Skip to main content

Fiber-Flux Diffusion Density for White Matter Tracts Analysis: Application to Mild Anomalies Localization in Contact Sports Players

  • Conference paper
  • First Online:
Computational Diffusion MRI

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

We present the concept of fiber-flux density for locally quantifying white matter (WM) fiber bundles. By combining scalar diffusivity measures (e.g., fractional anisotropy) with fiber-flux measurements, we define new local descriptors called Fiber-Flux Diffusion Density (FFDD) vectors. Applying each descriptor throughout fiber bundles allows along-tract coupling of a specific diffusion measure with geometrical properties, such as fiber orientation and coherence. A key step in the proposed framework is the construction of an FFDD dissimilarity measure for sub-voxel alignment of fiber bundles, based on the fast marching method (FMM). The obtained aligned WM tract-profiles enable meaningful inter-subject comparisons and group-wise statistical analysis. We demonstrate our method using two different datasets of contact sports players . Along-tract pairwise comparison as well as group-wise analysis, with respect to non-player healthy controls, reveal significant and spatially-consistent FFDD anomalies. Comparing our method with along-tract FA analysis shows improved sensitivity to subtle structural anomalies in football players over standard FA measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The FMM was proposed by Sethian [23] for solving boundary value problems of the Eikonal equation.

References

  1. Andersson, J.L.R., Jenkinson, M., Smith, S., et al.: Non-linear registration, aka spatial normalisation FMRIB technical report TR07JA2. FMRIB Analysis Group of the University of Oxford, 2 (2007)

    Google Scholar 

  2. Basser, P., Mattiello, J., LeBihan, D.: Estimation of the effective self-diffusion tensor from the NMR spin echo. J. Magn. Reson. B 103, 247–254 (1994)

    Article  Google Scholar 

  3. Benjamini, Y., Hochberg, Y.: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 57, 289–300 (1995)

    MathSciNet  MATH  Google Scholar 

  4. Charon, N., Trouvé, A.: The varifold representation of nonoriented shapes for diffeomorphic registration. SIAM J. Imaging Sci. 6, 2547–2580 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chung, M.K., Adluru, N., Lee, J.E., et al.: Cosine series representation of 3D curves and its application to white matter fiber bundles in diffusion tensor imaging. Stat. Interface 3, 69 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cohen, I., Ayache, N., Sulger, P.: Tracking points on deformable objects using curvature information. In: ECCV, pp. 458–466 (1992)

    Google Scholar 

  7. Colby, J.B., Soderberg, L., Lebel, C., et al.: Along-tract statistics allow for enhanced tractography analysis. NeuroImage 59, 3227–3242 (2012)

    Article  Google Scholar 

  8. Corouge, I., Gouttard, S., Gerig, G.: Towards a shape model of white matter fiber bundles using diffusion tensor MRI. In: ISBI, pp. 344–347 (2004)

    Google Scholar 

  9. Durrleman, S., et al.: Registration, atlas estimation and variability analysis of white matter fiber bundles modeled as currents. NeuroImage 55, 1073–1090 (2011)

    Article  Google Scholar 

  10. Frenkel, M., Basri, R.: Curve matching using the fast marching method. In: EMMCVPR, pp. 35–51 (2003)

    Google Scholar 

  11. Garyfallidis, E., Brett, M., Correia, M.M., et al.: Quickbundles, a method for tractography simplification. Front. Neurosci. 6, 175 (2012)

    Article  Google Scholar 

  12. Garyfallidis, E., Ocegueda, O., Wassermann, D., Descoteaux, M.: Robust and efficient linear registration of white-matter fascicles in the space of streamlines. NeuroImage 117, 124–140 (2015)

    Article  Google Scholar 

  13. Heimer, L.: The Human Brain and Spinal Cord: Functional Neuroanatomy and Dissection Guide. Springer Science & Business Media, New York (2012)

    Google Scholar 

  14. Hulkower, M.B., Poliak, D.B., Rosenbaum, S.B., et al.: A decade of DTI in traumatic brain injury: 10 years and 100 articles later. Am. J. Neuroradiol. 34, 2064–2074 (2013)

