Skip to main content

Management of Acute and Late Endocrine Effects Following Childhood Cancer Treatment

  • Chapter
  • First Online:

Abstract

Advancements in the treatment of pediatric cancer have led to increased survival rates. The majority of adult survivors of pediatric cancers will develop a chronic disease, including endocrine disorders. The type and prevalence of the acute and late endocrine effects of cancer treatment vary widely by cancer type, treatment, and patient characteristics (age, gender, comorbidities). This chapter will describe the endocrine effects of treatment for childhood cancer both during and after treatment by endocrine system. In addition, we will review the current literature on pathophysiology, diagnosis, and treatment of the endocrine effects commonly seen in survivors of pediatric cancers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Keegan THM, Ries LAG, Barr RD, et al. National Cancer Institute Next Steps for Adolescent and Young Adult Oncology Epidemiology Working Group. Comparison of cancer survival trends in the United States of adolescents and young adults with those in children and older adults. Cancer. 2016;122(7):1009–16.

    Article  PubMed  Google Scholar 

  2. Hudson MM, Ness KK, Gurney JG, et al. Clinical ascertainment of health outcomes among adults treated for childhood cancer. JAMA. 2013;309:2371–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chao C, Xu L, Bell E, Cooper R, Mueller L. Long-term health outcomes in survivors of childhood cancer diagnosed between 1990 and 2000 in a large US integrated health care system. J Pediatr Hematol Oncol. 2016;38:123–30.

    Article  PubMed  Google Scholar 

  4. WHB W, CJH K. Endocrinopathy after Childhood Cancer Treatment. Endocr Dev. 2009;15:159–80.

    Article  Google Scholar 

  5. Diller L, Chow EJ, Gurney GJ, et al. Chronic disease in the Childhood Cancer Survivor Study cohort: a review of published findings. J Clin Oncol. 2009;27:2339–55.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chemaitilly W, Hudson M. Updated on endocrine and metabolic therapy-related late effects observed in survivors of childhood neoplasia. Curr Opin Endocrinol. 2014;21(1):71–6.

    Article  CAS  Google Scholar 

  7. Thomasett MJ, Conte FA, Kaplan SI, et al. Endocrine and neurologic outcome in childhood craniopharyngioma: review of effect of treatment in 42 patients. J Pediatr. 1980;97:728–35.

    Article  Google Scholar 

  8. De Vile CJ, Grant DB, Hayward RD, et al. Growth and endocrine sequelae of craniopharyngioma. Arch Dis Child. 1996;75:108–14.

    Article  Google Scholar 

  9. Karavitaki N, Brufani C, Warner JT, et al. Craniopharyngiomas in children and adults: systematic analysis of 121 cases with long-term follow-up. Clin Endocrinol. 2005;62:397–409.

    Article  CAS  Google Scholar 

  10. Dabas A, Batra A, Khadgawat R, Jyotsna V, Bakhshi S. Growth and endocrinal abnormalities in pediatric langerhans cell histiocytosis. Indian J Pediatr. 2016;83(7):657–60. [Ahead of Print].

    Article  PubMed  Google Scholar 

  11. Seckl JR, Dunger DB, Lightman SL. Neurohypophyseal peptide function during early postoperative diabetes insipidus. Brain. 1987;110:737–46.

    Article  PubMed  Google Scholar 

  12. Rivkees S, Dunbar N, Wilson T. The management of central diabetes insipidus in infancy: desmopressin, low renal solute load formula, thiazide diuretics. J Pediatr Endocrinol Metab. 2007;20:459–69.

    Article  CAS  PubMed  Google Scholar 

  13. Palmer B. Hyponatremia in patients with central nervous system disease: SIADH versus CSW. Trends Endocrinol Metab. 2003;14:182–7.

    Article  CAS  PubMed  Google Scholar 

  14. Cerdà-Esteve M, Cuadrado-Godia E, Chillaron JJ, Pont-Sunyer C, Cucurella G, Fernandez M, et al. Cerebral salt wasting syndrome: review. Eur J Intern Med. 2008;19:249–54.

    Article  PubMed  Google Scholar 

  15. Oh JY, Shin JI. Syndrome of inappropriate antidiuretic hormone secretion and cerebral/renal salt wasting syndrome: similarities and differences. Front Pediatr. 2015;2(146):1–5.

    Google Scholar 

  16. Cortina G, Hansford J, Duke T. Brief report: central diabetes insipidus and cisplatin-induced renal salt wasting syndrome: a challenging combination. Pediatr Blood Cancer. 2016;63:925–7.

    Article  PubMed  Google Scholar 

  17. Kurzberg J, Dennis VW, Kinney TE. Cisplatin-induced renal salt wasting. Med Pediatr Oncol. 1984;12:150–4.

    Article  Google Scholar 

  18. Hamdi T, Latta S, Jallad B, Kheir F, Alhosaini MN, Patel A. Cisplatin-induced renal salt wasting syndrome. South Med J. 2010;103:793–9.

    Article  PubMed  Google Scholar 

  19. Cheng YC, Lin YC, Chen JS, Chen CH, Deng ST. Cisplatin-induced hyponatremia leading to a seizure and coma. A case report. Chang Gung Med J. 2011;34(6 Suppl):48–51.

    PubMed  Google Scholar 

  20. Jeon YJ, Lee HY, Jung IA, Cho WK, Cho B, Suh BK. Cerebral salt-wasting syndrome after hematopoietic stem cell transplantation in adolescents: 3 case reports. Ann Pediatr Endocrinol Metab. 2015;20:220–5.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gonzalez Briceno L, Grill J, Bourdeaut F, et al. Water and electrolyte disorders at long-term post-treatment follow-up in paediatric patients with suprasellar tumours include unexpected persistent cerebral salt-wasting syndrome. Horm Res Paediatr. 2014;82:364–71.

    Article  CAS  PubMed  Google Scholar 

  22. Andrassy R, Chwals W. Nutritional support of the pediatric oncology patient. Nutrition. 1998;14:124–9.

    Article  CAS  PubMed  Google Scholar 

  23. Rickard KA, Grosfeld JL, Kirksey A, et al. Reversal of protein-energy malnutrition in children during treatment of advanced neoplastic disease. Ann Surg. 1979;190:771–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhang F, Liu S, Chung M, Kelly M. Growth patterns during and after treatment in patients with pediatric ALL: a meta-analysis. Pediatr Blood Cancer. 2015;62:1452–60.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhang F, Rodday A, Kelly M, et al. Predictors of being overweight or obese in survivors of pediatric acute lymphoblastic leukemia, (ALL). Pediatr Blood Cancer. 2014;61:1263–9.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Fuemmeler B, Oendzich M, Clark K, et al. Diet, physical activity, and body composition changes during the first year of treatment for childhood acute leukemia and lymphoma. J Pediatr Hematol Oncol. 2013;35(6):437–43.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lindemulder S, Stork L, Bostrom B, et al. Survivors of standard risk acute lymphoblastic leukemia do not have increased risk of overweight and obesity compared to non-cancer peers: a report from the Children’s Oncology Group. Pediatr Blood Cancer. 2015;62:1035–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Braam KI, van der Torre P, Takken T, Veening MA, van Dulmen-den Broeder E, Kaspers GJL. Physical exercise training interventions for children and young adults during and after treatment for childhood cancer. Cochrane Database Syst Rev. 2016;(3):4–6.

    Google Scholar 

  29. Willi SM, Kennedy A, Wallace P, et al. Troglitazone antagonizes metabolic effects of glucocorticoids in humans: effects on glucose tolerance, insulin sensitivity, suppression of free fatty acids, and leptin. Diabetes. 2002;51:2895–902.

    Article  CAS  PubMed  Google Scholar 

  30. Pagano G, Cavallo-Perin P, Cassader M, et al. An in vivo and in vitro study of the mechanisms of prednisone-induced insulin resistance in healthy subjects. J Clin Invest. 1983;72:1814–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lambillotte C, Gilon P, Henquin JC. Direct glucocorticoid inhibition of insulin secretion. An in vitro study of dexamethasone effects in mouse islets. J Clin Invest. 1997;99:414–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ranta F, Avram D, Berchtold S, et al. Dexamethasone induces cell death in insulin secreting cells, an effect reversed by exendin-4. Diabetes. 2006;55:1380–90.

    Article  CAS  PubMed  Google Scholar 

  33. Hoffmeister PA, Storer BE, Sanders JE. Diabetes mellitus in long-term survivors of pediatrics hematopoietic cell transplantation. J Pediatr Hematol Oncol. 2004;26:81–90.

    Article  PubMed  Google Scholar 

  34. Esbenshade A, Simmons J, Koyama T, Lindell R, Friedman D. Obesity and insulin resistance in pediatric acute lymphoblastic leukemia worsens during maintenance therapy. Pediatr Blood Cancer. 2013;60:1287–91.

    Article  CAS  PubMed  Google Scholar 

  35. Kojima C, Kubota M, Nagai A, Adachi S, Watananbe K, Nakahata T. Adipocytokines in childhood cancer survivors and correlation with metabolic syndrome components. Pediatr Int. 2013;55:438–42.

    Article  CAS  PubMed  Google Scholar 

  36. Yeshayahu Y, Koltin D, Hamilton J, Nathan PC, Urbach S. Medication-induced diabetes during induction treatment for ALL, an early marker for future metabolic risk? Pediatr Diabetes. 2015;16:104–8.

