Skip to main content

Attention-Driven Deep Learning for Pathological Spine Segmentation

  • Conference paper
  • First Online:
Book cover Computational Methods and Clinical Applications in Musculoskeletal Imaging (MSKI 2017)

Abstract

Accurate segmentation of the spine in computed tomography (CT) images is mandatory for quantitative analysis, e.g. in osteoporosis, but remains challenging due to high variability in vertebral morphology and spinal anatomy among patients. Conventionally, spine segmentation was performed by model-based techniques employing spine atlases or statistical shape models. We argue that such approaches, even though intuitive, fail to address clinical abnormalities such as vertebral fractures, scoliosis, etc. We propose a novel deep learning-based method for segmenting the spine, which does not rely on any pre-defined shape model. We employ two networks: one for localisation and another for segmentation. Since a typical spine CT scan cannot be processed at once owing to its large dimensions, we find that both nets are essential to work towards a perfect segmentation. We evaluate our framework on three datasets containing healthy and fractured cases: two private and one public. Our approach achieves a mean Dice coefficient of \({\sim }0.87\), which is comparable but not higher than the state-of-art model-based approaches. However, we show that our approach handles degenerate cases more accurately.

A. Sekuboyina and J. Kukačka—Contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 60.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A cascaded fusion of these nets was also tried where the patches for the segmentation net are obtained only from the region proposed by the attention map. We observed that the accuracy of this approach was not superior to our approach of late-fusion.

  2. 2.

    We would like to thank Klinder et al., the authors and our industry partners (Philips, Hamburg, Germany), for providing us with the segmentation of Datasets 1 and 2 based on their approach in [1].

References

  1. Klinder, T., Ostermann, J., Ehm, M., Franz, A., Kneser, R., Lorenz, C.: Automated model-based vertebra detection, identification, and segmentation in CT images. Med. Image Anal. 13(3), 471–482 (2009)

    Article  Google Scholar 

  2. Forsberg, D.: Atlas based segmentation of the thoracic and lumbar vertebrae. In: Yao, J., et al. (eds.) CSI 2014. LNCVB, vol. 20, pp. 215–220. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14148-0_18

    Chapter  Google Scholar 

  3. Kadoury, S., Labelle, H., Paragios, N.: Spine segmentation in medical images using manifold embeddings and higher-order MRFs. IEEE Trans. Med. Imaging 32(7), 1227–1238 (2013)

    Article  Google Scholar 

  4. Korez, R., Ibragimov, B., Likar, B., Pernuš, F., Vrtovec, T.: Interpolation-based shape-constrained deformable model approach for segmentation of vertebrae from CT spine images. In: Yao, J., et al. (eds.) CSI 2014. LNCVB, vol. 20, pp. 235–240. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14148-0_21

    Chapter  Google Scholar 

  5. Huang, J., Jian, F., Wu, H., Li, H.: An improved level set method for vertebra CT image segmentation. Biomed. Eng. Online 12, 48 (2013)

    Article  Google Scholar 

  6. Lootus, M., Kadir, T., Zisserman, A.: Automated radiological grading of spinal MRI. In: Yao, J., et al. (eds.) CSI 2014. LNCVB, vol. 20, pp. 119–130. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-14148-0_11

    Chapter  Google Scholar 

  7. Glocker, B., Feulner, J., Criminisi, A., Haynor, D., Konukoglu, E.: Automatic localization and identification of vertebrae in arbitrary field-of-view CT scans. In: Ayache, N., et al. (eds.) Proceedings of 15th International Conference on Medical Image Computing and Computer-Assisted Intervention – MICCAI 2012. LNCS, vol. 7512, pp. 590–598. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33454-2_73

    Chapter  Google Scholar 

  8. Suzani, A., Rasoulian, A., Seitel, A., Fels, S., Rohling, R., Abolmaesumi, P.: Deep learning for automatic localization, identification, and segmentation of vertebral bodies in volumetric MR images. In: Webster, R., Yaniv, Z. (eds.) Proceedings of SPIE Medical Imaging 2015: Image-Guided Procedures, Robotic Interventions, and Modeling, vol. 9415, p. 941514. SPIE (2015)

    Google Scholar 

  9. Chen, H., Shen, C., Qin, J., Ni, D., Shi, L., Cheng, J.C.Y., Heng, P.-A.: Automatic localization and identification of vertebrae in Spine CT via a joint learning model with deep neural networks. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9349, pp. 515–522. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24553-9_63

    Chapter  Google Scholar 

  10. Shelhamer, E., Long, J., Darrell, T.: Fully convolutional networks for semantic segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39(4), 640–651 (2017)

    Article  Google Scholar 

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  12. Çiçek, Ö., Abdulkadir, A., Lienkamp, S.S., Brox, T., Ronneberger, O.: 3D U-Net: learning dense volumetric segmentation from sparse annotation. In: Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W. (eds.) MICCAI 2016. LNCS, vol. 9901, pp. 424–432. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46723-8_49

    Chapter  Google Scholar 

  13. Milletari, F., Navab, N., Ahmadi, S.A.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: Proceedings of 4th International Conference on 3D Vision - 3DV 2016, pp. 565–571. IEEE (2016)

    Google Scholar 

  14. Yao, J., Burns, J., Forsberg, D., Seitel, A., Rasoulian, A., Abolmaesumi, P., Hammernik, K., Urschler, M., Ibragimov, B., Korez, R., Vrtovec, T., Castro-Mateos, I., Pozo, J., Frangi, A., Summers, R., Li, S.: A multi-center milestone study of clinical vertebral CT segmentation. Comput. Med. Imaging Graph. 49, 16–28 (2016)

    Article  Google Scholar 

  15. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  16. A three-dimensional U-Net for synaptic cleft detection (2016). https://github.com/zudi-lin/pse-unet

  17. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: Proceedings of 22nd ACM International Conference on Multimedia, pp. 675–678. ACM (2014)

    Google Scholar 

Download references

Acknowledgements

This work was funded from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (GA637164–iBack–ERC-2014-STG).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjany Sekuboyina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sekuboyina, A., Kukačka, J., Kirschke, J.S., Menze, B.H., Valentinitsch, A. (2018). Attention-Driven Deep Learning for Pathological Spine Segmentation. In: Glocker, B., Yao, J., Vrtovec, T., Frangi, A., Zheng, G. (eds) Computational Methods and Clinical Applications in Musculoskeletal Imaging. MSKI 2017. Lecture Notes in Computer Science(), vol 10734. Springer, Cham. https://doi.org/10.1007/978-3-319-74113-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-74113-0_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-74112-3

  • Online ISBN: 978-3-319-74113-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics