Skip to main content

P-Glycoprotein-Like Transporters in Leishmania: A Search for Reversal Agents

  • Chapter
  • First Online:
Drug Resistance in Leishmania Parasites

Abstract

Until now, chemotherapy has been the main line of defense against Leishmania infections. However, drug use and abuse have resulted in the selection and development of resistance mechanisms which strongly limit the number of antiprotozoal agents that are effective for the treatment of this disease. The emergence and spread of resistance to drugs currently in use and available for leishmaniasis emphasize that new compounds need to be identified and developed and that novel chemotherapeutic targets must be characterized. Mechanisms of drug resistance are often associated with decreased uptake of the drug into the parasite, poor drug activation, physiological alterations in the drug target, and overexpression of drug transporter proteins. One mechanism of resistance to antimony in Leishmania involves a decrease in its accumulation by either reduced uptake or increased efflux, mediated by P-glycoprotein (Pgp)-like transporters, which belong to the ATP-binding cassette (ABC) superfamily of proteins. The inhibition of the function of these proteins represents an attractive way to control drug resistance in clinical environments. New natural or synthetic sesquiterpenes, flavonoids, acridonecarboxamide derivative modulators of human Pgp (zosuquidar and elacridar), statins, pyridine analogs, 8-aminoquinolines, or phenothiazines revert in Leishmania the resistance phenotype to antimony, pentamidine, sodium stibogluconate, and miltefosine by modulating intracellular drug concentrations. In this chapter, we review some concepts concerning the reversal mechanism of multidrug resistance by the use chemosensitizers which alter the capacity of Pgp.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Faraut-Gambarelli F, Piarroux R, Deniau M, Giusiano B, et al. In vitro and in vivo resistance of Leishmania infantum to meglumine antimoniate: a study of 37 strains collected from patients with visceral Leishmaniasis. Antimicrob Agents Chemother. 1997;41:827–30.

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Jackson JE, Tally JD, Ellis WY, Mebrahtu YB, et al. Quantitative in vitro drug potency and drug susceptibility evaluation of Leishmania spp. from patients unresponsive to pentavalent antimony therapy. Am J Trop Med Hyg. 1990;43:464–80.

    Article  PubMed  CAS  Google Scholar 

  3. Sundar S, More DK, Singh MK, Singh VP, et al. Failure of pentavalent antimony in visceral Leishmaniasis in India: report from the center of the Indian epidemic. Clin Infect Dis. 2000;31:1104–7.

    Article  PubMed  CAS  Google Scholar 

  4. Ambudkar SV, Rosen BP, Gottesman MM. Workshop on ABC transporters and human diseases. Drug Resist Update. 2000;3:51–4.

    Article  Google Scholar 

  5. Lage H. ABC-transporters: implications on drug resistance from microorganisms to human cancers. Int J Antimicrob Ag. 2003;22:188–99.

    Article  CAS  Google Scholar 

  6. Rubio JP, Cowman AF. The ATP-binding cassette (ABC) gene family of Plasmodium falciparum. Parasitol Today. 1996;12:135–40.

    Article  PubMed  CAS  Google Scholar 

  7. Schuetzer-Muehlbauer M, Willinger B, Egner R, Ecker G, et al. Reversal of antifungal resistance mediated by ABC efflux pumps from Candida albicans functionally expressed in yeast. Int J Antimicrob Ag. 2003;22:291–300.

    Article  CAS  Google Scholar 

  8. Sparreboom A, Danesi R, Ando Y, Chan J, et al. Pharmacogenomics of ABC transporters and its role in cancer chemotherapy. Drug Resist Update. 2003;6:71–84.

    Article  CAS  Google Scholar 

  9. Araujo-Santos JM, Parodi-Talice A, Castanys S, Gamarro F. The overexpression of an intracellular ABCA-like transporter alters phospholipid trafficking in Leishmania. Biochem Biophys Res Commun. 2005;330:349–55.

    Article  PubMed  CAS  Google Scholar 

  10. Chiquero MJ, Perez-Victoria JM, O’Valle F, Gonzales-Ros JM, et al. Altered drug membrane permeability in a multidrug-resistant Leishmania tropica line. Biochem Pharmacol. 1998;55:131–9.

    Article  PubMed  CAS  Google Scholar 

  11. Chow LM, Wong AK, Ullman B, Wirth DF. Cloning and functional analysis of an extrachromosomally amplified multidrug resistance-like gene in Leishmania enriettii. Mol Biochem Parasitol. 1993;60:195–208.

    Article  PubMed  CAS  Google Scholar 

  12. Gamarro F, Chiquero MJ, Amador MV, Lagare D, et al. P-glycoprotein overexpression in methotrexate-resistant Leishmania tropica. Biochem Pharmacol. 1994;47:1939–47.

    Article  PubMed  CAS  Google Scholar 

  13. Gueiros-Filho FJ, Viola JPB, Gomes FCA, Farina M, et al. Leishmania amazonensis: multidrug resistance in vinblastine-resistant promastigotes is associated with rhodamine 123 efflux, DNA amplification, and RNA overexpression of a Leishmania mdr1 gene. Exp Parasitol. 1995;81:480–90.