    Article  CAS  PubMed  Google Scholar 

  37. Kasayama S, Tanaka T, Hashimoto K, et al. Efficacy of glimepiride for the treatment of diabetes occurring during glucocorticoid therapy. Diabetes Care. 2002;25:2359–60.

    Article  PubMed  Google Scholar 

  38. Voytovich MH, Haukereid C, Hjelmesaeth J, et al. Nateglinide improves postprandial hyperglycemia and insulin secretion in renal transplant recipients. Clin Transpl. 2007;21:246–51.

    Article  Google Scholar 

  39. Hanefeld M, Fischer S, Schulze J, et al. Therapeutic potentials of acarbose as first-line drug in NIDDM insufficiently treated with diet alone. Diabetes Care. 1991;14:732–7.

    Article  CAS  PubMed  Google Scholar 

  40. Baldwin D, Duffin KE. Rosiglitazone treatment of diabetes mellitus after solid organ transplantation. Transplantation. 2004;77:1009–14.

    Article  CAS  PubMed  Google Scholar 

  41. Willi SM, Kennedy A, Brant BP, et al. Effective use of thiazolidinediones for the treatment of glucocorticoid-induced diabetes. Diabetes Res Clin Pract. 2002;58:87–96.

    Article  CAS  PubMed  Google Scholar 

  42. Davies M, Lavalle-Gonzalez F, Storms F, et al. Initiation of insulin glargine therapy in type 2 diabetes subjects suboptimally controlled on oral antidiabetic agents: results from the AT.LANTUS trial. Diabetes Obes Metab. 2008;10:387–99.

    Article  CAS  PubMed  Google Scholar 

  43. Clore J. Glucocorticoid-induced hyperglycemia. Endocr Pract. 2009;15:469–74.

    Article  PubMed  Google Scholar 

  44. Streck WF, Lockwood DH. Pituitary adrenal recovery following short-term suppression with corticosteroids. Am J Med. 1979;66:910–4.

    Article  CAS  PubMed  Google Scholar 

  45. Joshi M, Whitelaw B, Palaomar M, Wu Y, Carroll P. Immune checkpoint inhibitor related hypophysitis and endocrine dysfunction: clinical review. Clin Endocrinol. 2016;85(3):331–9. [Ahead of print].

    Article  CAS  Google Scholar 

  46. Corsello M, Barnabei AM, Marchetti P, De Vecchis L, Salvatori R, Torino F. Endocrine side effects induced by immune checkpoint inhibitors. J Clin Endocrinol Metab. 2013;98:1361–75.

    Article  CAS  PubMed  Google Scholar 

  47. Bouley R, Hasler U, Lu H, et al. Bypassing vasopressin receptor signaling pathways in nephrogenic diabetes insipidus. Semin Nephrol. 2008;28:266–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jakobsson B, Berg U. Effect of hydrochlorothiazide and indomethacin treatment on renal function in nephrogenic diabetes insipidus. Acta Paediatr. 1994;83:522–5.

    Article  CAS  PubMed  Google Scholar 

  49. Alon U, Chan JC. Hydrochlorothiazide-amiloride in the treatment of congenital nephrogenic diabetes insipidus. Am J Nephrol. 1985;5:9–13.

    Article  CAS  PubMed  Google Scholar 

  50. Majzoub JA, Srivatsa A. Diabetes insipidus: clinical and basic aspects. Pediatr Endocrinol Rev. 2006;4(Suppl 1):60–5.

    PubMed  Google Scholar 

  51. Ness KK, Krull KR, Hones KE, et al. Physiologic frailty as a sign of accelerated aging among adult survivors of childhood cancer. A report from the St. Jude Lifetime cohort study. J Clin Oncol. 2013;31:4496–503.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Shalet SM, Gibson B, Swindell R, et al. Effect of spinal irradiation on growth. Arch Dis Child. 1987;62:461–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Mulder RL, Kremer LC, van Santen HM, et al. Prevalence and risk factors of radiation-induced growth hormone deficiency in childhood cancer survivors: a systematic review. Cancer Treat Rev. 2009;35:616–32.

    Article  CAS  PubMed  Google Scholar 

  54. Brauner R, Fontoura M, Zucker JM, et al. Growth and growth hormone secretion after bone marrow transplantation. Arch Dis Child. 1993;68:458–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Thomas BC, Stanhope R, Leiper AD. Gonadotropin releasing hormone analogue and growth hormone therapy in precocious and premature puberty following cranial irradiation for acute lymphoblastic leukemia. Horm Res. 1993;39:25–9.

    Article  CAS  PubMed  Google Scholar 

  56. Gleeson HK, Stoeter R, Ogilvy-Stuart AL, et al. Improvements in final height over 25 years in growth hormone (GH)-deficient childhood survivors of brain tumors receiving GH replacement. J Clin Endocrinol Metab. 2003;88:3682–9.

    Article  CAS  PubMed  Google Scholar 

  57. Gurney JG, Ness KK, Stovall M, et al. Final height and body mass index among adult survivors of childhood brain cancer: childhood cancer survivor study. J Clin Endocrinol Metab. 2003;88:4731–9.

    Article  CAS  PubMed  Google Scholar 

  58. Bruzzi P, Predieri B, Corrias A, et al. Final height and body mass index in adult survivors of childhood acute lymphoblastic leukemia treated without cranial radiotherapy: a retrospective longitudinal multicenter Italian study. BMC Pediatr. 2014;14:236.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Knijnenburg S, Raemaekers S, van den Berg H, et al. Final height in survivors of childhood cancer compared with height standard deviation scores at diagnosis. Ann Oncol. 2013;24:119–1126.

    Article  Google Scholar 

  60. Vandecruys E, Chooge C, Craen M, Benoit Y, De Schepper J. Longitudinal linear growth and final adult height is impaired in childhood acute lymphoblastic leukemia survivors after treatment without cranial irradiation. J Pediatr. 2013;163:268–73.

    Article  PubMed  Google Scholar 

  61. Chow E, Liu W, Srivastava K. Differential effects of radiotherapy on growth and endocrine function among acute leukemia survivors: a childhood cancer survivor study report. Pediatr Blood Cancer. 2013;60:1101–15.

    Google Scholar 

  62. Sklar CA, Constine LS. Chronic neuroendocrinological sequelae of radiation therapy. Int J Radiat Oncol Biol Phys. 1995;31:1113–21.

    Article  CAS  PubMed  Google Scholar 

  63. Laughton SJ, Merchant TE, Sklar CA, et al. Endocrine outcomes for children with embryonal brain tumors after risk adapted craniospinal and conformal primary-site irradiation and high-dose chemotherapy with stem cell rescue on the SJMB-96 trial. J Clin Oncol. 2008;26:1112–8.

    Article  CAS  PubMed  Google Scholar 

  64. Chemaitilly W, Li Z, Hunag S, et al. Anterior hypopituitarism in adult survivors of childhood cancers treated with cranial radiotherapy: a report from the St. Jude Lifetime Cohort. J Clin Oncol. 2015;33:492–500.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Costin G. Effects of low-dose cranial radiation on growth hormone secretory dynamics and hypothalamic-pituitary function. Am J Dis Child. 1988;142:847–52.

    CAS  PubMed  Google Scholar 

  66. Ogilvy-Stuart AL, Clayton PE, Shalet SM. Cranial irradiation and early puberty. J Clin Endocrinol Metab. 1994;78:1282–6.

    CAS  PubMed  Google Scholar 

  67. Brauner R, Czernichow P, Rappaport R. Greater susceptibility to hypothalamopituitary irradiation in younger children with acute lymphoblastic leukemia. J Pediatr. 1986;108:332–6.

    Article  CAS  PubMed  Google Scholar 

  68. Ogilvy-Stuart AL, Clark DJ, Wallace WH, et al. Endocrine deficit after fractionated total body irradiation. Arch Dis Child. 1992;67:1107–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Shalet SM, Beardwell CG, Jones PH, et al. Growth hormone deficiency after treatment of acute leukaemia in children. Arch Dis Child. 1976;51:489–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kirk JA, Raghupathy P, Stevens MM, et al. Growth failure and growth-hormone deficiency after treatment for acute lymphoblastic leukaemia. Lancet. 1987;1:190–19.

    Article  CAS  PubMed  Google Scholar 

  71. Darzy KH, Pezzoli SS, Thorner MO, Shalet SM. The dynamics of growth hormone (GH) secretion in adult cancer survivors with severe GH deficiency acquired after brain irradiation in childhood for nonpituitary brain tumors: evidence for preserved pulsatility and diurnal variation with increased secretory disorderliness. J Clin Endocrinol Metab. 2005;90:2794–803.

    Article  CAS  PubMed  Google Scholar 

  72. Ogilvy-Stuart AL, Wallace WH, Shalet SM. Radiation and neuroregulatory control of growth hormone secretion. Clin Endocrinol. 1994;41:163–8.

    Article  CAS  Google Scholar 

  73. Jorgensen EV, Schwartz ID, Hvizdala E, et al. Neurotransmitter control of growth hormone secretion in children after cranial radiation therapy. J Pediatr Endocrinol. 1993;6:131–42.

