mediated green synthesis of Pd NPs and its investigation against larvae and agricultural pest. Artif Cells Nanomed Biotechnol 45(8):1581–1587

    Article  PubMed  CAS  Google Scholar 

  • Elango G, Roopan SM (2016) Efficacy of SnO2 nanoparticles toward photocatalytic degradation of methylene blue dye. J Photochem Photobiol 155:34–38

    Article  CAS  Google Scholar 

  • Estelrich J, Quesada-Pérez M, Forcada J, Callejas-Fernández J (2014) Introductory aspects of soft nanoparticles. RSC Nanosci Nanotechnol 34:1–18 

    Google Scholar 

  • Fahim HA, Khairalla AS, El-Gendy AO (2016) Nanotechnology: a valuable strategy to improve bacteriocin formulations. Front Microbiol 7:1385

    Article  PubMed  PubMed Central  Google Scholar 

  • Filon FL, Mauro M, Adami G, Bovenzi M, Crosera M (2015) Nanoparticles skin absorption: new aspects for a safety profile evaluation. Regul Toxicol Pharmacol 72:310–322

    Article  CAS  Google Scholar 

  • Forbe T, García M, Gonzalez E (2011) Potencial risks of nanoparticles. Food Sci Technol., (Campinas) 31:835–842

    Article  Google Scholar 

  • García M, Forbe T, Gonzalez E (2010) Potential applications of nanotechnology in the agro-food sector. Food Sci Technol., (Campinas) 30:573–581

    Article  Google Scholar 

  • Garti N, Spernath A, Aserin A, Lutz R (2005) Nano-sized self-assemblies of nonionic surfactants as solubilization reservoirs and microreactors for food systems. Soft Matter 1:206–218

    Article  CAS  PubMed  Google Scholar 

  • Glenn JC (2006) Nanotechnology: future military environmental health considerations. Technol Forecast Soc Change 73(2):128–137

    Article  Google Scholar 

  • Grobe A, Renn O, Jaeger A (2008) Risk governance of nanotechnology applications in food and cosmetics. International Risk Governance Council (IRGC) Available from: http://lib.riskreductionafrica.org/bitstream/handle/123456789/645/Risk%20Governance%20of%20Nanotechnology%20Applications%20in%20Food%20and%20Cosmetics.pdf?sequence=1 Accessed April 29 2017

    Google Scholar 

  • Gu YS, Decker AE, McClements DJ (2005) Production and characterization of oil-in-water emulsions containing droplets stabilized by multilayer membranes consisting of β-lactoglobulin, ι-carrageenan and gelatin. Langmuir 21:5752–5760

    Article  CAS  PubMed  Google Scholar 

  • Guo WK (2011) Green nanotechnology of trends in future energy. Recent Pat Nanotechnol 5:76–88

    Article  CAS  PubMed  Google Scholar 

  • Gustafson HH, Holt-Casper D, Grainger DW, Ghandehari H (2015) Nanoparticle uptake: the phagocyte problem. Nano Today 10:487–510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hardick O, Dods S, Stevens B, Bracewell DG (2015) Nanofiber adsorbents for high productivity continuous downstream processing. J Biotechnol 213:74–82

    Article  CAS  PubMed  Google Scholar 

  • He X, Hwang HM (2016) Nanotechnology in food science: functionality, applicability, and safety assessment. J Food Drug Anal 24:671–681

    Article  CAS  PubMed  Google Scholar 

  • Hemalatha K, Madhumitha G (2015) Eco-friendly synthesis of palladium nanoparticles, environmental toxicity assessment and its catalytic application in Suzuki Miyaura coupling. Research J Pharm and Tech 8(12):1691–1700

    Article  Google Scholar 

  • Hoet PH, Brüske-Hohlfeld I, Salata OV (2004) Nanoparticles–known and unknown health risks. J. NanoBiotechnology 2:12

    Article  CAS  Google Scholar 

  • Honarvar Z, Hadian Z, Mashayekh M (2016) Nanocomposites in food packaging applications and their risk assessment for health. Electron Physician 8:2531

    Article  PubMed  PubMed Central  Google Scholar 

  • House Of Lords (2010) Science and technology committee, 1st report of session 2009–10, Nanotechnologies and food, volume I: report, HL paper 22–I; volume II: evidence, HL paper 22–II, Published by the Authority of the House of Lords London: The Stationery Office Limited. Available from: https://www.publications.parliament.uk/pa/ld200910/ldselect/ldsctech/22/22ii.pdf