    Article  PubMed  CAS  Google Scholar 

  14. Henderson DM, Sifri CD, Rodgers M, Wirth DF, et al. Multidrug resistance in Leishmania donovani is conferred by amplification of a gene homologous to the mammalian mdr1 gene. Mol Cell Biol. 1992;12:2855–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Katakura K, Iwanami M, Ohtomo H, Fujise H, et al. Structural and functional analysis of the LaMDR1 multidrug resistance gene in Leishmania amazonensis. Biochem Biophys Res Commun. 1999;255:289–94.

    Article  PubMed  CAS  Google Scholar 

  16. Mary C, Faraut F, Deniau M, Dereure J, et al. Frequency of drug resistance gene amplification in clinical Leishmania strains. Int J Microbiol. 2010;2010:819060.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Wong ILK, Chow LMC. The role of Leishmania enriettii multidrug resistance protein 1 (LeMDR1) in mediating drug resistance is iron-dependent. Mol Biochem Parasitol. 2006;150:278–87.

    Article  PubMed  CAS  Google Scholar 

  18. Moreira DS, Monte Neto RL, Andrade JM, Santi AMM, et al. Molecular characterization of the MRPA transporter and antimony uptake in four new world Leishmania spp. susceptible and resistant to antimony. Int J Parasitol Drugs Drugs Resist. 2013;3:143–53.

    Article  Google Scholar 

  19. Borst P, Ouellette M. New mechanisms of drug resistance in parasitic protozoa. Annu Rev Microbiol. 1995;49:427–60.

    Article  PubMed  CAS  Google Scholar 

  20. Chow LMC, Volkman K. Plasmodium and Leishmania: the role of mdr genes in mediating drug resistance. Exp Parasitol. 1998;90:135–41.

    Article  PubMed  CAS  Google Scholar 

  21. El Fadili K, Messier N, Leprohon P, Roy G, et al. Role of the ABC transporter MRPA (PGPA) in antimony resistance in Leishmania infantum axenic and intracellular amastigotes. Antimicrob Agents Chemother. 2005;49:1988–93.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ouellette M, Legare D, Papadopoulou B. Multidrug resistance and ABC transporters in parasitic protozoan. J Mol Microbiol Biotechnol. 2001;3:201–6.

    PubMed  CAS  Google Scholar 

  23. Leprohon P, Legare D, Ouellette M. Intracellular localization of the ABCC proteins of Leishmania and their role in resistance to antimonials. Antimicrob Agents Chemother. 2009;53:2646–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Rai S, Goel SK, Dwivedi UN, Sundar S, et al. Role of efflux pumps and intracellular thiols in natural antimony resistant isolates of Leishmania donovani. PLoS One. 2013;8:74862.

    Article  CAS  Google Scholar 

  25. Soleimanifard S, Arjmand R, Saberi S, Khamesipour A, et al. P-glycoprotein a gene expression in glucantime-resistant and sensitive Leishmania major (MRHO/IR/75/ER). Iranian. J Parasitol. 2014;9:423–8.

    Google Scholar 

  26. Coelho AC, Beverley SM, Cotrim PC. Functional genetic identification of PRP1, an ABC transporter superfamily member conferring pentamidine resistance in Leishmania major. Mol Biochem Parasitol. 2003;130:83–90.

    Article  PubMed  CAS  Google Scholar 

  27. Coelho AC, Gentil LG, Franco da Silveira J, Cotrim PC. Characterization of Leishmania (Leishmania) amazonensis promastigotes resistant to pentamidine. Exp Parasitol. 2008;120:98–102.

    Article  PubMed  CAS  Google Scholar 

  28. Coelho AC, Messier N, Ouellette M, Cotrim PC. Role of the ABC transporter PRP1 (ABCC7) in pentamidine resistance in Leishmania amastigotes. Antimicrob Agents Chemother. 2007;51:3030–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Castanys-Munoz E, Perez-Victoria JM, Gamarro F, Castanys S. Characterization of an ABCG-like transporter from the protozoan parasite Leishmania with a role in drug resistance and transbilayer lipid movement. Antimicrob Agents Chemother. 2008;52:3573–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Bose Dasgupta S, Ganguly A, Roy A, Mukherjee T, et al. A novel ATP-binding cassette transporter, ABCG6 is involved in chemoresistance in Leishmania. Mol Biochem Parasitol. 2008;158:176–88.

    Article  CAS  Google Scholar 

  31. Alibert-Franco S, Pradines B, Mahamoud A, Davin-Regli A, et al. Efflux mechanism, an attractive target to combat Plasmodium falciparum and Pseudomonas aeruginosa. Curr Med Chem. 2009;16:301–17.

    Article  PubMed  CAS  Google Scholar 

  32. Henry M, Alibert S, Orlandi-Pradines E, Bogreau H, et al. Chloroquine resistance reversal agents as promising antimalarial drugs. Curr Drug Targets. 2006;7:935–48.

    Article  PubMed  CAS  Google Scholar 

  33. Henry M, Alibert S, Rogier C, Barbe J, et al. Inhibition of efflux of quinolines as new therapic strategy in malaria. Curr Top Med Chem. 2008;8:563–78.

    Article  PubMed  CAS  Google Scholar 

  34. Perea A, Manzano JI, Castanys S, Gamarro F. The LABCG2 transporter from the protozoan parasite Leishmania is involved in antimony resistance. Antimicrob Agents Chemother. 2016;60:3489–96.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Stein WD. Reversers of the multidrug resistance transporter P-glycoprotein. Curr Opin Investig Drugs. 2002;3:812–7.

    PubMed  CAS  Google Scholar 

  36. Neal RA, van Bueren J, McCoy NG, Iwobi M. Reversal of drug resistance in Trypanosoma cruzi and Leishmania donovani by verapamil. Trans R Soc Trop Med Hyg. 1989;83:197–8.

    Article  PubMed  CAS  Google Scholar 

  37. Basselin M, Denise H, Coombs GH, Barrett MP. Resistance to pentamidine in Leishmania mexicana involves exclusion of the drug from the mitochondrion. Antimicrob Agents Chemother. 2002;46:3731–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Dey S, Papadopoulou B, Haimeur A, Roy G, et al. High level arsenite resistance in Leishmania tarentolae is mediated by an active extrusion system. Mol Biochem Parasitol. 1994;67:49–57.

    Article  PubMed  CAS  Google Scholar 

  39. Essodaïgui M, Frézard F, Moreira ESA, Dagger F, et al. Energy-dependent efflux from Leishmania promastigotes of substrates of the mammalian multidrug resistance pumps. Mol Biochem Parasitol. 1999;100:73–84.

    Article  PubMed  Google Scholar 

  40. el-On J, Rubinstein N, Kernbaum S, Schnur LF. In vitro and in vivo anti-leishmanial activity of chlorpromazine alone and combined with N-meglumine antimonate. Ann Trop Med Parasitol. 1986;80:509–17.

    Article  PubMed  CAS  Google Scholar 

  41. Perez-Victoria JM, Chiquero MJ, Conseil G, Dayan G, et al. Correlation between the affinity of flavonoids binding to the cytosolic site of Leishmania tropica multidrug transporter and their efficiency to revert parasite resistance to daunomycin. Biochemistry. 1999;38:1736–43.

    Article  PubMed  CAS  Google Scholar 

  42. Wong ILK, Chan KF, Burkett BA, Zhao Y, et al. Flavonoid dimmers as bivalent modulators for pentamidine and sodium stibogluconate resistance in Leishmania. Antimicrob Agent Chemother. 2007;51:930–40.

    Article  CAS  Google Scholar 

  43. Manzano JI, Lecerf-Schmidt F, Lespinasse MA, Di Pietro A, et al. Identification of specific reversal agents for Leishmania ABCI4-mediated antimony resistance by flavonoid and trolox derivatives screening. J Antimicrob Agents. 2014;69:664–72.

    Article  CAS  Google Scholar 

  44. Kennedy ML, Lianos GG, Castanys S, Gamarro F, et al. Terpenoids from Maytenus species and assessment of their reversal activity against a multidrug-resistant Leishmania tropica line. Chem Biodivers. 2011;8:2291–8.

    Article  PubMed  CAS  Google Scholar 

  45. Bhattacharjee A, Majumder S, Majumdar SB, Choudhuri SK, et al. Co-administration of glycyrrhizic acid with the antileishmanial drug sodium antimony gluconate (SAG) cures SAG-resistant visceral leishmaniasis. Int J Antimicrob Agents. 2015;45:268–77.

    Article  PubMed  CAS  Google Scholar 

  46. Mookerjee Basu J, Mookerjee A, Banerjee R, Saha M, et al. Inhibition of ABC transporters abolished antimony resistance in Leishmania infection. Antimicrob Agents Chemother. 2008;52:1080–93.

    Article  PubMed  CAS  Google Scholar 

  47. Caballero E, Manzano JI, Puebla P, Castanys S, et al. Oxazolo[3,2-]pyridine. A new structural scaffold for the reversal of multi-drug resistance in Leishmania. Bioorg Med Chem Lett. 2012;22:6272–5.

    Article  PubMed  CAS  Google Scholar 

  48. Serrano-Martin X, Payares G, Mendoza-Leon A. Glibenclamide, a blocker of K+ATP channels, shows antilesihmanial activity in experimental murine cutaneous leishmaniasis. Antimicrob Agents Chemother. 2006;50:4214–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Padron-Nieves M, Diaz E, Machuca C, Romero A, et al. Glibenclamide modulates glucantime activity and disposition in Leishmania major. Exp Parasitol. 2009;121:331–7.

    Article  PubMed  CAS  Google Scholar 

  50. Jimenez-Alonso S, Perez-Lomas AL, Estevez-Braun A, Munoz Martinez F, et al. Bis-pyranobenzoquinones as a new family of reversal agents of the multidrug resistance phenotype mediated by P-glycoprotein in mammalian cells and the protozoan parasite Leishmania. J Med Chem. 2008;51:7132–43.

    Article  PubMed  CAS  Google Scholar 

  51. Wong ILK, Chan KF, Zhao Y, Hang Chan T, et al. Quinacrine and a novel apigenin dimmer can synergistically increase the pentamidine susceptibility of the protozoan parasite Leishmania. J Antimicrob Chemother. 2009;63:1179–90.