    CAS  PubMed  Google Scholar 

  74. Darzy K, Shalet SM. Hypopituitarism as a consequence of brain tumours and radiotherapy. Pituitary. 2005;8:203–11.

    Article  PubMed  Google Scholar 

  75. Darzy KH, Shalet SM. Hypopituitarism following radiotherapy revisited. Endocr Dev. 2009;15:1–24.

    Article  PubMed  Google Scholar 

  76. Darzy KH. Radiation-induced hypopituitarism after cancer therapy: who, how and when to test. Nat Clin Pract Endocrinol Metab. 2009;5:88–99.

    Article  CAS  PubMed  Google Scholar 

  77. Chrousos GP, Poplack D, Brown T, et al. Effects of cranial radiation on hypothalamic-adenohypophyseal function: abnormal growth hormone secretory dynamics. J Clin Endocrinol Metab. 1982;54:1135–9.

    Article  CAS  PubMed  Google Scholar 

  78. Spoudeas HA, Hindmarsh PC, Matthews DR, et al. Evolution of growth hormone neurosecretory disturbance after cranial irradiation for childhood brain tumours: a prospective study. J Endocrinol. 1996;150:329–42.

    Article  CAS  PubMed  Google Scholar 

  79. Blatt J, Bercu BB, Gillin JC, et al. Reduced pulsatile growth hormone secretion in children after therapy for acute lymphoblastic leukemia. J Pediatr. 1984;104:182–6.

    Article  CAS  PubMed  Google Scholar 

  80. Darzy KH, Pezzoli SS, Thorner MO, et al. Cranial irradiation and growth hormone neurosecretory dysfunction: a critical appraisal. J Clin Endocrinol Metab. 2007;92:1666–72.

    Article  CAS  PubMed  Google Scholar 

  81. Bercu BB, Root AW, Shulman DI. Preservation of dopaminergic and alpha-adrenergic function in children with growth hormone neurosecretory dysfunction. J Clin Endocrinol Metab. 1986;63:968–73.

    Article  CAS  PubMed  Google Scholar 

  82. Bercu BB, Shulman D, Root AW, et al. Growth hormone (GH) provocative testing frequently does not reflect endogenous GH secretion. J Clin Endocrinol Metab. 1986;63:709–16.

    Article  CAS  PubMed  Google Scholar 

  83. Crowne EC, Moore C, Wallace WH, et al. A novel variant of growth hormone (GH) insufficiency following low dose cranial irradiation. Clin Endocrinol. 1992;36:59–68.

    Article  CAS  Google Scholar 

  84. Moell C, Garwicz S, Westgren U, et al. Suppressed spontaneous secretion of growth hormone in girls after treatment for acute lymphoblastic leukaemia. Arch Dis Child. 1989;64:252–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Tillmann V, Shalet SM, Price DA, et al. Serum insulin-like growth factor-I, IGF binding protein-3 and IGFBP-3 protease activity after cranial irradiation. Horm Res. 1998;50:71–7.

    CAS  PubMed  Google Scholar 

  86. Mostoufi-Moab S, Grimberg A. Pediatric brain tumor treatment: growth consequences and their management. Pediatr Endocrinol Rev. 2010;8:6–17.

    PubMed  PubMed Central  Google Scholar 

  87. Growth Hormone Research Society. Consensus guidelines for the diagnosis and treatment of growth hormone (GH) deficiency in childhood and adolescence: summary statement of the GH Research Society. J Clin Endocrinol Metab. 2000;85:3990–3.

    Google Scholar 

  88. Wilson T, Rose S, Cohen P, et al. Update of guidelines for the use of growth hormone in children: the Lawson Wilkins Pediatric Endocrinology Society Drug and Therapeutics Committee. J Pediatr. 2003;143:415–21.

    Article  PubMed  Google Scholar 

  89. Adan L, Sainte-Rose C, Souberbielle JC, et al. Adult height after growth hormone (GH) treatment for GH deficiency due to cranial irradiation. Med Pediatr Oncol. 2000;34:14–9.

    Article  CAS  PubMed  Google Scholar 

  90. Ogilvy-Stuart AL, Shalet S. Growth and puberty after growth hormone treatment after irradiation for brain tumours. Arch Dis Child. 1995;73:141–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xu W, Janss AJ, Moshang T Jr. Adult height and sitting height in children surviving medulloblastoma. J Clin Endocrinol Metab. 2003;88:4677–81.

    Article  CAS  PubMed  Google Scholar 

  92. Clayton PE, Shalet SM. The evolution of spine growth after irradiation. Clin Oncol. 1991;3:220–2.

    Article  CAS  Google Scholar 

  93. Wang ED, Drummond DS, Dormans JP, et al. Scoliosis in patients treated with growth hormone. J Pediatr Orthop. 1997;17:708–11.

    CAS  PubMed  Google Scholar 

  94. Raman S, Grimberg A, Waguespack S, Miller B, Sklar C, Meacham L, Patterson B. Risk of neoplasia in pediatric patients receiving growth hormone therapy-a report from the Pediatric Endocrine Society Drug and Therapeutics Committee. J Clin Endocrinol Metab. 2015;100(6):2192–203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Sklar CA, Mertens AC, Mitby P, Occhiogrosso G, Qin J, Heller G, Yasui Y, Robison LL. Risk of disease recurrence and second neoplasms in survivors of childhood cancer treated with growth hormone: a report from the Childhood Cancer Survivor Study. J Clin Endocrinol Metab. 2002;87:3136–41.

    Article  CAS  PubMed  Google Scholar 

  96. Leung W, Rose SR, Zhou Y, Hancock ML, Burstein S, Schriock EA, Lustig R, Danish RK, Evans WE, Hudson MM, Pui CH. Outcomes of growth hormone replacement therapy in survivors of childhood acute lymphoblastic leukemia. J Clin Oncol. 2002;20:2959–64.

    Article  CAS  PubMed  Google Scholar 

  97. Swerdlow AJ, Reddingius RE, Higgins CD, et al. Growth hormone treatment of children with brain tumors and risk of tumor recurrence. J Clin Endocrinol Metab. 2000;85:4444–9.

    CAS  PubMed  Google Scholar 

  98. Packer RJ, Boyett JM, Janss AJ, et al. Growth hormone replacement therapy in children with medulloblastoma: use and effect on tumor control. J Clin Oncol. 2001;19:480–7.

    Article  CAS  PubMed  Google Scholar 

  99. Cahe H, Kim D, Kim H. Growth hormone treatment and risk of malignancy. Korean J Pediatr. 2015;58(2):41–6.

    Article  Google Scholar 

  100. Wang Z, Chen H-L. Growth hormone treatment and risk of recurrence or development of secondary neoplasms in survivors of pediatric brain tumors. J Clin Neurosci. 2014;21:2155–9.

    Article  CAS  PubMed  Google Scholar 

  101. Ergun-Longmire B, Mertens A, Mitby P, et al. Growth hormone treatment and risk of second neoplasms in the childhood cancer survivor. J Clin Endocrinol Metab. 2006;91:3494–8.

    Article  CAS  PubMed  Google Scholar 

  102. Patterson BC, Chen Y, Sklar CA, Neglia J, Yasui Y, Mertens A, Armstrong GT, Meadows A, Stovall M, Robison LL, Meacham LR. Growth hormone exposure as a risk factor for the development of subsequent neoplasms of the central nervous system: a report from the Childhood Cancer Survivor Study. J Clin Endocrinol Metab. 2014;99(6):2030–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bell J, Parker K, Swinford R, et al. Long-term safety of recombinant human growth hormone in children. J Clin Endorcinol Metab. 2009;95:167–77.

    Article  CAS  Google Scholar 

  104. Holm K, Nysom K, Rasmussen MH, et al. Growth, growth hormone and final height after BMT. Possible recovery of irradiation-induced growth hormone insufficiency. Bone Marrow Transplant. 1996;18:163–70.

    CAS  PubMed  Google Scholar 

  105. Couto-Silva AC, Trivin C, Esperou H, et al. Changes in height, weight and plasma leptin after bone marrow transplantation. Bone Marrow Transplant. 2000;26:1205–10.

    Article  CAS  PubMed  Google Scholar 

  106. Gleeson HK, Gattamaneni HR, Smethurst L, et al. Reassessment of growth hormone status is required at final height in children treated with growth hormone replacement after radiation therapy. J Clin Endocrinol Metab. 2004;89:662–6.

    Article  CAS  PubMed  Google Scholar 

  107. Link K, Moell C, Garwicz S, et al. Growth hormone deficiency predicts cardiovascular risk in young adults treated for acute lymphoblastic leukemia in childhood. J Clin Endocrinol Metab. 2004;89:5003–12.

    Article  CAS  PubMed  Google Scholar 

  108. Murray RD, Darzy KH, Gleeson HK, et al. GH deficient survivors of childhood cancer: GH replacement during adult life. J Clin Endocrinol Metab. 2002;87:129–35.

    Article  CAS  PubMed  Google Scholar 

  109. Mukherjee A, Tolhurst-Cleaver S, Ryder WD, et al. The characteristics of quality of life impairment in adult growth hormone (GH)-deficient survivors of cancer and their response to GH replacement therapy. J Clin Endocrinol Metab. 2005;90:1542–9.

    Article  CAS  PubMed  Google Scholar 

  110. Follin C, Thile’n U, Ahre’n B, et al. Improvement in cardiac systolic function and reduced prevalence of metabolic syndrome after two years of growth hormone (GH) treatment in GH-deficient adult survivors of childhood-onset acute lymphoblastic leukemia. J Clin Endocrinol Metab. 2006;91:1872–5.

