Skip to main content

Recovering Missing Connections in Diffusion Weighted MRI Using Matrix Completion

  • Conference paper
  • First Online:
Book cover Computational Diffusion MRI

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

  • 768 Accesses

Abstract

Diffusion weighted magnetic resonance imaging (dwMRI) has become the dominant neuroimaging modality for estimating anatomical connectivity (AC). However, such AC estimation is prone to error due to missing connections resulting from crossing fibers and fiber endpoint uncertainty because of insufficient spatial resolution. Endeavors tackling this problem include improving fiber orientation estimation , applying heuristics to extrapolate fiber endpoints, and increasing spatial resolution. Refining fiber orientation estimation and tractography algorithms can only improve AC estimation to a certain extent, since the attainable improvement is constrained by the current limit on spatial resolution. We thus instead propose using matrix completion (MC) to recover missing connections. The underlying assumption is that the missing connections are intrinsically related to the observed entries of the AC matrix. A critical parameter that governs MC performance is the matrix rank. For this, we present a robust strategy that bypasses selection of a specific rank. Further, standard MC algorithms do not constrain the recovered entries to be non-negative, but this condition is necessary for fiber counts. We thus devise a method to interpolate negative entries based on neighborhood information. On synthetic data, our approach is able to accurately recover deleted AC matrix entries. On real data, AC estimated with our approach achieves higher IQ prediction accuracy than the original AC estimates, fiber endpoint extrapolation, and median filtering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Assemlal, H.E., Tschumperlé, D., Brun, L., Siddiqi, K.: Recent advances in diffusion MRI modeling: angular and radial reconstruction. Med. Image Anal. 15(4), 369–396 (2011)

    Article  Google Scholar 

  2. Jbabdi, S., Johansen-Berg, H.: Tractography: where do we go from here? Brain Connect. 1(3), 169–183 (2011)

    Article  Google Scholar 

  3. Descoteaux, M., Deriche, R., Knosche, T.R., Anwander, A.: Deterministic and probabilistic tractography based on complex fibre orientation distributions. IEEE Trans. Med. Imaging 28(2), 269–286 (2009)

    Article  Google Scholar 

  4. Neher, P.F., Stieltjes, B., Reisert, M., Reicht, I., Meinzer, H.P., Fritzsche, K.H.: MITK global tractography. In: SPIE Medical Imaging, International Society for Optics and Photonics, 83144D (2012)

    Google Scholar 

  5. Behrens, T.E., Berg, H.J., Jbabdi, S., Rushworth, M., Woolrich, M.: Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34(1), 144–155 (2007)

    Article  Google Scholar 

  6. Ng, B., Varoquaux, G., Poline, J.B., Thirion, B.: Implications of inconsistencies between fMRI and dMRI on multimodal connectivity estimation. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 652–659. Springer, Berlin (2013)

    Google Scholar 

  7. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Consortium, W.M.H., et al.: The wu-minn human connectome project: an overview. NeuroImage 80, 62–79 (2013)

    Article  Google Scholar 

  8. Ning, L., Setsompop, K., Michailovich, O., Makris, N., Shenton, M.E., Westin, C.F., Rathi, Y.: A joint compressed-sensing and super-resolution approach for very high-resolution diffusion imaging. NeuroImage 125, 386–400 (2016)

    Article  Google Scholar 

  9. Candes, E.J., Recht, B.: Exact low-rank matrix completion via convex optimization. In: 46th Annual Allerton Conference on Communication, Control, and Computing, pp. 806–812. IEEE, New York (2008)

    Google Scholar 

  10. Keshavan, R.H., Montanari, A., Oh, S.: Matrix completion from a few entries. IEEE Trans. Inf. Theory 56(6), 2980–2998 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Xu, Y., Yin, W., Wen, Z., Zhang, Y.: An alternating direction algorithm for matrix completion with nonnegative factors. Front. Math. China 7(2), 365–384 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wen, Z., Yin, W., Zhang, Y.: Solving a low-rank factorization model for matrix completion by a nonlinear successive over-relaxation algorithm. Math. Program. Comput. 4(4), 333–361 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Desikan, R.S., Ségonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Buckner, R.L., Dale, A.M., Maguire, R.P., Hyman, B.T., et al.: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3), 968–980 (2006)

    Article  Google Scholar 

  14. Shirer, W., Ryali, S., Rykhlevskaia, E., Menon, V., Greicius, M.: Decoding subject-driven cognitive states with whole-brain connectivity patterns. Cereb. Cortex 22(1), 158–165 (2012)

    Article  Google Scholar 

  15. Li, Y., Liu, Y., Li, J., Qin, W., Li, K., Yu, C., Jiang, T.: Brain anatomical network and intelligence. PLoS Comput. Biol. 5(5), e1000395 (2009)

    Article  Google Scholar 

  16. Balzano, L., Nowak, R., Recht, B.: Online identification and tracking of subspaces from highly incomplete information. In: 48th Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 704–711. IEEE, New York (2010)

    Google Scholar 

  17. Fan, R.E., Chang, K.W., Hsieh, C.J., Wang, X.R., Lin, C.J.: Liblinear: a library for large linear classification. J. Mach. Learn. Res. 9, 1871–1874 (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chendi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, C., Ng, B., Amir-Khalili, A., Abugharbieh, R. (2018). Recovering Missing Connections in Diffusion Weighted MRI Using Matrix Completion. In: Kaden, E., Grussu, F., Ning, L., Tax, C., Veraart, J. (eds) Computational Diffusion MRI. Mathematics and Visualization. Springer, Cham. https://doi.org/10.1007/978-3-319-73839-0_12

Download citation

Publish with us

Policies and ethics