    Article  PubMed  CAS  Google Scholar 

  52. Perez-Victoria JM, Bavchvarov BI, Torrecillas IR, Martinez-Garcia M, et al. Sitamaquine overcomes ABC-mediated resistance to miltefosine and antimony in Leishmania. Antimicrob Agents Chemother. 2011;55:3838–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Perez-Victoria JM, Perez-Victoria FJ, Parodi-Talice A, Jimenez IA, et al. Alkyl-lysophospholipid resistance in multidrug-resistant Leishmania tropica and chemosensitization by a novel P-glycoprotein-like transporter modulator. Antimicrob Agents Chemother. 2001;45:2468–74.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y. Overcoming of vincristine resistance in P388 leukemia in vivo and in vitro through enhanced cytotoxicity of vincristine and vinblastine by verapamil. Cancer Res. 1981;41:1967–72.

    PubMed  CAS  Google Scholar 

  55. Tsuruo T, Iida H, Tsukagoshi S, Sakurai Y. Potentiation of vincristine and adriamycin effects in human hemopoietic tumor cell lines by calcium antagonists and calmodulin inhibitors. Cancer Res. 1983;43:2267–72.

    PubMed  CAS  Google Scholar 

  56. Twentyman PR, Fox NE, Bleehen NM. Drug resistance in human lung cancer cell lines: cross-resistance studies and effects of the calcium transport blocker, verapamil. J Radiat Oncol Biol Phys. 1986;12:1355–8.

    Article  CAS  Google Scholar 

  57. Banerjee SK, Bhatt K, Rana S, Misra P, et al. Involvement of an efflux system in mediating high level of fluoroquinolone resistance in Mycobacterium smegmatis. Biochem Biophys Res Commun. 1996;226:362–8.

    Article  PubMed  CAS  Google Scholar 

  58. Choudhuri BS, Bahkta S, Barik R, Basu J, et al. Overexpression and functional characterization of an ABC (ATP-binding cassette) transporter encoded by the genes drrA and drrB of Mycobacterium tuberculosis. Biochem J. 2002;367:279–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Jonas BM, Murray BE, Weinstock GM. Characterization of emeA, a NorA homolog and multidrug resistance efflux pump, in Enterococcus faecalis. Antimicrob Agents Chemother. 2001;45:3574–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Beugnet F, Gauthey M, Kerboeuf D. Partial in vitro reversal of benzimidazole resistance by the free-living stages of Haemonchus contortus with verapamil. Vet Rec. 1997;141:575–6.

    Article  PubMed  CAS  Google Scholar 

  61. Kerboeuf D, Blackhall W, Kaminsky R, von Samson-Himmelstjerna G. P-glycoprotein in helminths: function and perspectives for antihelminthic treatment and reversal of resistance. Int J Antimicrob Agents. 2003;22:332–46.

    Article  PubMed  CAS  Google Scholar 

  62. Kerboeuf D, Chambrier P, Le Vern Y, Aycardi J. Flow cytometry analysis of drug transport mechanisms in Haemonchus contortus susceptible or resistant to antihelminthics. Parasitol Res. 1999;85:118–23.

    Article  PubMed  CAS  Google Scholar 

  63. Ayala P, Samuelson J, Wirth D, Orozco E. Entamoeba histolytica: physiology of multidrug resistance. Exp Parasitol. 1990;71:169–75.

    Article  PubMed  CAS  Google Scholar 

  64. Banuelos C, Orozco E, Gomez C, Gonzales A, et al. Cellular location and function of the P-glycoprotein (EhPgp) in Entamoeba histolytica multidrug-resistant trophozoites. Microb Drug Resist. 2002;8:291–300.

    Article  PubMed  CAS  Google Scholar 

  65. Orozco E, Lopez C, Gomez C, Perez DG, et al. Multidrug resistance in the protozoan parasite Entamoeba histolytica. Parasitol Int. 2002;51:353–9.

    Article  PubMed  CAS  Google Scholar 

  66. Holtzman CW, Wiggings BS, Spinler SA. Role of P-glycoprotein in statin drug interaction. Pharmacotherapy. 2006;26:1601–7.

    Article  PubMed  CAS  Google Scholar 

  67. Millet J, Torrentino-Madamet M, Alibert S, Rogier C, et al. Dihydroethanoanthracene derivatives as in vitro malarial chloroquine resistance reversal agents. Antimicrob Agents Chemother. 2004;48:2753–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Pradines B, Alibert-Franco S, Houdoin C, Mosnier J, et al. In vitro reversal of chloroquine resistance in Plasmodium falciparum with dihydroethanoanthracene derivatives. Am J Trop Med Hyg. 2002;66:661–6.

    Article  PubMed  CAS  Google Scholar 

  69. Matsson P, Pedersen JM, Norinder U, Bergstrom CAS, et al. Identification of novel specific and general inhibitors of the three major human ATP-binding cassette transporters, P-gp, BCRP and MRP2 among registered drugs. Pharm Res. 2009;26:1816–31.

    Article  PubMed  CAS  Google Scholar 

  70. Valiathan R, Dubey ML, Mahajan RC, Malla N. Leishmania donovani: effect of verapamil on in vitro susceptibility of promastigote and amastigote stages of Indian clinical isolates to sodium stibogluconate. Exp Parasitol. 2006;114:103–8.

    Article  PubMed  CAS  Google Scholar 

  71. Marquis JF, Hardy I, Olivier M. Topoisomerase I amino acid substitutions, Gly185Arg and Asp325Glu, confer camptothecin resistance in Leishmania donovani. Antimicrob Agents Chemother. 2005;49:1441–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Kaur J, Dey CS. Putative P-glycoprotein expression in arsenite-resistant Leishmania donovani down-regulated by verapamil. Biochem Biophys Res Commun. 2000;271:615–9.

    Article  PubMed  CAS  Google Scholar 

  73. Loe DW, Deeley RG, Cole SPC. Verapamil stimulates glutathione transport by the 190-kDa multidrug resistance protein 1 (MRP1). J Pharmacol Exp Ther. 2000;293:530–8.

    PubMed  CAS  Google Scholar 

  74. Loe DW, Oleschuk CJ, Deeley RG, Cole SPC. Structure-activity studies of verapamil analogs that modulate transport of Leukotriene C4 and reduced glutathione by multidrug resistance protein MRP1. Biochem Biophys Res Commun. 2000;275:795–803.

    Article  PubMed  CAS  Google Scholar 

  75. Sereno D, Lemesre JL. In vitro life cycle of pentamidine-resistant amastigotes: stability of the chemoresistant phenotypes is dependent on the level of resistance induced. Antimicrob Agents Chemother. 1997;41:1898–903.

    PubMed  PubMed Central  CAS  Google Scholar 

  76. Mukherjee A, Padmanabhan PK, Sahani MH, Barrett MP, et al. Roles for mitochondria in pentamidine susceptibility and resistance in Leishmania donovani. Mol Biochem Parasitol. 2006;145:1–10.

    Article  PubMed  CAS  Google Scholar 

  77. Decuypere S, Rijal S, Yardley V, De Doncker S, et al. Gene expression analysis of the mechanism of natural Sb(V) resistance in Leishmania donovani isolates from Nepal. Antimicrob Agents Chemother. 2005;49:4616–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Machuca C, Rodriguez A, Herrera M, Silva S, et al. Leishmania amazonensis: metabolic adaptations induced by resistance to an ABC transporter blocker. Exp Parasitol. 2006;114:1–9.

    Article  PubMed  CAS  Google Scholar 

  79. Ford JM, Prozialeck WC, Hait WN. Structural features determining activity of phenothiazines and related drugs for inhibition of cell growth and reversal of multidrug resistance. Mol Pharmacol. 1989;35:105–15.

    PubMed  CAS  Google Scholar 

  80. Henry M, Alibert S, Baragatti M, Mosnier J, et al. Dihydroethanoanthracene derivatives reverse in vitro quinoline resistance in Plasmodium falciparum malaria. Med Chem. 2008;4:426–37.

    Article  PubMed  CAS  Google Scholar 

  81. Molnar J, Hever A, Falka I, Ocsovski I, et al. Inhibition of the transport function of membrane proteins by some substituted phenothiazines in E. coli and multidrug resistant tumor cells. Anticancer Res. 1997;17:481–6.

    PubMed  CAS  Google Scholar 

  82. Pearce HL, Safa AR, Bac NJ, Winter MA, et al. Essential features of the P-glycoprotein pharmacophore as defined by a series of reserpine analogs that modulate multidrug resistance. Proc Natl Acad Sci U S A. 1989;86:5128–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Pearson RD, Manian AA, Hall D, Harcus JL, et al. Antileishmanial activity of chlorpromazine. Antimicrob Agents Chemother. 1984;25:571–4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Pearson RD, Manian AA, Harcus JL, Hall D, et al. Lethal effect of phenothiazine neuroleptics on the pathogenic protozoan Leishmania donovani. Science. 1982;217:369–71.

    Article  PubMed  CAS  Google Scholar 

  85. Werbovetz KA, Lehnert EK, MacDonald TL, Pearson RD. Cytotoxicity of acridine compounds for Leishmania promastigotes in vitro. Antimicrob Agents Chemother. 1992;36:495–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Chan C, Yin H, Garforth J, McKie JH, et al. Phenothiazines inhibitors of trypanothione reductase as potential antitrypanosomal and antileishmanial drugs. J Med Chem. 1998;41:148–56.

    Article  PubMed  CAS  Google Scholar 

  87. Khan MO, Austin SE, Chan C, Yin H, et al. Use of an additional hydrophobic binding site, the Z site, in the rational design of a new class of stronger trypanothione reductase inhibitor, quaternary alkylammonium phenothiazines. J Med Chem. 2000;43:3148–56.

    Article  PubMed  CAS  Google Scholar 

  88. Loe DW, Stewart RK, Massey TE, Deeley RG, et al. ATP-dependent transport of aflatoxin B1, and its glutathione conjugates by the product of the multidrug resistance protein (MRP) gene. Mol Pharmacol. 1997;51:1034–41.

    Article  PubMed  CAS  Google Scholar 

  89. di Pietro A, Conseil G, Perez-Victoria JM, Dayan G, et al. Modulation by flavonoids of cell multidrug resistance mediated by P-glycoprotein and related ABC transporters. Cell Mol Life Sci. 2002;59:307–22.

    Article  PubMed  Google Scholar 

  90. Kennedy ML, Cortes F, Pinero JE, Castanys S, et al. Leishmanicidal and reversal multidrug resistance constituents from Aeonium lindleyi. Planta Med. 2011;77:77–80.