    Article  CAS  PubMed  Google Scholar 

  111. Petryk A, Baker S, Frohnert B, et al. Blunted response to growth hormone stimulation test is associated with unfavorable cardiovascular risk factor profile in childhood cancer survivors. Pediatr Blood Cancer. 2013;60:467–73.

    Article  PubMed  Google Scholar 

  112. Cook D, Yuen K, Biller B, et al. American Association of Clinical Endocrinologists medical guidelines for clinical practice for growth hormone use in growth hormone-deficient adults and transition patients – 2009 update. Endocr Pract. 2009;15(Suppl 2):1–29.

    Article  PubMed  Google Scholar 

  113. Mostoufi-Moab S, Isaacoff E, Spiegel D, et al. Childhood cancer survivors exposed to total body irradiation are at significant risk for slipped capital femoral epiphysis during recombinant growth hormone therapy. Pediatr Blood Cancer. 2013;60:1766–71.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Marcus KJ, Haas-Kogan D. Pediatric radiation oncology. In: Orkin SH, Fisher DE, Look AT, Lux SE, Ginsburg D, Nathan DG, editors. Oncology of infancy and childhood. Philadelphia: Saunders Elsevier; 2009. p. 241–56.

    Chapter  Google Scholar 

  115. Jereczek-Fossa BA, Alterio D, Jassem J, Gibelli B, Tradati N, Orecchia R. Radiotherapy-induced thyroid disorders. Cancer Treat Rev. 2004;30:369–84.

    Article  CAS  PubMed  Google Scholar 

  116. Hancock SL, McDougall IR, Constine LS. Thyroid abnormalities after therapeutic external radiation. Int J Radiat Oncol Biol Phys. 1995;31:1165–70.

    Article  CAS  PubMed  Google Scholar 

  117. Caglar A, Oguz A, Pinarli FG, et al. Thyroid abnormalities in survivors of childhood cancer. J Clin Res Pediatr Endocinol. 2014;6(3):144–51.

    Article  Google Scholar 

  118. Oudin C, Auguier P, Betrand Y, et al. Late thyroid complications in childhood acute leukemia survivors: an LEA study. Haematological. 2016;101(6):747–56.

    Article  CAS  Google Scholar 

  119. Chin HB, Jacobson MH, Interrnte JD, Mertens AC, Spender JB, Howards PP. Hypothyroidism after cancer and the ability to meet reproductive goals among a cohort of young adult female cancer survivors. Fertil Steril. 2016;105:202–7.

    Article  PubMed  Google Scholar 

  120. Rose SR, Lustig RH, Pitukcheewanot P, et al. Diagnosis of hidden central hypothyroidism in survivors of childhood cancer. J Clin Endocrinol Metab. 1999;84:4472–9.

    CAS  PubMed  Google Scholar 

  121. Kaplan MM, Garnick MB, Gelber R, et al. Risk factors for thyroid abnormalities after neck irradiation for childhood cancer. Am J Med. 1983;74:272–80.

    Article  CAS  PubMed  Google Scholar 

  122. Eaton B, Esiashvili N, Patterson B. Endocrine outcomes with proton and photon radiotherapy for standard risk medulloblastoma. Neuro-Oncology. 2015;0:1–7.

    CAS  Google Scholar 

  123. Schmiegelow M, Feldt-Rasmussen U, Rasmussen HK, et al. A population based study of thyroid function after radiotherapy and chemotherapy for childhood brain tumor. J Clin Endocrinol Metab. 2003;88:136–40.

    Article  CAS  PubMed  Google Scholar 

  124. Picco P, Garaventa A, Claudiani F, et al. Primary hypothyroidism as a consequence of 131-I-metaiodobenzylguanidine treatment for children with neuroblastoma. Cancer. 1995;76:1662–4.

    Article  CAS  PubMed  Google Scholar 

  125. Clement SC, van Eck-Smit BL, van Trotsenburg AS, Kremer LC, Tytgat GA, van Santen HM. Long-term follow-up of the thyroid gland after treatment with 131 I-Metaiodobenzylguanidine in children with neuroblastoma: importance of continuous surveillance. Pediatr Blood Cancer. 2013;60:1833–8.

    Article  CAS  PubMed  Google Scholar 

  126. Laverdiere C, Cheung NK, Kushner BH, et al. Long-term complications in survivors of advanced stage neuroblastoma. Pediatr Blood Cancer. 2005;45:324–32.

    Article  PubMed  Google Scholar 

  127. Chemaitilly W, Sklar CA. Endocrine complications in long-term survivors of childhood cancers. Endocr Relat Cancer. 2010;17:R141–59.

    Article  CAS  PubMed  Google Scholar 

  128. Reulen RC, Frobisher C, Winter D, et al. Long-term risks of subsequent primary neoplasms among survivors of childhood cancer. JAMA. 2011;305:2311–91.

    Article  CAS  PubMed  Google Scholar 

  129. De Vathaire F, Haddy N, Allodji RS, et al. Thyroid radiation dose and other risk factors of thyroid carcinoma following childhood cancer. J Clin Endocrinol Metab. 2015;100(11):4282–90.

    Article  PubMed  CAS  Google Scholar 

  130. Inskip PD, Sigurdson AJ, Veiga L, et al. Radiation-related new primary solid cancers in the Childhood Cancer Survivor Study: comparative radiation dose response and modification of treatment effects. Radiat Oncol. 2015;94(4):800–7.

    Google Scholar 

  131. Acharya S, Sarafoglou K, LaQuaglia M, et al. Thyroid neoplasms after therapeutic radiation for malignancies during childhood or adolescence. Cancer. 2003;97:2397–403.

    Article  PubMed  Google Scholar 

  132. Bounacer A, Wicker R, Schlumberger M, et al. Oncogenic rearrangements of the ret proto-oncogene in thyroid tumors induced after exposure to ionizing radiation. Biochimie. 1997;79:619–23.

    Article  CAS  PubMed  Google Scholar 

  133. Elisei R, Romei C, Vorontsova T, et al. RET/PTC rearrangements in thyroid nodules: studies in irradiated and not irradiated, malignant and benign thyroid lesions in children and adults. J Clin Endocrinol Metab. 2001;86:3211–6.

    CAS  PubMed  Google Scholar 

  134. The Children’s Oncology Group. Long-term follow-up guidelines for survivors of childhood, adolescent, and young adult cancers. 2013. Available at: http://www.survivorshipguidelines.org. Accessed June 2016.

  135. Brignardello E, Corrias A, Isolato G, et al. Ultrasound screening for thyroid carcinoma in childhood cancer survivors: a case series. J Clin Endocrinol Metab. 2008;93:4840–3.

    Article  CAS  PubMed  Google Scholar 

  136. Argwal C, Guthrie L, Sturm M, et al. Childhood cancer survivors and with and without thyroid radiation exposure. J Pediatr Hematol Oncol. 2016;38:43–8.

    Article  Google Scholar 

  137. Li Z, Franklin J, Zelcer S, Sexton T, Husein M. Ultrasound surveillance for thyroid malignancies in survivors of childhood cancer following radiotherapy: a single institutional experience. Thyroid. 2014;12:1796–805.

    Article  Google Scholar 

  138. Oberfield S, Soranno D, Nirenberg A, et al. Age at onset of puberty following high-dose central nervous system radiation therapy. Arch Pediatr Adolesc Med. 1996;150:589–92.

    Article  CAS  PubMed  Google Scholar 

  139. Roth C, Schmidberger H, Schaper O, et al. Cranial irradiation of female rats causes dose-dependent and age-dependent activation or inhibition of pubertal development. Pediatr Res. 2000;47:586–91.

    Article  CAS  PubMed  Google Scholar 

  140. Roth C, Schmidberger H, Lakomek M, et al. Reduction of gamma-aminobutyric acid-ergic neurotransmission as a putative mechanism of radiation induced activation of the gonadotropin releasing-hormone-pulse generator leading to precocious puberty in female rats. Neurosci Lett. 2001;297:45–8.

    Article  CAS  PubMed  Google Scholar 

  141. Lannering B, Jansson C, Rosberg S, et al. Increased LH and FSH secretion after cranial irradiation in boys. Med Pediatr Oncol. 1997;29:280–7.

    Article  CAS  PubMed  Google Scholar 

  142. Greulich WW, Pyle SI. Radiographic atlas of skeletal development of the hand and wrist. 2nd ed. Stanford: Stanford University Press; 1959.

    Google Scholar 

  143. Partsch CJ, Sippell WG. Treatment of central precocious puberty. Best Pract Res Clin Endocrinol Metab. 2002;16:165–89.

    Article  CAS  PubMed  Google Scholar 

  144. Eugster EA, Clarke W, Kletter GB, et al. Efficacy and safety of histrelin subdermal implant in children with central precocious puberty: a multicenter trial. J Clin Endocrinol Metab. 2007;92:1697–704.

    Article  CAS  PubMed  Google Scholar 

  145. Carel JC, Eugster EA, Rogol A, Ghizzoni L, Palmert MR, On behalf of the ESPE-LWPES GnRH Analogs Consensus Conference Group. Consensus statement on the use of gonadotropin-releasing hormone analogs in children. Pediatrics. 2009;123:e752–62.