  • Hrib J, Sirc J, Hobzova R, Hampejsova Z, Bosakova Z, Munzarova M, Michalek J (2015) Nanofibers for drug delivery–incorporation and release of model molecules, influence of molecular weight and polymer structure. Beilstein J Nanotechnol 6:1939–1945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang JY, Li X, Zhou W (2015) Safety assessment of nanocomposite for food packaging application. Trends Food Sci Technol 45(2):187–199

    Article  CAS  Google Scholar 

  • Jaiswal M, Dudhe R, Sharma PK (2015) Nanoemulsion: an advanced mode of drug delivery system. Biotech 5:123–127

    Google Scholar 

  • Jan E, Kotov NA (2007) Successful differentiation of mouse neural stem cells on layer-by-layer assembled single-walled carbon nanotube composite. Nano Lett 7:1123–1128

    Article  CAS  PubMed  Google Scholar 

  • Jani P, Halbert GW, LANGRIDGE J, Florence AT (1990) Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 42:821–826

    Article  CAS  PubMed  Google Scholar 

  • Jia H (2011) Enzyme-carrying electrospun nanofibers. In: Wang P (ed) Nanoscale biocatalysis (Methods and Protocols). Humana Press, New York, NY, pp 205–212

    Chapter  Google Scholar 

  • Joung HJ, Choi MJ, Kim JT, Park SH, Park HJ, Shin GH (2016) Development of food-grade curcumin Nanoemulsion and its potential application to food beverage system: antioxidant property and in vitro digestion. J Food Sci 81(3):N745–N753

    Article  CAS  PubMed  Google Scholar 

  • Jumahat A, Soutis C, Abdullah SA, Kasolang S (2012) Tensile properties of nanosilica/epoxy nanocomposites. Procedia Eng 41:1634–1640

    Article  CAS  Google Scholar 

  • Kumar R, Roopan SM, Prabhakarn A, Khanna VG, Chakroborty S (2012) Agricultural waste Annona Squamosa peel extract: biosynthesis of silver nanoparticles. Spectrochim Acta A Mol Biomol Spectrosc 90:173–176

    Article  CAS  Google Scholar 

  • Kumar A, Forbes B, Mudway I, Bicer EM, Dailey LA (2015) What are the biological and therapeutic implications of biomolecule corona formation on the surface of inhaled nanomedicines?. Nanomed 10(3):343–345

    Article  CAS  PubMed  Google Scholar 

  • Kumar DD, Mann B, Pothuraju R, Sharma R, Bajaj R (2016) Formulation and characterization of nanoencapsulated curcumin using sodium caseinate and its incorporation in ice cream. Food Funct 7:417–424

    Article  CAS  PubMed  Google Scholar 

  • Kuznesof PM, Rao MW (2006). Titanium Dioxide-Chemical and Technical Assessment. JECFA, Rome, Italy 1:1–8

    Google Scholar 

  • Laux P, Riebeling C, Booth AM, Brain JD, Brunner J, Cerrillo C, Creutzenberg O, Estrela-Lopis I, Gebel T, Johanson G, Jungnickel H (2017) Biokinetics of nanomaterials: the role of biopersistence. NanoImpact 6:69–80

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee MJE, Veiseh O, Bhattarai N, Sun C, Hansen SJ, Ditzler S, Knoblaugh S, Lee D, Ellenbogen R, Zhang M, Olson JM (2010) Rapid pharmacokinetic and biodistribution studies using cholorotoxin-conjugated iron oxide nanoparticles: a novel non-radioactive method. PLoS One 5:e9536

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Limbach LK, Wick P, Manser P, Grass RN, Bruinink A, Stark WJ (2007) Exposure of engineered nanoparticles to human lung epithelial cells: influence of chemical composition and catalytic activity on oxidative stress. Environ Sci Technol 41:4158–4163

    Article  CAS  PubMed  Google Scholar 

  • Liu JF, Skoczylas F, Liu J (2014) Experimental research on water retention and gas permeability of compacted bentonite/sand mixtures. Soils Found 54:1027–1038

    Article  Google Scholar 

  • Longmire M, Choyke PL, Kobayashi H (2008) Clearance properties of nano-sized particles and molecules as imaging agents: considerations and caveats. Nanomedicine 3(5):703–717

    Article  CAS  PubMed  Google Scholar 

  • Lopes CM, Fernandes JR, Martins-Lopes P (2013) Application of nanotechnology in the agro-food sector. Food Technol Biotechnol 51:183

    CAS  Google Scholar 

  • Madhumitha G, Elango G, Roopan SM (2016) Biotechnological aspects of ZnO nanoparticles: overview on synthesis and its applications. Appl Microbiol Biotechnol 100(2):571–581

    Article  PubMed  CAS  Google Scholar 

  • Majeed K, Jawaid M, Hassan A, Bakar AA, Khalil HA, Salema AA, Inuwa I (2013) Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater Des 46:391–410

    Article  CAS  Google Scholar 

  • Martirosyan A, Schneider YJ (2014) Engineered nanomaterials in food: implications for food safety and consumer health. Int J Environ Res Public Health 11:5720–5750

    Article  PubMed  PubMed Central  Google Scholar 

  • Maurice PA, Hochella MF (2008) Nanoscale particles and processes: a new dimension in soil science. Adv Agron 100:123–153

    Article  CAS  Google Scholar 

  • McClements DJ, Decker EA, Park Y, Weiss J (2009) Structural design principles for delivery of bioactive components in nutraceuticals and functional foods. Crit Rev Food Sci Nutr 49:577–606

    Article  CAS  PubMed  Google Scholar 

  • Mirhosseini H, Tan CP, Taherian AR, Boo HC (2009) Modeling the physicochemical properties of orange beverage emulsion as function of main emulsion components using response surface methodology. Carbohydr Polym 75:512–520

    Article  CAS  Google Scholar 

  • Mozafari MR, Johnson C, Hatziantoniou S, Demetzos C (2008) Nanoliposomes and their applications in food nanotechnology. J Liposome Res 18:309–327

    Article  PubMed  CAS  Google Scholar 

  • Nair HB, Sung B, Yadav VR, Kannappan R, Chaturvedi MM, Aggarwal BB (2010) Delivery of antiinflammatory nutraceuticals by nanoparticles for the prevention and treatment of cancer. Biochem Pharmacol 80:1833–1843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakagawa K (2014) Nano-and microencapsulation of flavor in food systems. In: Kwak H-S (ed) Nano-and microencapsulation for foods. Wiley, London, pp 249–271

    Chapter  Google Scholar 

  • Nazir MS, Kassim MHM, Mohapatra L, Gilani MA, Raza MR, Majeed K (2016) Characteristic properties of nanoclays and characterization of nanoparticulates and nanocomposites. In: Jawaid M, Qaiss A, Bouhfid R (eds) Nanoclay Reinforced Polymer Composites, Engineering Materials. Springer, Singapore, pp 35–55

    Chapter  Google Scholar 

  • Noonan GO, Whelton AJ, Carlander D, Duncan TV (2014) Measurement methods to evaluate engineered nanomaterial release from food contact materials. Compr Rev Food Sci Food Saf 13:679–692

    Article  CAS  PubMed  Google Scholar 

  • Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 2:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Othman SH (2014) Bio-nanocomposite materials for food packaging applications: types of biopolymer and nano-sized filler. Agric Agric Sci Procedia 2:296–303

    Article  Google Scholar 

  • Owens DE, Peppas NA (2006) Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int J Pharm 307:93–102

    Article  CAS  PubMed  Google Scholar 

  • Özer EA, Özcan M, Didin M (2014) Nanotechnology in food and agriculture industry. In: Malik A, Erginkaya Z, Ahmad S, Erten H (eds) Food processing: strategies for quality assessment. Springer, New York, pp 477–497

    Google Scholar 

  • Pardeshi P, Nawale AB, Mathe VL, Lahir YK, Dongre PM (2014) Effects of zinc oxide nanoparticles on the hepatic tissue of chicken embryo: a histopathological approach. Bio Nano Front 2:176–180

    Google Scholar 

  • Patel AR, Velikov KP (2014) Zein as a source of functional colloidal nano-and microstructures. Curr Opin Colloid Interface Sci 19:450–458

    Article  CAS  Google Scholar 

  • Pathakoti K, Manubolu M, Hwang HM (2017). Nanostructures: current uses and future applications in food science. J Food Drug Anal

    Google Scholar 

  • Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Article  CAS  Google Scholar 

  • Pawar A, Bothiraja C, Shaikh K, Mali A (2015) An insight into cochleates, a potential drug delivery system. RSC Adv 5:81188–81202

    Article  CAS  Google Scholar 

  • Plunkett’s Food Industry Market Research (2016) Food, beverage and grocery overview Food, beverage and grocery overview. https://www.plunkettresearch.com/industries/food-beverage-grocery-market-research/ Accessed 8 May 2017

  • Politis M, Pilinis C, Lekkas TD (2008) Ultrafine particles (UFP) and health effects. Dangerous. Like no other PM? Review and analysis. Global NEST J 10(3):439–452

    Google Scholar 

  • Posocco B, Dreussi E, De Santa J, Toffoli G, Abrami M, Musiani F, Grassi M, Farra R, Tonon F, Grassi G, Dapas B (2015) Polysaccharides for the delivery of antitumor drugs. Materials 8:2569–2615

    Article  CAS  PubMed Central  Google Scholar 

  • Pradhan N, Singh S, Ojha N, Shrivastava A, Barla A, Rai V, Bose S (2015) Facets of nanotechnology as seen in food processing, packaging, and preservation industry. Biomed Res Int 2015:1

    Article  CAS  Google Scholar 

  • Rao J, McClements DJ (2011) Formation of flavor oil microemulsions, nanoemulsions and emulsions: influence of composition and preparation method. J Agric Food Chem 59(9):5026–5035

    Article  CAS  PubMed  Google Scholar 

  • Rashidi L, Darani K (2011) The applications of nanotechnology in food industry. Crit Rev Food Sci Nutr 51(8):723–730

    Article  CAS  PubMed  Google Scholar 

  • Ravichandran R (2010) Nanotechnology applications in food and food processing: innovative green approaches, opportunities and uncertainties for global market. Int J Green Nanotechnol Phys Chem 1(2):P72–P96

    Article  Google Scholar 

  • Ray PC, Yu H, PP F (2009) Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C 27(1):1–35

    Article  CAS  Google Scholar 

  • Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F (2006) Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed Nanotechnol Biol Med 2(1):8–21

    Article  CAS  Google Scholar 

  • Riviere JE, Monteiro-Riviere NA (eds) (2005) Dermal absorption models in toxicology and pharmacology. CRC Press, Boca Raton

    Google Scholar 

  • Roco MC (2007) National nanotechnology initiative-past, present, future. In: Goddard WA et al (eds) Handbook on nanoscience, engineering and technology, 2nd edn. Taylor and Francis, Oxford, pp 3.1–3.26

    Google Scholar 

  • Roy R, Roy RA, Roy DM (1986) Alternative perspectives on “quasi-crystallinity”: non-uniformity and nanocomposites. Mater Lett 4(8–9):323–328

    Article  Google Scholar 

  • Roopan SM, Surendra TV, Elango G, Kumar SH (2014) Biosynthetic trends and future aspects of bimetallic nanoparticles and its medicinal applications. Appl Microbiol Biotechnol 98(12):5289–5300

    Article  CAS  PubMed  Google Scholar 

  • Sarhan WA, Azzazy HM, El-Sherbiny IM (2016) Honey/chitosan nanofiber wound dressing enriched with Allium Sativum and cleome droserifolia: enhanced antimicrobial and wound healing activity. ACS Appl Mater Interfaces 8(10):6379–6390

    Article  CAS  PubMed  Google Scholar 

  • Schlinkert P, Casals E, Boyles M, Tischler U, Hornig E, Tran N, Puntes V (2015) The oxidative potential of differently charged silver and gold nanoparticles on three human lung epithelial cell types. J Nanobiotechnol 13(1):1

    Article  CAS  Google Scholar 

  • Sekhon BS (2010) Food nanotechnology–an overview. Nanotechnol Sci Application 3(1):1–15

    CAS  Google Scholar 

  • Shin SW, Song IH, Um SH (2015) Role of physicochemical properties in nanoparticle toxicity. Nanomater 5(3):1351–1365

    Article  CAS  Google Scholar 

  • Silva HD, Cerqueira MA, Vicente AA (2012) Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol 5(3):854–867

    Article  CAS  Google Scholar 

  • Singh R, Lillard JW (2009) Nanoparticle-based targeted drug delivery. Exp Mol Pathol 86(3):215–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh PK, Jairath G, Ahlawat SS (2016) Nanotechnology: a future tool to improve quality and safety in meat industry. J Food Sci Technol 53(4):1739–1749

    Article  CAS  PubMed  Google Scholar 

  • Stoehr LC, Gonzalez E, Stampfl A, Casals E, Duschl A, Puntes V, Oostingh GJ (2011) Shape matters: effects of silver nanospheres and wires on human alveolar epithelial cells. Part Fibre Toxicol 8(1):36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suresh AK, Pelletier DA, Wang W, Morrell-Falvey JL, Gu B, Doktycz MJ (2012) Cytotoxicity induced by engineered silver nanocrystallites is dependent on surface coatings and cell types. Langmuir 28(5):2727–2735

    Article  CAS  PubMed  Google Scholar 

  • Tarafdar JC, Sharma S, Raliya R (2013) Nanotechnology: interdisciplinary science of applications. Afr J Biotechnol 12(3):219–226

    Google Scholar 

  • Taylor U, Barchanski A, Garrels W, Klein S, Kues W, Barcikowski S, Rath D (2012) Toxicity of gold nanoparticles on somatic and reproductive cells. In: Nano-biotechnology for biomedical and diagnostic research. Springer, Netherlands, pp 125–133

    Chapter  Google Scholar 

  • Thomas K, Aguar P, Kawasaki H, Morris J, Nakanishi J, Savage N (2006) Research strategies for safety evaluation of nanomaterials, part VIII: international efforts to develop risk-based safety evaluations for nanomaterials. Toxicol Sci 92(1):23–32

    Article  CAS  PubMed  Google Scholar 

  • Thompson KL, Armes SP, Howse JR, Ebbens S, Ahmad I, Zaidi JH, Burdis JA (2010) Covalently cross-linked colloidosomes. Macromolecules 43(24):10466–10474

    Article  CAS  Google Scholar 

  • Vasita R, Katti DS (2006) Nanofibers and their applications in tissue engineering. Int J Nanomedicine 1(1):15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vishwakarma V, Samal SS, Manoharan N (2010) Safety and risk associated with nanoparticles-a review. J Miner Mater Charact Eng 9(05):455

    Google Scholar 

  • Viswanath B, Kim S (2016) Influence of Nanotoxicity on human health and environment: the alternative strategies. Rev Environ Contam Toxicol 242:61–104

    Google Scholar 

  • Wakefield G, Green M, Lipscomb S, Flutter B (2004) Modified titania nanomaterials for sunscreen applications–reducing free radical generation and DNA damage. Mater Sci Technol 20(8):985–988

    Article  CAS  Google Scholar 

  • Watkins R, Wu L, Zhang C, Davis RM, Xu B (2015) Natural product-based nanomedicine: recent advances and issues. Int J Nanomedicine 10:6055

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiss J, Takhistov P, McClements DJ (2006) Functional materials in food nanotechnology. J Food Sci 71(9):R107–R116

    Article  CAS  Google Scholar 

  • Wyser Y, Adams M, Avella M, Carlander D, Garcia L, Pieper G, Rennen M, Schuermans J, Weiss J (2016) Outlook and challenges of nanotechnologies for food packaging. Packag Technol Sci 29(12):615–648

    Article  CAS  Google Scholar 

  • Yang CC (2007) Synthesis and characterization of the cross-linked PVA/TiO 2 composite polymer membrane for alkaline DMFC. J Membr Sci 288(1):51–60

    Article  CAS  Google Scholar 

  • Yetisen AK, Qu H, Manbachi A, Butt H, Dokmeci MR, Hinestroza JP, Yun SH (2016) Nanotechnology in textiles. ACS Nano 10(3):3042–3068

    Article  CAS  PubMed  Google Scholar 

  • Yin LJ, Chu BS, Kobayashi I, Nakajima M (2009) Performance of selected emulsifiers and their combinations in the preparation of β-carotene nanodispersions. Food Hydrocoll 23(6):1617–1622

    Article  CAS  Google Scholar 

  • Yu M, Zheng J (2015) Clearance pathways and tumor targeting of imaging nanoparticles. ACS Nano 9(7):6655–6674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YN, Poon W, Tavares AJ, McGilvray ID, Chan WC (2016) Nanoparticle–liver interactions: cellular uptake and hepatobiliary elimination. J Control Release 240:332–348

    Article  CAS  PubMed  Google Scholar 

  • Zhao B, Sun L, Zhang W, Wang Y, Zhu J, Zhu X, Yang L, Li C, Zhang Z, Zhang Y (2014) Secretion of intestinal goblet cells: a novel excretion pathway of nanoparticles. Nanomedicine: NBM 10(4):839–849

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekambaram Nakkeeran .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kalaiselvi, A., Rathna, R., Nakkeeran, E. (2018). Toxicological Studies and Regulatory Aspects of Nanobased Foods. In: Roopan, S., Madhumitha, G. (eds) Bioorganic Phase in Natural Food: An Overview. Springer, Cham. https://doi.org/10.1007/978-3-319-74210-6_12

Download citation

Publish with us

Policies and ethics