    Article  Google Scholar 

  15. Khatami, M., Schmidt-Wilcke, T., Sundgren, P.C., et al.: Bundlemap: anatomically localized classification, regression, and hypothesis testing in diffusion MRI. Pattern Recogn. 63, 593–600 (2017)

    Article  Google Scholar 

  16. Klein, J., Hermann, S., Konrad, O., et al.: Automatic quantification of DTI parameters along fiber bundles. In: Bildverarbeitung für die Medizin 2007, pp. 272–276. Springer, Berlin (2007)

    Google Scholar 

  17. Mårtensson, J., Nilsson, M., Ståhlberg, F., et al.: Spatial analysis of diffusion tensor tractography statistics along the inferior fronto-occipital fasciculus with application in progressive supranuclear palsy. MAGMA 26, 527–537 (2013)

    Article  Google Scholar 

  18. Mori, S., Oishi, K., Jiang, H., et al.: Stereotaxic white matter atlas based on diffusion tensor imaging in an ICBM template. NeuroImage 40, 570–582 (2008)

    Article  Google Scholar 

  19. O’Donnell, L., Pasternak, O.: Does diffusion MRI tell us anything about the white matter? An overview of methods and pitfalls. Schizophr. Res. 161, 133–141 (2015)

    Article  Google Scholar 

  20. O’Donnell, L.J., et al.: Tract-based morphometry for white matter group analysis. NeuroImage 45, 832–844 (2009)

    Article  Google Scholar 

  21. O’Donnell, L.J., Wells, W.M., Golby, A.J., et al.: Unbiased groupwise registration of white matter tractography. Med. Image Comput. Comput. Assist. Interv. 15, 123–130 (2012)

    Google Scholar 

  22. Sebastian, T.B., Klein, P.N., et al.: On aligning curves. IEEE Trans. Pattern Anal. Mach. Intell. 25, 116–125 (2003)

    Article  Google Scholar 

  23. Sethian, J.: A fast marching level set method for monotonically advancing fronts. Proc. Natl. Acad. Sci. U. S. A. 93, 1591–1595 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  24. Shenton, M.E., Hamoda, H.M., Schneiderman, J.S., et al.: A review of magnetic resonance imaging and diffusion tensor imaging findings in mild traumatic brain injury. Brain Imaging Behav. 6, 137–192 (2012)

    Article  Google Scholar 

  25. Smith, S.M., Jenkinson, M., Johansen-Berg, H., et al.: Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31, 1487–1505 (2006)

    Article  Google Scholar 

  26. Stamile, C., et al.: A sensitive and automatic white matter fiber tracts model for longitudinal analysis of diffusion tensor images in multiple sclerosis. PLoS One 11, e0156405 (2016)

    Article  Google Scholar 

  27. Tagliasacchi, A., Zhang, H., Cohen-Or, D.: Curve skeleton extraction from incomplete point cloud. In: ACM Transactions on Graphics, p. 71 (2009)

    Google Scholar 

  28. Yeatman, J.D., Dougherty, R.F., Myall, N.J., et al.: Tract profiles of white matter properties: automating fiber-tract quantification. PLoS One 7, e49790 (2012)

    Article  Google Scholar 

  29. Yeh, F.C., Verstynen, T.D., Wang, Y., et al.: Deterministic diffusion fiber tracking improved by quantitative anisotropy. PLoS One 8, e80713 (2013)

    Article  Google Scholar 

  30. Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58, 565–586 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  31. Yushkevich, P.A., Zhang, H., Simon, T.J., et al.: Structure-specific statistical mapping of white matter tracts. NeuroImage 41, 448–461 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This research is partially supported by the Israel Science Foundation (T.R.R. 1638/16) and the IDF Medical Corps (T.R.R.).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Benou, I., Veksler, R., Friedman, A., Raviv, T.R. (2018). Fiber-Flux Diffusion Density for White Matter Tracts Analysis: Application to Mild Anomalies Localization in Contact Sports Players. In: Kaden, E., Grussu, F., Ning, L., Tax, C., Veraart, J. (eds) Computational Diffusion MRI. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-73839-0_15

Download citation

Publish with us

Policies and ethics