    Article  PubMed  Google Scholar 

  146. Diaz-Thomas A, Shulman D. Use of aromatase inhibitors in children and adolescents: what's new? Curr Opin Pediatr. 2010;22:501–7.

    Article  PubMed  Google Scholar 

  147. Shalitin S, Gal M, Goshen Y, et al. Endocrine outcome in long-term survivors of childhood brain tumors. Horm Res Paediatr. 2011;76(2):113–22.

    Article  CAS  PubMed  Google Scholar 

  148. Constantine LS, Wolf PD, CAnn D, et al. Hypothalamic-pituitary dysfunction after radiation for brain tumors. N Engl J Med. 1993;328:87–94.

    Article  Google Scholar 

  149. Armstrong GT, Whitton JA, Gajjar A, et al. Abnormal timing of menarche in survivors of central nervous system tumors: a report from the Childhood Cancer Survivor Study. Cancer. 2009;115:2562–70.

    Article  PubMed  Google Scholar 

  150. Byrne J. Infertility and premature menopause in childhood cancer survivors. Med Pediatr Oncol. 1999;33:24–8.

    Article  CAS  PubMed  Google Scholar 

  151. Sklar CA. Maintenance of ovarian function and risk of premature menopause related to cancer treatment. J Natl Cancer Inst Monogr. 2005;34:25–7.

    Article  Google Scholar 

  152. Dewire M, Green D, Sklar C, et al. Pubertal development and primary ovarian insufficiency in female survivors of embryonal brain tumors following risk-adapted craniospinal irradiation and adjuvant chemotherapy. Pediatr BloodCancer. 2015;62:329–34.

    CAS  Google Scholar 

  153. Thomas-Teinturier C, El Fayech C, Oberlin O, et al. Age at menopause and its influencing factors in a cohort of survivors of childhood cancer: earlier, but rarely premature. Hum Reprod. 2013;28(2):488–95.

    Article  PubMed  Google Scholar 

  154. Balachander S, Dunkel I, Khakoo Y, Woldem S, Allen J, Skylar C. Ovarian function in survivors of childhood medulloblastoma: impact of reduced dose craniospinal irradiation and high-dose chemotherapy with autologous stem cell rescue. Pediatr Blood Cancer. 2015;62:317–21.

    Article  Google Scholar 

  155. Pfitzer C, Chen C, Wessel T, et al. Dynamics of fertility impairment in childhood brain tumor survivors. J Cancer Res Clin Oncol. 2014;140:1769–7.

    Article  CAS  Google Scholar 

  156. Raciborska A, Bailska K, Filipp F, et al. Ovarian function in female survivors after multimodal Ewing sarcoma therapy. Pediatr Blood Cancer. 2015;62:341–5.

    Article  PubMed  Google Scholar 

  157. Clement S, Kraal C, van Eck-Smit B, van den Bos C, Kremer L, Tytgat C, van Santen H. Primary ovarian insufficiency in children after treatment with 131 I-metaiodobenzylguanidine for neuroblastoma: report of the first two cases. J Clin Endocrinol Metab. 2014;99(1):E112–6.

    Article  CAS  PubMed  Google Scholar 

  158. Kenney LB, Cohen LE, Shnorhavorian M, et al. Male reproductive health after childhood, adolescent, and young adult cancer: a report from the Children’s Oncology Group. J Clin Oncol. 2012;30(7):3408–016.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Metzger ML, Meacham LR, Patterson B, et al. Female reproductive health after childhood, adolescent, and young adult cancers: guideline for the assessment and management of female reproductive complications. J Clin Oncol. 2013;31(9):1239–47.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Damewood MD, Grochow LB. Prospects for fertility after chemotherapy or radiation for neoplastic disease. Fertil Steril. 1986;45:443–59.

    Article  CAS  PubMed  Google Scholar 

  161. Wallace WH, Thomson AB, Kelsey TW. The radiosensitivity of the human oocyte. Hum Repod. 2003;18:117–21.

    Article  CAS  Google Scholar 

  162. Balis FM, Poplack DG. Cancer chemotherapy. In: Nathan DG, Oski FA, editors. Hematology of infancy and childhood. 4th ed. Philadelphia: Saunders; 1976. p. 1223–9.

    Google Scholar 

  163. Chemaitilly W, Mertens A, Mitby P, et al. Acute ovarian failure in the childhood cancer survivor study. J Clin Endocrinol Metab. 2006;91:1723–8.

    Article  CAS  PubMed  Google Scholar 

  164. Bhasin S, Jameson JL. Disorders of the testes and male reproductive system. In: Larry Jameson J, editor. Harrison’s endocrinology. New York: McGraw Hill; 2006. p. 173–94.

    Google Scholar 

  165. Simon B, Lee S, Partridge AH, et al. Preserving fertility after cancer. CA Cancer J Clin. 2005;55:211–28.

    Article  PubMed  Google Scholar 

  166. Sklar CA. Reproductive physiology and treatment related loss of sex hormone production. Med Pediatr Oncol. 1999;33:2–8.

    Article  CAS  PubMed  Google Scholar 

  167. Lushbaugh CC, Casarett GW. The effect of gonadal irradiation in clinical radiation therapy: a review. Cancer. 1976;37:1111–20.

    Article  CAS  PubMed  Google Scholar 

  168. Thomas-Teinturier C, Allofji R, Svetlova E, et al. Ovarian reserve after treatment with alkylating agents during childhood. Hum Reprod. 2014;30(6):1437–46.

    Article  CAS  Google Scholar 

  169. Akar B, Doger E, Cakiroglu Y, Corapcioglu F, Sarpar N, Caliskan E. The effects of childhood cancer therapy on ovarian reserve and pubertal development. Reproductive biomedicine online. Reproductive Healthcare Ltd; 2014. Received from https://doi.org/10.1016/j.rbmo.2014.10.0101472-6483/c.

  170. Brougham MF, Crofton PM, Johnson EJ, Evans N, Anderson RA, Wallace WH. Anti-Mullerian hormone is a marker of gonadotoxicity in pre- and postpubertal girls treated for cancer: a prospective study. J Clin Endocrinol Metab. 2012;97:2059–67.

    Article  CAS  PubMed  Google Scholar 

  171. Charpentier AM, Chong AL, Gingras-Hill G, et al. Anti-Mullerian hormone screening to assess ovarian reserve among female survivors of childhood cancer. J Cancer Surviv. 2014;8:548–54.

    Article  PubMed  Google Scholar 

  172. Di Paola R, Constantini C, Tecchio C, et al. Anti-Mullerian hormone and antral follicle count reveal a late impairment of ovarian reserve in patients undergoing low gonadotoxic regimens for hematological malignancies. Oncologist. 2013;18:1307–14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Van Dorp W, Blijdorp K, Laven J, Pieters R, Visser J, van der Lely A, Neggers S, van den Heuvel-Eibrink M. Decreased ovarian function is associated with obesity in very long-term female survivors of childhood cancer. Eur J Endocrinol. 2013;168:905–12.

    Article  PubMed  CAS  Google Scholar 

  174. Dunlop C, Anderson R. Uses of anti-Mullerian hormone (AMH) measurements before and after cancer treatment in women. Maturitas. 2015;80:245–50.

    Article  CAS  PubMed  Google Scholar 

  175. Rowley MJ, Leach DR, Warner GA, et al. Effect of graded doses of ionizing radiation on the human testis. Radiat Res. 1974;59:665–78.

    Article  CAS  PubMed  Google Scholar 

  176. Howell SJ, Shalet SM. Effect of cancer therapy on pituitary-testicular axis. Int J Androl. 2002;25:269–76.

    Article  CAS  PubMed  Google Scholar 

  177. Kenney LB, Laufer MR, Grant FD, et al. High risk of infertility and long term gonadal damage in males treated with high dose cyclophosphamide for sarcoma during childhood. Cancer. 2001;91:613–21.

    Article  CAS  PubMed  Google Scholar 

  178. Wallace WH, Thompson AB. Preservation of fertility in children treated for cancer. Arch Dis Child. 2003;88:493–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Reinmuth S, Hohmann C, Rendtorff R, et al. Impact of chemotherapy and radiotherapy in childhood on fertility in adulthood: the FeCT-survey of childhood cancer survivors in Germany. J Cancer Res Clin Oncol. 2013;139:2071–8.

    Article  CAS  PubMed  Google Scholar 

  180. Chow E, Stratton K, Leisenning W, et al. Pregnancy after chemotherapy in male and female survivors of childhood cancer treated between 1970–1999: a report from the Childhood Cancer Survivor Study cohort. Lancet. 2016;17(5):567–76; [Ahead of Print].

    Article  Google Scholar 

  181. Loren A, Mangu P, Beck L, et al. Fertility preservation for patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol. 2013;1(19):2500–11.

    Article  Google Scholar 

  182. Critchley HO. Factors of importance for implantation and problems after treatment for childhood cancer. Med Pediatr Oncol. 1999;33:9–14.

    Article  CAS  PubMed  Google Scholar 

  183. Green DM, Kawashima T, Stovall M, et al. Fertility of female survivors of childhood cancer: a report from the childhood cancer survivor study. J Clin Oncol. 2009;27:2677–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Green DM, Kawashima T, Stovall M, et al. Fertility of male survivors of childhood cancer: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2010;28:332–9.

    Article  PubMed  Google Scholar 

  185. Wasilewski-Masker K, Seidel K, Leisenring W, et al. Male infertility in long-term survivors of pediatric cancer: a report from the childhood cancer survivor study. J Cancer Surviv. 2014;8:437–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Green D, Liu W, Kutt W, et al. Cumulative alkylating agent exposure and semen parameters in adult survivors of childhood cancer: a report from the St. Jude Lifetime cohort study. Lancet Oncol. 2014;15:1215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Gunnes M, Lie R, Bjorge T, Ghaderi S, Ruud E, Syse A, Moster D. Reproduction and marriage among male survivors of cancer in childhood, adolescence, and young adulthood: a national cohort study. Br J Cancer. 2016;114:348–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Shetty G, Meistrich ML. Hormonal approaches to preservation and restoration of male fertility after cancer treatment. J Natl Cancer Inst Monogr. 2005;34:36–9.

    Article  CAS  Google Scholar 

  189. Blumenfeld Z, Everon A. Preserving fertility when choosing chemotherapy regiments-the role of gonadotropin-releasing hormone agonists. Expert Opin Pharmacother. 2015;16(7):1009–20.

    Article  CAS  PubMed  Google Scholar 

  190. De Vos M, Smitz J, Woodruff TK. Fertility preservation in women with cancer. Lancet. 2014;384:1302–10.

    Article  PubMed  PubMed Central  Google Scholar 

  191. Dursun P, Doğan NU, Ayhan A. Oncofertility for gynecologic and nongynecologic cancers: fertility sparing in young women of reproductive age. Crit Rev Oncol Hematol. 2014;92:258–67.

    Article  PubMed  Google Scholar 

  192. Anderson R, Mitchell R, Kelsey T, Spears N, Telfer E, Wallace W. Cancer treatment and gonadal function: experimental and established strategies for fertility preservation in children and young adults. Lancet. 2015;3(7):556–67.

    CAS  Google Scholar 

  193. Struijk R, Mulder C, van der Veen F, van Pelt A, Repping S. Restoring fertility in sterile childhood cancer survivors by autotransplanting spermatogonial stem cells: are we there yet? Hindawi Publishing Corporation BioMed Res Int. 2013;2013:903142.

    Article  Google Scholar 

  194. Rosendahl M, Andersen MT, Ralfkiær E, et al. Evidence of residual disease in cryopreserved ovarian cortex from female patients with leukemia. Fertil Steril. 2010;94:2186–90.

    Article  PubMed  Google Scholar 

  195. Society for Assisted Reproductive Technology; American Society for Reproductive Medicine. Assisted reproductive technology in the United States: 2000 results generated from the American Society for Reproductive Medicine/Society for Assisted Reproductive Technology Registry. Fertil Steril. 2004;81:207–1220.

    Google Scholar 

  196. Garcia A, Herrero M, Holzer H, Tulandi T, Chan P. Assisted reproductive outcomes of male cancer survivors. J Cancer Surviv. 2015;9:208–14.

    Article  PubMed  Google Scholar 

  197. van Dijk EM, van Dulmen-den Broeder E, Kaspers GJ, et al. Psychosexual functioning of childhood cancer survivors. Psycho-Oncology. 2008;17:506–11.

    Article  PubMed  Google Scholar 

  198. Gilleland Marchak J, Elchuri SV, Vangile K, Wasilewshi-Masker K, Mertens AC, Meacham LR. Perceptions of infertility risks among female pediatric cancer survivors following gonadotoxic therapy. J Pediatr Hematol Oncol. 2015;37(5):368–72.

    Article  CAS  PubMed  Google Scholar 

  199. Quinn M, Letourneau J, Rosen M. Contraception after cancer treatment: describing methods, counseling, and unintended pregnancy risk. Contraception. 2014;89:466–71.

    Article  PubMed  Google Scholar 

  200. Mukherjee A, Murray R, Columb B, et al. Acquired prolactin deficiency indicates severe hypopituitarism in patients with disease of the hypothalamic-pituitary axis. Clin Endocrinol. 2003;59:743–8.

    Article  Google Scholar 

  201. Follin C, Link K, Wiebet T, Moellt C, Bjorkt J, Erfurth E. Prolactin insufficiency but normal thyroid hormone levels after cranial radiotherapy in long-term survivors of childhood leukemia. Clin Endocrinol. 2013;79:71–8.

    Article  CAS  Google Scholar 

  202. Mukherjee A, Ryder WD, Jostel A, Shalet SM. Deficiency is independently associated with reduced insulin-like growth factor I status in severely growth hormone-deficient adults. J Clin Endocrinol Metab. 2006;91:2520–5.

    Article  CAS  PubMed  Google Scholar 

  203. Follin C, Wiebe T, Moell C, Erfurthe M. Moderate dose cranial radiotherapy causes central adrenal insufficiency in long-term survivors of childhood leukaemia. Pituitary. 2015;17:7–12.

    Article  Google Scholar 

  204. Clement S, Schoot R, Slater O, et al. Endocrine disorders among long-term survivors of childhood head and neck rhabdomyosarcoma. Eur J Cancer. 2016;54:1–10.

    Article  CAS  PubMed  Google Scholar 

  205. Gordign M, van Litsenburg RR, Gemke RJ, et al. Hypothalamic-pituitary-adrenal axis function in survivors of childhood acute lymphoblastic leukemia and healthy controls. Psychoneuroendocrinology. 2012;37(9):1448–56.

    Article  CAS  Google Scholar 

  206. Anmuth CJ, Ross BW, Alexander MA, et al. Chronic syndrome of inappropriate secretion of antidiuretic hormone in a pediatric patient after traumatic brain injury. Arch Phys Med Rehabil. 1993;74:1219–21.

    CAS  PubMed  Google Scholar 

  207. Forrest JN, Cox M, Hong C, et al. Superiority of demeclocycline over lithium in the treatment of chronic syndrome of inappropriate secretion of antidiuretic hormone. N Engl J Med. 1978;298:173–7.

    Article  PubMed  Google Scholar 

  208. Rianthavorn P, Cain J, Turman MA. Use of conivaptan to allow aggressive hydration to prevent tumor lysis syndrome in a pediatric patient with large-cell lymphoma and SIADH. Pediatr Nephrol. 2008;23:1367–70.

    Article  PubMed  Google Scholar 

  209. Chan JM, Rimm EB, Colditz GA, et al. Obesity, fat distribution, and weight gain as risk factors for clinical diabetes in men. Diabetes Care. 1994;17:961–9.

    Article  CAS  PubMed  Google Scholar 

  210. Colditz GA, Willett WC, Rotnitzky A, et al. Weight gain as a risk factor for clinical diabetes mellitus in women. Ann Intern Med. 1995;122:481–6.

    Article  CAS  PubMed  Google Scholar 

  211. Vasan RS, Larson MG, Leip EP, et al. Assessment of frequency of progression to hypertension in non-hypertensive participants in the Framingham Heart Study: a cohort study. Lancet. 2001;358:1682–6.

    Article  CAS  PubMed  Google Scholar 

  212. Gostynski M, Gutzwiller F, Kuulasmaa K, et al. Analysis of the relationship between total cholesterol, age, body mass index among males and females in the WHO MONICA Project. Int J Obes Relat Metab Disord. 2004;28:1082–90.

    Article  CAS  PubMed  Google Scholar 

  213. Poirier P, Giles TD, Bray GA, et al. Obesity and cardiovascular disease: pathophysiology, evaluation, and effect of weight loss—an update of the 1997 American Heart Association scientific statement on obesity and heart disease from the Obesity Committee of the Council on Nutrition, Physical Activity, and Metabolism. Circulation. 2006;113:898–918.

    Article  PubMed  Google Scholar 

  214. Rosengren A, Wedel H, Wilhelmsen L. Body weight and weight gain during adult life in men in relation to coronary heart disease and mortality. A prospective population study. Eur Heart J. 1999;20:269–77.

    Article  CAS  PubMed  Google Scholar 

  215. Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults. Executive summary of the third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA. 2001;285:2486–97.

    Article  Google Scholar 

  216. Balkau B, Charles MA. European Group for the Study of Insulin Resistance (EGIR). Comment on the provisional report from the WHO consultation. Diabet Med. 1999;16:442–3.

    Article  CAS  PubMed  Google Scholar 

  217. Zimmet PZ, Alberti KG, Shaw JE. Mainstreaming the metabolic syndrome: a definitive definition. Med J Aust. 2005;183:175–6.

    PubMed  Google Scholar 

  218. Meacham LR, Chow EJ, Ness KK, et al. Cardiovascular risk factors in adult survivors of pediatric cancer—a report from the childhood cancer survivor study. Cancer Epidemiol Biomark Prev. 2010;19:170–18.

    Article  Google Scholar 

  219. Zhang F, Kelly M, Saltzman E, Must A, Roberts S, Parsons S. Obesity in pediatric ALL survivors: a meta-analysis. Pediatrics. 2014;133(3):e704–15.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Murphy A, White M, Elliot S, Lockwood L, Hallahan A, Davies P. Body composition of children with cancer during treatment and in survivorship. Am J Clin Nutr. 2015;102:891–6.