    Article  PubMed  CAS  Google Scholar 

  91. Kennedy ML, Cortés-Selva F, Perez-Victoria JM, Jimenez IA, et al. Chemosensitization of a multidrug-resistant Leishmania tropica line by new sesquiterpenes from Maytenus magellanica and Maytenus chubutensis. J Med Chem. 2001;44:4668–76.

    Article  PubMed  CAS  Google Scholar 

  92. Shapiro AB, Ling V. Effect of quercetin on Hoechst 33342 transport by purified and reconstituted P-glycoprotein. Biochem Pharmacol. 1997;53:587–96.

    Article  PubMed  CAS  Google Scholar 

  93. Critchfield JW, Welsh CJ, Phang JM, Yeh GC. Modulation of adriamycin accumulation and efflux by flavonoids in HCT-15 colon cells. Activation of P-glycoprotein as a putative mechanism. Biochem Pharmacol. 1994;48:1437–45.

    Article  PubMed  CAS  Google Scholar 

  94. Ferté J, Kühnel JM, Chapuis G, Rolland Y, et al. Flavonoid-related modulators of multidrug resistance: synthesis, pharmacological activity, and structure-activity relationships. J Med Chem. 1999;42:478–89.

    Article  PubMed  Google Scholar 

  95. Shapiro AB, Ling V. Positively cooperative sites for drug transport by P-glycoprotein with distinct drug specificities. Eur J Biochem. 1997;250:130–7.

    Article  PubMed  CAS  Google Scholar 

  96. Maitrejean M, Comte G, Barron D, El Kirat K, et al. The flavanolignan silybin and its hemisynthetic derivatives, a novel series of potential modulators of P-glycoprotein. Bioorg Med Chem Lett. 2000;10:157–60.

    Article  PubMed  CAS  Google Scholar 

  97. Conseil G, Baubichon-Cortay H, Dayan G, Jault JM, et al. Flavonoids: a class of modulators with bifunctional interactions at vicinal ATP- and steroid-binding sites on mouse P-glycoprotein. Proc Natl Acad Sci U S A. 1998;95:9831–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Kioka N, Hosokawa N, Komano T, Hirayoshi K, et al. Quercetin, a bioflavonoid, inhibits the increase of human multidrug resistance gene (MDR1) expression caused by arsenite. FEBS Lett. 1992;301:307–9.

    Article  PubMed  CAS  Google Scholar 

  99. Yoshikawa M, Ikegami Y, Sano K. Transport of SN-38 by the wild type of human ABC transporter ABCG2 and its inhibition by quercetin, a natural flavonoid. J Exp Ther Oncol. 2004;4:25–35.

    PubMed  CAS  Google Scholar 

  100. Manzano JI, Garcia-Hernandez R, Castanys S, Gamarro F. A new ABC half-transporter in Leishmania is involved in resistance to antimony. Antimicrob Agents Chemother. 2013;57:3719–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  101. Cortes-Selva F, Campillo M, Reyes CP, Jimenez IA, et al. SAR studies of dihydro-beta-agarofuran sesquiterpenes as inhibitors of the multidrug-resistance phenotype in a Leishmania tropica line overexpressing a P-glycoprotein-like transporter. J Med Chem. 2004;47:576–87.

    Article  PubMed  CAS  Google Scholar 

  102. Cortes-Selva F, Munoz-Martinez F, Ilias A, Jimenez IA, et al. Functional expression of a multidrug P-glycoprotein transporter of Leishmania. Biochem Biophys Res Commun. 2005;329:502–7.

    Article  PubMed  CAS  Google Scholar 

  103. Cortes-Selva F, Jimenez IA, Munoz-Martinez F, Campillo M, et al. Dihydro-beta-agarofuran sesquiterpenes: a new class of reversal agents of the multidrug resistance phenotype mediated by P-glycoprotein in the protozoan parasite Leishmania. Curr Pharm Des. 2005;11:3125–39.

    Article  PubMed  CAS  Google Scholar 

  104. Delgado-Mendez P, Herrera N, Chavez H, Estevez-Braun A, et al. New terpenoids from Maytenus apurimacensis as MDR reversal agents in the parasite Leishmania. Bioorg Med Chem. 2008;16:1425–30.

    Article  PubMed  CAS  Google Scholar 

  105. Perez-Victoria JM, Tincusi BM, Jimanez IA, Bazzocchi IL, et al. New natural sesquiterpenes as modulators of daunomycin resistance in a multidrug-resistant Leishmania tropica line. J. Med Chem. 1999;42:4388–93.

    Article  CAS  Google Scholar 

  106. Callaghan R, van Gorkom LC, Epand RM. A comparison of membrane properties and composition between cell lines selected and transfected for multi-drug resistance. Br J Cancer. 1992;66:781–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Storme GA, Berdel WE, van Blitterswijk WJ, Bruyneel EA, et al. Antiinvasive effect of racemic 1-O-octadecyl-2-O-methylglycero-phosphocholine on MO4 mouse fibrosarcoma cells in vitro. Cancer Res. 1985;45:351–7.

    PubMed  CAS  Google Scholar 

  108. Greenwood J, Mason JC. Statins and the vascular endothelial inflammatory response. Trends Immunol. 2007;28:88–98.

    Article  PubMed  CAS  Google Scholar 

  109. Terblanche M, Almog Y, Rosenson RS, Smith TS, et al. Statins: panacea for sepsis? Lancet Infect Dis. 2006;6:242–8.

    Article  PubMed  CAS  Google Scholar 

  110. Montalvetti A, Pena-Diaz J, Hurtado R, Ruiz-Perez LM, et al. Characterization and regulation of Leishmania major 3-hydroxy-methyl-glutaryl—CoA reductase. Biochem J. 2000;349:27–34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Urbina JA, Lazardi K, Marchan E, Visbal G, et al. Mevinolin (lovastatin) potentiates the antiproliferative effects of ketoconazole and terbinafine against Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies. Antimicrob Agents Chemother. 1993;37:580–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  112. Yokoyama K, Trobridge P, Buckner FS, Scholten J, et al. The effects of protein farnesyltransferase inhibitors on trypanosomatids: inhibition of protein farnesylation and cell growth. Mol Biochem Parasitol. 1998;94:87–97.

    Article  PubMed  CAS  Google Scholar 

  113. Wang E, Casciano CN, Clement RP, Johnson WW. HMG-CoA reductase inhibitors (statins) characterized as direct inhibitors of P-glycoprotein. Pharm Res. 2001;18:800–6.

    Article  PubMed  CAS  Google Scholar 

  114. Wu X, Whitfield I, Stewart BH. Atorvastatin transport in the Caco-2 cell model: contributions of P-glycoprotein and the proton-monocarboxylic acid co-transporter. Pharm Res. 2000;17:209–15.

    Article  PubMed  CAS  Google Scholar 

  115. Parquet V, Henry M, Wurtz N, Dormoi J, et al. Atorvastatin as a potential anti-malarial drug: in vitro synergy in combinational therapy with quinine against Plasmodium falciparum. Malar J. 2010;9:139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Savini H, Souraud JB, Briolant S, Baret E, et al. Atorvastatin as a potential antimalarial drug: in vitro synergy in combinational therapy with dihydroartemisinin. Antimicrob Agents Chemother. 2010;54:966–7.

    Article  PubMed  CAS  Google Scholar 

  117. Wurtz N, Briolant S, Gil M, Parquet V, et al. Synergy of mefloquine activity with atorvastatin, but not chloroquine and monodesethylamodiaquine, and association with the pfmdr1 gene. J Antimicrob Chemother. 2010;65:1387–94.

    Article  PubMed  CAS  Google Scholar 

  118. Haughan PA, Chance ML, Goad LJ. Synergism in vitro of lovastatin and miconazole as anti-leishmanial agents. Biochem Pharmacol. 1992;44:2199–206.

    Article  PubMed  CAS  Google Scholar 

  119. Chen ZS, Mutoh M, Sumizawa T, Furukawa T, et al. Reversal of heavy metal resistance in multidrug-resistant human KB carcinoma cells. Biochem Biophys Res Commun. 1997;236:586–90.

    Article  PubMed  CAS  Google Scholar 

  120. Chuman Y, Chen ZS, Seto K, Sumizawa T, et al. Reversal of MRP-mediated vincristine resistance in KB cells by buthionine sulfoximine in combination with PAK-104P. Cancer Lett. 1998;129:69–76.

    Article  PubMed  CAS  Google Scholar 

  121. Kitasono M, Okumura H, Ikeda R, Sumizawa T, et al. Reversal of LRP-associated drug resistance in colon carcinoma SW-620 cells. Int J Cancer. 2001;91:126–31.

    Article  Google Scholar 

  122. Shudo N, Mizoguchi T, Kiyosue T, Arita M, et al. Two pyridine analogues with more effective ability to reverse multidrug resistance and with lower calcium blocking activity than their dihydropyridine counterparts. Cancer Res. 1990;50:3055–61.

    PubMed  CAS  Google Scholar 

  123. Sumizawa T, Chen ZS, Chuman Y, Seto K, et al. Reversal of multidrug resistance-associated protein-mediated drug resistance by the pyridine analog PAK-104P. Mol Pharmacol. 1997;51:399–405.

    PubMed  CAS  Google Scholar 

  124. Vanhoefer U, Cao S, Minderman H, Toth K, et al. PAK-104P, a pyridine analogue, reverses paclitaxel and doxorubicin resistance in cell lines and nude mice bearing xenografts that overexpress the multidrug resistance protein. Clin Cancer Res. 1996;2:369–77.

    PubMed  CAS  Google Scholar 

  125. Tachiwada T, Chen ZS, Che XF, Matsumoto M, et al. Isolation and characterization of arsenite-resistant human epidermoid carcinoma KB cells. Oncol Rep. 2007;18:721–7.

    PubMed  CAS  Google Scholar 

  126. Golstein PE, Boom A, van geffel J, Jacobs P, et al. P-glycoprotein inhibition by glibenclamide and related compounds. Pflugers Arch. 1999;437:652–60.

    Article  PubMed  CAS  Google Scholar 

  127. Conseil G, Deeley RG, Cole SPC. Role of two adjancent cytoplasmic tyrosine residues in MRP1 (ABCC1) transport activity and sensitivity to sulfonylureas. Biochem Pharmacol. 2005;69:451–61.

    Article  PubMed  CAS  Google Scholar 

  128. Gayet L, Picault N, Cazalé AC, Beyly A, et al. Transport of antimony salts by Arabidopsis thaliana protoplasts over-expressing the human multidrug resistance-associated protein 1 (MRP1/ABCC1). FEBS Lett. 2006;580:6891–7.

    Article  PubMed  CAS  Google Scholar 

  129. Dantzig AH, Law KL, Cao J, Starling JJ. Reversal of multidrug resistance by the P-glycoprotein modulator, LY335979, from the bench to the clinic. Curr Med Chem. 2001;8:39–50.

    Article  PubMed  CAS  Google Scholar 

  130. Hyafil F, Vergely C, Du Vignaud P, Grand-Perret T. In vitro and in vivo reversal of multidrug resistance by GF120918, an acridonecarboxamide derivative. Cancer Res. 1993;53:4595–602.

    PubMed  CAS  Google Scholar 

  131. Perez-Victoria JM, Cortes-Selva F, Parodi-Talice A, Bavchvarov BI, et al. Combination of suboptimal doses of inhibitors targeting different domains of LtrMDR1 efficiently overcomes resistance of Leishmania spp. to miltefosine by inhibiting drug efflux. Antimicrob Agent Chemother. 2006;50:3102–10.

    Article  CAS  Google Scholar 

  132. Castanys-Munoz E, Alder-Baerens N, Pomorski T, Gamarro F, et al. A novel ATP-binding cassette transporter from Leishmania is involved in transport of phosphatidylcholine analogues and resistance to alkyl-phospholipids. Mol Microbiol. 2007;64:1141–53.

    Article  PubMed  CAS  Google Scholar 

  133. Deharo E, Barkan D, Krugliak M, Golenser J, et al. Potentialization of the antimalarial action of chloroquine in rodent malaria by drugs known to reduce cellular glutathione levels. Biochem Pharmacol. 2003;66:809–17.

    Article  PubMed  CAS  Google Scholar 

  134. Loo TW, Bartlett MC, Clarke DM. Disulfiram metabolites permanently inactivate the human multidrug resistance P-glycoprotein. Mol Pharm. 2004;1:426–33.

    Article  PubMed  CAS  Google Scholar 

  135. Loo TW, Clarke DM. Blockage of drug resistance in vitro by disulfiram, a drug used to treat alcoholism. J Natl Cancer Inst. 2000;92:898–902.

    Article  PubMed  CAS  Google Scholar 

  136. Namazi MR. Potential utility of disulfiram against leishmaniasis. Indian J Med Res. 2008;127:193–4.

    PubMed  CAS  Google Scholar 

  137. Gamage SA, Figgitt DP, Wojcik SJ, Ralph RK, et al. Structure-activity relationships for the antileishmanial and trypanosomal activities of 1′-substituted 9-anilinoacridines. J Med Chem. 1997;40:2634–42.

    Article  PubMed  CAS  Google Scholar 

  138. Gamage SA, Tepsiri N, Wilairat P, Wojcik SJ, et al. Synthesis and in vitro evaluation of 9-anilino-3,6-diaminoacridines active against a multidrug-resistant strain of the malaria parasite Plasmodium falciparum. J Med Chem. 1994;37:1486–94.

    Article  PubMed  CAS  Google Scholar 

  139. Girault S, Grellier P, Berecibar A, Maes L, et al. Antimalarial, antitrypanosomal, and antileishmanial activities and cytotoxicity of bis(9-amino-6-chloro-2-methoxyacridines): influence of the linker. J Med Chem. 2000;43:2646–54.

    Article  PubMed  CAS  Google Scholar 

  140. Seeger MA, Schiefner A, Eicher T, Verrey F. Structural asymmetry of AcrB trimer suggests a peristaltic pump mechanism. Science. 2006;313:1295–8.

    Article  PubMed  CAS  Google Scholar 

  141. Pedersen JM, Matsson P, Bergstrom CA, Norinder U, et al. Prediction and identification of drug interactions with the human ATP-binding cassette transporter multidrug-resistance associated protein 2 (MRP2; ABCC2). J Med Chem. 2008;51:3275–87.

    Article  PubMed  CAS  Google Scholar 

  142. Pajeva IK, Globisch C, Wiese M. Combined pharmacophore modeling, docking, and 3D QSAR studies of ABCB1 and ABCC1 transporter inhibitors. Chem Med Chem. 2009;4:1883–96.

    Article  PubMed  CAS  Google Scholar 

  143. Vergnes B, Sereno D, Madjidian-Sereno N, Lesmesre JL, Ouaissi A. Cytoplasmic SIR2 homologue overexpression promotes survival of Leishmania parasites by preventing programmed cell death. Gene. 2002;296:139–50.

    Article  PubMed  CAS  Google Scholar 

  144. Purkait B, Singh R, Wasnik K, Das S, et al. Up-regulation of silent information regulator 2 (Sir2) is associated with amphotericin B resistance in clinical isolates of Leishmania donovani. J Antimicrob Agents. 2015;70:1343–56.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pradines, B. (2018). P-Glycoprotein-Like Transporters in Leishmania: A Search for Reversal Agents. In: Ponte-Sucre, A., Padrón-Nieves, M. (eds) Drug Resistance in Leishmania Parasites. Springer, Cham. https://doi.org/10.1007/978-3-319-74186-4_14

Download citation

Publish with us

Policies and ethics