Skip to main content

Co-infection with HIV

  • Chapter
  • First Online:
Drug Resistance in Leishmania Parasites
  • 484 Accesses

Abstract

This chapter describes the epidemiology, current spread, and clinical aspects of HIV/Leishmania co-infection and highlights the recently released guidelines of WHO on their management. It discusses the development of resistant Leishmania strains for existing anti-Leishmania drugs and the complexity of chemotherapy for Leishmania/HIV co-infection, which relies on the same drugs that are used in uncomplicated Leishmania. Additionally, prospects for future chemotherapeutic alternatives that target Leishmania and HIV and tackle both infections simultaneously are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alvar J, Canavate C, Gutierrez-Solar B, Jimenez M, et al. Leishmania and human immunodeficiency virus coinfection: the first 10 years. Clin Microbiol Rev. 1997;10(2):298–319.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Alvar J, Aparicio P, Aseffa A, den Boer M, et al. The relationship between Leishmaniasis and AIDS: the second 10 years. Clin Microbiol Rev. 2008;21(2):334–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cruz I, Morales MA, Noguer I, Rodriguez A, et al. Leishmania in discarded syringes from intravenous drug users. Lancet. 2002;359(9312):1124–5.

    Article  CAS  PubMed  Google Scholar 

  4. Lopez-Velez R. The impact of highly active antiretroviral therapy (HAART) on visceral leishmaniasis in Spanish patients who are co-infected with HIV. Ann Trop Med Parasitol. 2003;97(Suppl 1):143–7.

    Article  CAS  PubMed  Google Scholar 

  5. Aagaard-Hansen J, Nombela N, Alvar J. Population movement: a key factor in the epidemiology of neglected tropical diseases. Trop Med Int Health. 2010;15(11):1281–8.

    Article  PubMed  Google Scholar 

  6. Mengesha B, Abuhoy M. Kala-azar among labour migrants in Metema-Humera region of Ethiopia. Trop Geogr Med. 1978;30(2):199–206.

    PubMed  CAS  Google Scholar 

  7. Lyons S, Veeken H, Long J. Visceral leishmaniasis and HIV in Tigray, Ethiopia. Trop Med Int Health. 2003;8(8):733–9.

    Article  PubMed  Google Scholar 

  8. Alvar J, Bashaye S, Argaw D, Cruz I, et al. Kala-azar outbreak in Libo Kemkem, Ethiopia: epidemiologic and parasitologic assessment. Am J Trop Med Hyg. 2007;77(2):275–82.

    Article  PubMed  Google Scholar 

  9. Bashaye S, Nombela N, Argaw D, Mulugeta A, et al. Risk factors for visceral leishmaniasis in a new epidemic site in Amhara Region, Ethiopia. Am J Trop Med Hyg. 2009;81(1):34–9.

    Article  PubMed  Google Scholar 

  10. Gorski S, Collin SM, Ritmeijer K, Keus K, et al. Visceral leishmaniasis relapse in Southern Sudan (1999–2007): a retrospective study of risk factors and trends. PLoS Negl Trop Dis. 2010;4(6):e705. https://doi.org/10.1371/journal.pntd.0000705.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Moszynski P. Kala-azar outbreak is symptomatic of humanitarian crisis facing southern Sudan. BMJ. 2010;341:c7276. https://doi.org/10.1136/bmj.c7276.

    Article  PubMed  Google Scholar 

  12. Seaman J, Mercer AJ, Sondorp HE, Herwaldt BL. Epidemic visceral leishmaniasis in southern Sudan: treatment of severely debilitated patients under wartime conditions and with limited resources [see comments]. Ann Intern Med. 1996;124(7):664–72.

    Article  CAS  PubMed  Google Scholar 

  13. Redhu NS, Dey A, Balooni V, Singh S. Leishmania-HIV co-infection: an emerging problem in India. Aids. 2006;20(8):1213–5.

    Article  PubMed  Google Scholar 

  14. Mathur P, Samantaray JC, Vajpayee M, Samanta P. Visceral leishmaniasis/human immunodeficiency virus co-infection in India: the focus of two epidemics. J Med Microbiol. 2006;55(Pt 7):919–22.

    Article  PubMed  Google Scholar 

  15. Gurubacharya RL, Gurubacharya SM, Gurubacharya DL, Quinkel J, et al. Prevalence of visceral leishmaniasis & HIV co-infection in Nepal. Indian J Med Res. 2006;123(3):473–5.

    PubMed  CAS  Google Scholar 

  16. Elkhoury EA. Co-infeccao leishmaniose visceral e AIDS no Brasil. Rev Soc Bras Med Trop. 2007;40(124)

    Google Scholar 

  17. Bernier R, Turco SJ, Olivier M, Tremblay M. Activation of human immunodeficiency virus type 1 in monocytoid cells by the protozoan parasite Leishmania donovani. J Virol. 1995;69(11):7282–5.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Bentwich Z. Concurrent infections that rise the HIV viral load. J HIV Ther. 2003;8(3):72–5.

    PubMed  Google Scholar 

  19. Rosatelli JB, Souza CS, Soares FA, Foss NT, et al. Generalized cutaneous leishmaniasis in acquired immunodeficiency syndrome. J Eur Acad Dermatol Venereol. 1998;10(3):229–32.

    Article  CAS  PubMed  Google Scholar 

  20. Russo R, Laguna F, Lopez-Velez R, Medrano FJ, et al. Visceral leishmaniasis in those infected with HIV: clinical aspects and other opportunistic infections. Ann Trop Med Parasitol. 2003;97(Suppl 1):99–105.

    Article  PubMed  Google Scholar 

  21. Molina R, Lohse JM, Pulido F, Laguna F, et al. Infection of sand flies by humans coinfected with Leishmania infantum and human immunodeficiency virus. Am J Trop Med Hyg. 1999;60(1):51–3.

    Article  CAS  PubMed  Google Scholar 

  22. Guiguemde RT, Sawadogo OS, Bories C, Traore KL, et al. Leishmania major and HIV co-infection in Burkina Faso. Trans R Soc Trop Med Hyg. 2003;97(2):168–9.

    Article  PubMed  Google Scholar 

  23. Pintado V, Martin-Rabadan P, Rivera ML, Moreno S, et al. Visceral leishmaniasis in human immunodeficiency virus (HIV)-infected and non-HIV-infected patients. A comparative study. Medicine (Baltimore). 2001;80(1):54–73.

    Article  CAS  Google Scholar 

  24. Ritmeijer K, Dejenie A, Assefa Y, Hundie TB, et al. A comparison of miltefosine and sodium stibogluconate for treatment of visceral leishmaniasis in an Ethiopian population with high prevalence of HIV infection. Clin Infect Dis. 2006;43(3):357–64.

    Article  CAS  PubMed  Google Scholar 

  25. Sundar S. Drug resistance in Indian visceral leishmaniasis. Trop Med Int Health. 2001;6(11):849–54.

    Article  CAS  PubMed  Google Scholar 

  26. Rijal S, Yardley V, Chappuis F, Decuypere S, et al. Antimonial treatment of visceral leishmaniasis: are current in vitro susceptibility assays adequate for prognosis of in vivo therapy outcome? Microbes Infect. 2007;9(4):529–35. https://doi.org/10.1016/j.micinf.2007.01.009.

    Article  PubMed  CAS  Google Scholar 

  27. Saint-Pierre-Chazalet M, Ben Brahim M, Le Moyec L, Bories C, et al. Membrane sterol depletion impairs miltefosine action in wild-type and miltefosine-resistant Leishmania donovani promastigotes. J Antimicrob Chemother. 2009;64(5):993–1001. https://doi.org/10.1093/jac/dkp321.

    Article  PubMed  CAS  Google Scholar 

  28. Maarouf M, Adeline MT, Solignac M, Vautrin D, et al. Development and characterization of paromomycin-resistant Leishmania donovani promastigotes. Parasite. 1998;5(2):167–73.

    Article  CAS  PubMed  Google Scholar 

  29. Bart Ostyn PM, Surendra U, Rudra Pratap S, Shri Prakash S, et al. (2010) Challenges for the implementation of new tools to monitor treatment outcome in Miltefosine-treated Kala-azar Patients in India and Nepal. Kaladrug meeting, Antwerp, 2010

    Google Scholar 

  30. Al-Mohammed HI, Chance ML, Bates PA. Production and characterization of stable amphotericin-resistant amastigotes and promastigotes of Leishmania mexicana. Antimicrob Agents Chemother. 2005;49(8):3274–80. https://doi.org/10.1128/AAC.49.8.3274-3280.2005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Durand R, Paul M, Pratlong F, Rivollet D, et al. Leishmania infantum: lack of parasite resistance to amphotericin B in a clinically resistant visceral leishmaniasis. Antimicrob Agents Chemother. 1998;42(8):2141–3.

    PubMed  PubMed Central  CAS  Google Scholar 

  32. Lachaud L, Bourgeois N, Plourde M, Leprohon P, et al. Parasite susceptibility to amphotericin B in failures of treatment for visceral leishmaniasis in patients coinfected with HIV type 1 and Leishmania infantum. Clin Infect Dis. 2009;48(2):e16–22. https://doi.org/10.1086/595710.

    Article  PubMed  CAS  Google Scholar 

  33. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev. 2007;20(1):133–63. https://doi.org/10.1128/CMR.00029-06.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Sundar S, Sinha PK, Rai M, Verma DK, et al. Comparison of short-course multidrug treatment with standard therapy for visceral leishmaniasis in India: an open-label, non-inferiority, randomised controlled trial. Lancet. 2011;377(9764):477–86. https://doi.org/10.1016/S0140-6736(10)62050-8.

    Article  PubMed  CAS  Google Scholar 

  35. Matlashewski GBA, Kroeger A, Battacharya S, Sundar S, et al. Visceral leishmaniasis: elimination with existing interventions. Lancet Infect Dis. 2011;11(4):322–5.

    Article  PubMed  Google Scholar 

  36. Gramiccia M, Gradoni L, Orsini S. Decreased sensitivity to meglumine antimoniate (Glucantime) of Leishmania infantum isolated from dogs after several courses of drug treatment. Ann Trop Med Parasitol. 1992;86(6):613–20.

    Article  CAS  PubMed  Google Scholar 

  37. WHO. WHO Technical Report Series 949. 2010.

    Google Scholar 

  38. World Health Organization Report of the 5th Consultative Meeting on Leishmania/HIV Coinfection. WHO Technical Report Series WHO/CDS/NTD/IDM/2007.5. In Addis Ababa, Ethiopia, 20–22 March 2007.

    Google Scholar 

  39. de La Rosa R, Pineda JA, Delgado J, Macias J, et al. Incidence of and risk factors for symptomatic visceral leishmaniasis among human immunodeficiency virus type 1-infected patients from Spain in the era of highly active antiretroviral therapy. J Clin Microbiol. 2002;40(3):762–7.

    Article  PubMed Central  Google Scholar 

  40. del Giudice P, Mary-Krause M, Pradier C, Grabar S, et al. Impact of highly active antiretroviral therapy on the incidence of visceral leishmaniasis in a French cohort of patients infected with human immunodeficiency virus. J Infect Dis. 2002;186(9):1366–70.

    Article  PubMed  Google Scholar 

  41. Lopez-Velez R, Perez-Molina JA, Guerrero A, Baquero F, et al. Clinicoepidemiologic characteristics, prognostic factors, and survival analysis of patients coinfected with human immunodeficiency virus and Leishmania in an area of Madrid, Spain. Am J Trop Med Hyg. 1998;58(4):436–43.

    Article  CAS  PubMed  Google Scholar 

  42. Savoia D, Allice T, Tovo PA. Antileishmanial activity of HIV protease inhibitors. Int J Antimicrob Agents. 2005;26(1):92–4.

    Article  CAS  PubMed  Google Scholar 

  43. Valdivieso E, Rangel A, Moreno J, Saugar JM, et al. Effects of HIV aspartyl-proteinase inhibitors on Leishmania sp. Exp Parasitol. 2010;126(4):557–63. https://doi.org/10.1016/j.exppara.2010.06.002.

    Article  PubMed  CAS  Google Scholar 

  44. Trudel N, Garg R, Messier N, Sundar S, et al. Intracellular survival of Leishmania species that cause visceral leishmaniasis is significantly reduced by HIV-1 protease inhibitors. J Infect Dis. 2008;198(9):1292–9. https://doi.org/10.1086/592280.

    Article  PubMed  CAS  Google Scholar 

  45. Kumar P, Lodge R, Trudel N, Ouellete M, et al. Nelfinavir, an HIV-1 protease inhibitor, induces oxidative stress-mediated, caspase-independent apoptosis in Leishmania amastigotes. PLoS Negl Trop Dis. 2010;4(3):e642. https://doi.org/10.1371/journal.pntd.0000642.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Santos LO, Marinho FA, Altoe EF, Vitorio BS, et al. HIV aspartyl peptidase inhibitors interfere with cellular proliferation, ultrastructure and macrophage infection of Leishmania amazonensis. PLoS One. 2009;4(3):e4918. https://doi.org/10.1371/journal.pone.0004918.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Valdivieso E, Dagger F, Rascon A. Leishmania mexicana: identification and characterization of an aspartyl proteinase activity. Exp Parasitol. 2007;116(1):77–82. https://doi.org/10.1016/j.exppara.2006.10.006.

    Article  PubMed  CAS  Google Scholar 

  48. Carter KC, Sundar S, Spickett C, Pereira OC, et al. The in vivo susceptibility of Leishmania donovani to sodium stibogluconate is drug specific and can be reversed by inhibiting glutathione biosynthesis. Antimicrob Agents Chemother. 2003;47(5):1529–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Goyeneche-Patino DA, Valderrama L, Walker J, Saravia NG. Antimony resistance and trypanothione in experimentally selected and clinical strains of Leishmania panamensis. Antimicrob Agents Chemother. 2008;52(12):4503–6. https://doi.org/10.1128/AAC.01075-08.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Decuypere S, Rijal S, Yardley V, De Doncker S, et al. Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal. Antimicrob Agents Chemother. 2005;49(11):4616–21. https://doi.org/10.1128/AAC.49.11.4616-4621.2005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Cipolla L, La Ferla B, Gregori M. Combinatorial approaches to iminosugars as glycosidase and glycosyltransferase inhibitors. Comb Chem High Throughput Screen. 2006;9(8):571–82.

    Article  CAS  PubMed  Google Scholar 

  52. Pettersson S, Clotet-Codina I, Este JA, Borrell JI, et al. Recent advances in combinatorial chemistry applied to development of anti-HIV drugs. Mini Rev Med Chem. 2006;6(1):91–108.

    Article  CAS  PubMed  Google Scholar 

  53. Balunas MJ, Kinghorn AD. Drug discovery from medicinal plants. Life Sci. 2005;78(5):431–41.

    Article  CAS  PubMed  Google Scholar 

  54. Sagar S, Kaur M, Minneman KP. Antiviral lead compounds from marine sponges. Mar Drugs. 2010;8(10):2619–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Yu D, Morris-Natschke SL, Lee KH. New developments in natural products-based anti-AIDS research. Med Res Rev. 2007;27(1):108–32.

    Article  CAS  PubMed  Google Scholar 

  56. Fakhfakh MA, Fournet A, Prina E, Mouscadet JF, et al. Synthesis and biological evaluation of substituted quinolines: potential treatment of protozoal and retroviral co-infections. Bioorg Med Chem. 2003;11(23):5013–23.

    Article  CAS  PubMed  Google Scholar 

  57. Delmas F, Avellaneda A, Di Giorgio C, Robin M, et al. Synthesis and antileishmanial activity of (1,3-benzothiazol-2-yl) amino-9-(10H)-acridinone derivatives. Eur J Med Chem. 2004;39(8):685–90.

    Article  CAS  PubMed  Google Scholar 

  58. Grassi F, Guimaraes Correa AB, Mascarenhas RE, Galvao B, et al. Quinoline compounds decrease in vitro spontaneous proliferation of peripheral blood mononuclear cells (PBMC) from human T-cell lymphotropic virus (HTLV) type-1-infected patients. Biomed Pharmacother. 2008;62(7):430–5.

    Article  CAS  PubMed  Google Scholar 

  59. Vieira NC, Herrenknecht C, Vacus J, Fournet A, et al. Selection of the most promising 2-substituted quinoline as antileishmanial candidate for clinical trials. Biomed Pharmacother. 2008;62(10):684–9.

    Article  CAS  PubMed  Google Scholar 

  60. Nakayama H, Loiseau PM, Bories C, Torres de Ortiz S, et al. Efficacy of orally administered 2-substituted quinolines in experimental murine cutaneous and visceral leishmaniases. Antimicrob Agents Chemother. 2005;49(12):4950–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Laport MS, Santos OC, Muricy G. Marine sponges: potential sources of new antimicrobial drugs. Curr pharm biotechnol. 2009;10(1):86–105.

    Article  CAS  PubMed  Google Scholar 

  62. Donia M, Hamann MT. Marine natural products and their potential applications as anti-infective agents. Lancet Infect Dis. 2003;3(6):338–48.

    Article  CAS  PubMed  Google Scholar 

  63. Tziveleka LA, Vagias C, Roussis V. Natural products with anti-HIV activity from marine organisms. Curr Top Med Chem. 2003;3(13):1512–35.

    Article  CAS  PubMed  Google Scholar 

  64. Watts KR, Tenney K, Crews P. The structural diversity and promise of antiparasitic marine invertebrate-derived small molecules. Curr Opin Biotechnol. 2010;21(6):808–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gul W, Hammond NL, Yousaf M, Peng J, et al. Chemical transformation and biological studies of marine sesquiterpene (S)-(+)-curcuphenol and its analogs. Biochimica et biophysica acta. 2007;1770(11):1513–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Rao KV, Donia MS, Peng J, Garcia-Palomero E, et al. Manzamine B and E and ircinal A related alkaloids from an Indonesian Acanthostrongylophora sponge and their activity against infectious, tropical parasitic, and Alzheimer’s diseases. J Nat Prod. 2006;69(7):1034–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Rao KV, Kasanah N, Wahyuono S, Tekwani BL, et al. Three new manzamine alkaloids from a common Indonesian sponge and their activity against infectious and tropical parasitic diseases. J Nat Prod. 2004;67(8):1314–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rao KV, Santarsiero BD, Mesecar AD, Schinazi RF, et al. New manzamine alkaloids with activity against infectious and tropical parasitic diseases from an Indonesian sponge. J Nat Prod. 2003;66(6):823–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gul W, Hammond NL, Yousaf M, Bowling JJ, et al. Modification at the C9 position of the marine natural product isoaaptamine and the impact on HIV-1, mycobacterial, and tumor cell activity. Bioorg Med Chem. 2006;14(24):8495–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Donia MS, Wang B, Dunbar DC, Desai PV, et al. Mollamides B and C, Cyclic hexapeptides from the Indonesian tunicate Didemnum molle. J Nat Prod. 2008;71(6):941–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The Spanish Agency for International Cooperation for Development supported the WHO Leishmaniasis program and was focused among other activities on the treatment of HIV-Leishmania co-infected patients in Ethiopia. LR is supported by grants from EU HEALTH-2007-223414 and Fondo de Investigación Sanitaria RETICS RD06-0021-06 and PS09/01928.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

den Boer, M., Alvar, J. (2018). Co-infection with HIV. In: Ponte-Sucre, A., Padrón-Nieves, M. (eds) Drug Resistance in Leishmania Parasites. Springer, Cham. https://doi.org/10.1007/978-3-319-74186-4_6

Download citation

Publish with us

Policies and ethics