    Article  CAS  PubMed  Google Scholar 

  221. Brown A, Lupo P, Danysh H, Okcu M, Scheurer M, Kamdar K. Prevalence and predictors of overweight and obesity among a multiethnic population of pediatric acute lymphoblastic leukemia survivors: a cross-sectional assessment. J Pediatr Hematol Oncol. 2016;00:1–7.

    Google Scholar 

  222. Harper R, Breene R, Gattens M, Williams R, Murray M. Non-irradiated female survivors of childhood acute lymphoblastic leukaemia are at risk of long-term increases in weight and body mass index. Br J Haematol. 2013;163:510–3.

    Article  PubMed  Google Scholar 

  223. Nottage K, Ness K, Li C, Srivastava D, Robinson L, Hudson M. Metabolic syndrome and cardiovascular risk among long-term survivors of acute lymphoblastic leukaemia-from the St. Jude Lifetime Cohort Study. Br J Haematol. 2014;165(3):364–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Ruble K, Hayat M, Stewart K, Chen A. Body composition after bone marrow transplantation in childhood. Oncol Nurs Forum. 2012;39(2):186–92.

    Article  PubMed  PubMed Central  Google Scholar 

  225. Hoffman A, Postma F, Sterkenburg A, Gebhardt U, Muller H. Eating behavior, weight problems, and eating disorders in 101 long-term survivors of childhood-onset craniopharyngioma. J Pediatr Endocrinol Metab. 2015;28(1–2):35–43.

    Google Scholar 

  226. Hansen J, Stancel H, Klesges L, et al. Eating behavior and BMI in adolescent survivors of brain tumor and acute lymphoblastic leukemia. J Pediatr Oncol Nurs. 2014;31(1):41–50.

    Article  PubMed  Google Scholar 

  227. Oeffinger KC, Mertens AC, Sklar CA, et al. Obesity in adult survivors of childhood acute lymphoblastic leukemia: a report from the Childhood Cancer Survivor Study. J Clin Oncol. 2003;21:1359–65.

    Article  PubMed  Google Scholar 

  228. Zhang F, Roberts S, Parsons S, Must A, Kelly M, Wong W, Saltzman E. Low levels of energy expenditure in childhood cancer survivors: implications for obesity prevention. J Pediatr Hematol Oncol. 2015;37(3):232–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Wilson C, Gawande P, Ness K. Impairments that influence physical function among survivors of childhood cancer. Children (Basel). 2015;2(1):1–36.

    Google Scholar 

  230. Wilson C, Liu W, Yang J, Kang G, Ojha R, Neale G, Srivastava D, Gurney J, Hudson M, Robinson L, Ness K. Genetic and clinical factors associated with obesity among adult survivors of childhood cancer: a report from the St. Jude lifetime cohort. Cancer. 2015;121:2262–70.

    Article  CAS  PubMed  Google Scholar 

  231. Liu Q, Leisenring W, Ness K, Robison L, Armstrong G, Yasui Y, Bhatia S. Racial/ethnic differences in adverse outcomes among childhood cancer survivors: the childhood cancer survivor study. J Clin Oncol. 2016;34:1–10.

    Google Scholar 

  232. Bizzarri C, Pinto R, Ciccone S, Brescia L, Locatelli F, Cappa M. Early and progressive insulin resistance in young, non-obese cancer survivors treated with hematopoietic stem cell transplantation. Pediatr Blood Cancer. 2015;62:1650–5.

    Article  CAS  PubMed  Google Scholar 

  233. Chemaitilly W, Bouland F, Oeffinger KA, Sklar CA. Disorders of glucose homeostasis in young adults treated with total body irradiation during childhood: a pilot study. Bone Marrow Transplant. 2009;44:339–43.

    Article  CAS  PubMed  Google Scholar 

  234. Trimis G, Moschovi M, Papassotiriou I, Chrousos G, Tzortzatou-Stathopoulou F. Early indicators of dysmetabolic syndrome in young survivors of acute lymphoblastic leukaemia in childhood as a target for preventing disease. J Pediatr Hematol Oncol. 2007;29:309–14.

    Article  PubMed  Google Scholar 

  235. Abu-Ouf N, Jan M. Metabolic syndrome in the survivors of childhood acute lymphoblastic leukaemia. Obes Res Clin Pract. 2015;9:11–124.

    Article  Google Scholar 

  236. Felicetti F, D’Ascenzo F, Moretti C, et al. Prevalence of cardiovascular risk factors in long-term survivors of childhood cancer: 16 years follow up from a prospective registry. Eur J Prev Cardiol. 2015;22(6):762–70.

    Article  PubMed  Google Scholar 

  237. Cohen L, Gordon J, Popovsky E, Duffey-Lind E, Lehmann L, Diller L. Late effects in children treated with intensive multimodal therapy for high-risk neuroblastoma: high incidence of endocrine and growth problems. Bone Marrow Transplant. 2014;49:502–8.

    Article  CAS  PubMed  Google Scholar 

  238. Wedrychowicz A, Ciechanowska M, Stelmach M, Starzyk J. Diabetes mellitus after allogenic hematopoietic stem cell transplantation. Horm Res Paediatr. 2013;79:44–50.

    Article  CAS  PubMed  Google Scholar 

  239. Wei C, Thyagiarajan M, Hunt L, Shield J, Stevens M, Crowne E. Reduced insulin sensitivity in childhood survivors of haematopoietic stem cell transplantation is associated with lipodystropic and sarcopenic phenotypes. Pediatr Blood Cancer. 2015;62:1992–9.

    Article  CAS  PubMed  Google Scholar 

  240. Taskinen M, Ulla M, Saarinen-Pihkala UM, Hovi L, Lipsanen-Nyman M. Impaired glucose tolerance and dyslipidaemia as late effects after bone-marrow transplantation in childhood. Lancet. 2000;356:993–7.

    Article  CAS  PubMed  Google Scholar 

  241. Lustig RH. The neuroendocrinology of childhood obesity. Pediatr Clin N Am. 2001;48:909–30.

    Article  CAS  Google Scholar 

  242. Karaman S, Ercan O, Yildiz I, Bolayirli M, Celkan T, Apak H, et al. Late effects of childhood ALL treatment on body mass index and serum leptin levels. J Pediatr Endocrinol Metab. 2010;23(7):669–74.

    Article  CAS  PubMed  Google Scholar 

  243. Skoczen S, Tomasik PJ, Bik-Multanowski M, Surmiak M, Balwierz W, Pietrzyk JJ, et al. Plasma levels of leptin and soluble leptin receptor and polymorphisms of leptin gene-18G9 A and leptin receptor genes K109R and Q223R, in survivors of childhood acute lymphoblastic leukemia. J Exp Clin Cancer Res. 2011;30:64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Ahmet A, Blaser S, Stephens D, Guger S, Rutkas JT, et al. Weight gain in craniopharyngioma–a model for hypothalamic obesity. J Pediatr Endocrinol Metab. 2006;19:121–7.

    Article  PubMed  Google Scholar 

  245. Lek N, Prentice P, Williams RM, Ong KK, Burke GA, et al. Risk factors for obesity in childhood survivors of suprasellar brain tumours: a retrospective study. Acta Paediatr. 2010;99:1522–6.

    Article  PubMed  Google Scholar 

  246. Müller HL, Bueb K, Bartels U, Roth C, Harz K, et al. Obesity after childhood craniopharyngioma–German multicenter study on pre-operative risk factors and quality of life. Klin Padiatr. 2001;213:244–9.

    Article  PubMed  Google Scholar 

  247. Müller HL, Emser A, Faldum A, Bruhnken G, Etavard-Gorris N, et al. Longitudinal study on growth and body mass index before and after diagnosis of childhood craniopharyngioma. J Clin Endocrinol Metab. 2004;89:3298–305.

    Article  PubMed  CAS  Google Scholar 

  248. Sterkenburg A, Hoffman A, Gebhardt U, Warmuth-Metz M, Daubenbuchel A, Muller H. Survival, hypothalamic obesity, and neuropsychological/psychosocial status after childhood-onset craniopharyngioma: newly reported long-term outcomes. Neuro-Oncology. 2015;17(70):1029–38.

    Article  PubMed  PubMed Central  Google Scholar 

  249. Mason PW, Krawiecki N, Meacham LR. The use of dextroamphetamine to treat obesity and hyperphagia in children treated for craniopharyngioma. Arch Pediatr Adolesc Med. 2002;156:887–92.

    Article  PubMed  Google Scholar 

  250. Ismail D, O’Connell MA, Zacharin MR. Dexamphetamine use for management of obesity and hypersomnolence following hypothalamic injury. J Pediatr Endocrinol Metab. 2006;19:129–34.

    Article  CAS  PubMed  Google Scholar 

  251. Greenway FL, Bray GA. Treatment of hypothalamic obesity with caffeine and ephedrine. Endocr Pract. 2008;14:697–703.

    Article  PubMed  Google Scholar 

  252. Karlage R, Wilson C, Zhang N, et al. Validity of anthropometric measurements for characterizing obesity among adult survivors of childhood caner: a report from the St. Jude Lifetime Cohort Study. Cancer. 2015;121:2036–43.

    Article  PubMed  Google Scholar 

  253. Bogg T, Shaw P, Cohn R, et al. Physical activity and screen-time in childhood haematopoietic stem cell transplant survivors. Acta Paediatr. 2015;104(10):e455-9. https://doi.org/10.1111/apa.13120. Epub 2015 Sep 2.

    Article  PubMed  Google Scholar 

  254. Jones KL, Arslanian S, Peterokova VA, et al. Effect of metformin in pediatric patients with type 2 diabetes: a randomized controlled trial. Diabetes Care. 2002;25:89–94.

    Article  CAS  PubMed  Google Scholar 

  255. Den Hoed M, Klap B, de Winkel M, et al. Bone mineral density after childhood cancer in 346 long-term adult survivors of childhood cancer. Osteoporos Int. 2015;26:521–9.

    Article  Google Scholar 

  256. Gurney J, Kaste S, Li W, et al. Bone mineral density among long-term survivors of childhood acute lymphoblastic leukemia: results from the St. Jude Lifetime Cohort Study. Pediatr Blood Cancer. 2014;61:1270–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Vitanza N, Hogan L, Zhang G, Parker R. The progression of bone mineral density abnormalities after chemotherapy for childhood acute lymphoblastic leukemia. J Pediatr Hematol Oncol. 2015;37:356–61.

    Article  CAS  PubMed  Google Scholar 

  258. Han J, Kim H, Hahn S, et al. Poor bone health at the end of puberty in childhood cancer survivors. Pediatr Blood Cancer. 2015;62:1838–43.

    Article  CAS  PubMed  Google Scholar 

  259. Kang M, Lim J. Bone mineral density deficits in childhood cancer survivors: pathophysiology, prevalence, screening, and management. Korean J Pediatr. 2013;56(2):60–7.

    Article  PubMed  PubMed Central  Google Scholar 

  260. Choi Y, Park S, Cho W, et al. Factors related to decreased bone mineral density in childhood cancer survivors. J Korean Med Sci. 2013;28:1632–8.

    Article  PubMed  PubMed Central  Google Scholar 

  261. Muszynska-Roslan K, Latoch E, Konstantynowicz J, Panasiuk A, Stewart A, Krawczuk-Rybak M. Bone mineral density in pediatric survivors of Hodgkin and non-Hodgkin lymphomas. Adv Med Sci. 2014;59:200–5.

    Article  PubMed  Google Scholar 

  262. Hartman A, van den Bos C, Stijnen T, et al. Decrease in peripheral muscle strength and ankle dorsiflexion as long-term side effects of treatment for childhood cancer. Pediatr Blood Cancer. 2007;50:833–837SA.

    Article  Google Scholar 

  263. Gnudi S, Butturini L, Ripamonti C, et al. The effects of methotrexate (mtx) on bone. A densitometric study conducted on 59 patients with mtx administered at different doses. Ital J Orthop Traumatol. 1988;14(2):227–31.

    CAS  PubMed  Google Scholar 

  264. Alikasifoglu A, Yetgin S, Cetin M, et al. Bone mineral density and serum bone turnover markers in survivors of childhood acute lymphoblastic leukemia: comparison of megadose methylprednisolone and conventional-dose prednisolone treatments. Am J Hematol. 2005;80:113–8.

    Article  CAS  PubMed  Google Scholar 

  265. Lim J, Kim D, Lee J, et al. Young age at diagnosis, male sex, decreased lean mass are risk factors of osteoporosis in long-term survivors of osteosarcoma. J Pediatr Hematol Oncol. 2013;35:54–60.

    Article  PubMed  Google Scholar 

  266. Neville K, Walker J, Cohn R, Cowell C, White C. The prevalence of vitamin D deficiency is higher in adult survivors of childhood cancer. Clin Endocrinol. 2015;82:657–62.

    Article  CAS  Google Scholar 

  267. Schundeln M, Hauffa P, Bauer J, et al. Pediatric survivors of retinoblastoma are at risk for altered bone metabolism after chemotherapy treatment early in life. Pediatr Hematol Oncol. 2015;32:455–66.

    Article  PubMed  CAS  Google Scholar 

  268. Halton J, Gaboury I, Grant R, et al. Advanced vertebral fracture among newly diagnosed children with acute lymphoblastic leukemia: result of the Canadian steroid-associated osteoporosis in the pediatric population (STOPP) research program. J Bone Miner Res. 2009;24:1326–33.

    Article  PubMed  Google Scholar 

  269. Makitie O, Heikkinen R, Toiviainen-Salo S, Henriksson M, Puukko-Viertomies L-R, Jahnukainen K. Long-term skeletal consequences of childhood acute lymphoblastic leukemia in adult males: a cohort study. Eur J Endocrinol. 2013;168:281–8.

    Article  CAS  PubMed  Google Scholar 

  270. Arikoski P, Komulainen J, Riikonen P, et al. Alterations in bone turnover and impaired development of bone mineral density in newly diagnosed children with cancer: a 1-year prospective study. J Clin Endocrinol Metab. 1999;84:3174–81.

    Article  CAS  PubMed  Google Scholar 

  271. Hogler W, Wehl G, van Staa T, et al. Incidence of skeletal complications during treatment of childhood acute lymphoblastic leukemia: comparison of fracture risk with the General Practice Research Database. Pediatr Blood Cancer. 2007;48:21–7.

    Article  PubMed  Google Scholar 

  272. Mostoufi-Moab S, Brodsky J, Isaacoff E, et al. Longitudinal assessment of bone density and structure in childhood survivors of acute lymphoblastic leukemia without cranial radiation. Clin Endocrinol Metab. 2012;97(10):3584–92.

    Article  CAS  Google Scholar 

  273. Mattano LA, Sather HN, Trigg ME, et al. Osteonecrosis as complication of treating acute lymphoblastic leukaemia in children: a report from the children’s cancer group. J Clin Oncol. 2000;18:3262–72.

    Article  PubMed  Google Scholar 

  274. Lackner H, Benesch M, Moser A, et al. Aseptic osteonecrosis in children and adolescents treated for hemato-oncological diseases: a 13-year longitudinal observational study. J Pediatr Hematol Oncol. 2005;27:259–63.

    Article  PubMed  Google Scholar 

  275. Sala A, Mattano LA, Barr RD. Osteonecrosis in children and adolescents with cancer—an adverse effect of systemic therapy. Eur J Cancer. 2007;43:683–9.

    Article  PubMed  Google Scholar 

  276. Patel B, Richards SM, Rowe JM, et al. High incidence of avascular necrosis in adolescents with acute lymphoblastic leukaemia: a UKALL XII analysis. Leukemia. 2008;22:308–12.

    Article  CAS  PubMed  Google Scholar 

  277. Leonard MB, Zemel BS. Current concepts in pediatric bone disease. Pediatr Clin N Am. 2002;49:143–73.

    Article  Google Scholar 

  278. Karimova EJ, Kaste SC. MR imaging of osteonecrosis of the knee in children with acute lymphocytic leukemia. Pediatr Radiol. 2007;37:1140–6.

    Article  PubMed  Google Scholar 

  279. Gordon CM, Bachrach LK, Carpenter TO, et al. Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: the 2007 ISCD Pediatric Official Positions. J Clin Densitom. 2008;11:43–58.

    Article  PubMed  Google Scholar 

  280. Coleman R, Body J, Aapro M, Hadji P, Herrstedt J. Bone health in cancer patients: ESMO clinical practice guidelines. Ann Oncol. 2014;25(Supplement 3):iii124–37.

    Article  PubMed  Google Scholar 

  281. Almstedt H, Tarleton H. Mind the gaps: missed opportunities to promote bone health among cancer survivors. Support Care Cancer. 2015;23:611–4.

    Article  PubMed  Google Scholar 

  282. Mogil R, Kaste S, Ferry R, et al. Effect of low-magnitude, high-frequency mechanical stimulation on BMD among young childhood cancer survivors: a randomized clinical trial. JAMA Oncol. 2016;2(7):908–14. [Ahead of Print].

    Article  PubMed  PubMed Central  Google Scholar 

  283. Nguyen T, Zacharin M. Pamidronate treatment of steroid associated osteonecrosis in young patients treated for acute lymphoblastic leukaemia—two-year outcomes. J Pediatr Endocrinol Metab. 2006;19:161–7.

    Article  CAS  PubMed  Google Scholar 

  284. Lethaby C, Wiernikowski J, Sala A, et al. Bisphosphonate therapy for reduced bone mineral density during treatment of acute lymphoblastic leukaemia in childhood and adolescence: a report of preliminary experience. J Pediatr Hematol Oncol. 2007;29:613–6.

    Article  CAS  PubMed  Google Scholar 

  285. Wiernikowski JT, Barr RD, Webber C, et al. Alendronate for steroid-induced osteopenia in children with acute lymphoblastic leukaemia or non-Hodgkin’s lymphoma: results of a pilot study. J Oncol Pharm Pract. 2005;11:51–6.

    Article  CAS  PubMed  Google Scholar 

  286. Suh E, Daughtery C, Wroblewski K, et al. General internists’ preferences and knowledge about the care of adult survivors of childhood cancer: a cross-sectional survey. Ann Intern Med. 2014;160(1):11–7.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Megan Oberle MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Oberle, M., Brodsky, J.L., Grimberg, A. (2018). Management of Acute and Late Endocrine Effects Following Childhood Cancer Treatment. In: Radovick, S., Misra, M. (eds) Pediatric Endocrinology. Springer, Cham. https://doi.org/10.1007/978-3-319-73782-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73782-9_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73781-2

  • Online ISBN: 978-3-319-73782-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics