Skip to main content

POST-LVAD Right Ventricular Failure

  • Chapter
  • First Online:
  • 1828 Accesses

Abstract

Patient selection and implantation timing are key determinants of success for therapy with a left ventricular assist device (LVAD). End-stage heart failure patients with stable disease on inotropic treatment are the best candidates, whereas patients with cardiogenic shock are considered too ill for LVAD support and should be receive temporary mechanical circulatory support devices to optimize their condition before LVAD implantation. However, if implantation is delayed, outcomes may worsen due to secondary organ damage caused by prolonged end-stage heart failure, with the potential for right heart failure to develop and lead to death. Most patients with advanced left ventricular failure assessed for LVAD implantation also have some degree of right ventricular dysfunction. Though LVADs are effective for treating left ventricular failure, they do not intrinsically treat, and in some instances may worsen, right ventricular failure (RVF). Indeed post-LVAD RVF is a major complication of device implantation and significantly increases postoperative morbidity and mortality. The etiology is often multifactorial, including pre-existing right ventricular dysfunction, leftward shifting of the interventricular septum, excessive volume overload, and suboptimal pulmonary afterload reduction. Different echocardiographic, hemodynamic, and biologic markers may help to the prevention, early diagnosis, and effective treatment of post-LVAD RVF. Specifically, post-LVAD RVF results in poor filling of the left ventricle and poor LVAD output that often necessitate additional right ventricular support with inotropes and pulmonary vasodilators, or rarely, a right-sided mechanical device. Additional treatments that can improve right ventricular function after LVAD implant include annuloplasty to reduce the severity of tricuspid regurgitation, aggressive diuresis to reduce volume overload, and treatment to maintain aortic valve patency in every cycle, to lower excessive left ventricular loading.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kırali K, Yerlikhan ÖA, Hançer H. Invasive treatment in advanced (Stage-D) heart failure. In: Kırali K, editor. Cardiomyopaties: types and treatments. Crotia: InTech; 2017. p. 405–57. https://doi.org/10.5572/67455.

    Chapter  Google Scholar 

  2. Kirklin JK, Cantor R, Mohacsi P, Gummert J, De By T, Hannan MM, Kormos RL, Schueler S, Lund LH, Nakatani T, Taylor R, Lannon J. First annual IMACS report: a global international society for heart and lung transplantation registry for mechanical circulatory support. J Heart Lung Transplant. 2016;35(4):407–12. https://doi.org/10.1016/j.healun.2016.01.002.

    Article  PubMed  Google Scholar 

  3. Englert JA 3rd, Davis JA, Krim SR. Mechanical circulatory support for the failing heart: continuous-flow left ventricular assist devices. Ochsner J. 2016;16(3):263–9.

    PubMed  PubMed Central  Google Scholar 

  4. Prinzing A, Herold U, Berkefeld A, Krane M, Lange R, Voss B. Left ventricular assist devices—current state and perspectives. J Thorac Dis. 2016;8(8):E660–6. https://doi.org/10.21037/jtd.2016.07.13.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mehra MR, Park MH, Landzberg MJ, Lala A, Waxman AB. Right heart failure: toward a common language. J Heart Lung Transplant. 2014;33(2):123–6. https://doi.org/10.1016/j.healun.2013.10.015.

    Article  PubMed  Google Scholar 

  6. Kirklin JK, Naftel DC, Stevenson LW, Kormos RL, Pagani FD, Miller MA, Ulisney K, Young JB. INTERMACS database for durable devices for circulatory support: first annual report. J Heart Lung Transplant. 2008;27(10):1065–72. https://doi.org/10.1016/j.healun.2008.07.021.

    Article  PubMed  Google Scholar 

  7. Takeda K, Takayama H, Colombo PC, Yuzefpolskaya M, Fukuhara S, Han J, Kurlansky P, Mancini DM, Naka Y. Incidence and clinical significance of late right heart failure during continuous-flow left ventricular assist device support. J Heart Lung Transplant. 2015;34(8):1024–32. https://doi.org/10.1016/j.healun.2015.03.011.

    Article  PubMed  Google Scholar 

  8. Kimmaliardjuk DM, Ruel M. Cardiac passive-aggressive behavior? The right ventricle in patients with a left ventricular assist device. Expert Rev Cardiovasc Ther. 2017;15(4):267–76. https://doi.org/10.1080/14779072.2017.1308252.

    Article  PubMed  CAS  Google Scholar 

  9. Bellavia D, Iacovoni A, Scardulla C, Moja L, Pilato M, Kushwaha SS, Senni M, Clemenza F, Agnese V, Falletta C, Romano G, Maalouf J, Dandel M. Prediction of right ventricular failure after ventricular assist device implant: systematic review and meta-analysis of observational studies. Eur J Heart Fail. 2017;19(7):926–46. https://doi.org/10.1002/ejhf.733.

    Article  PubMed  CAS  Google Scholar 

  10. Kirklin JK, Naftel DC, Pagani FD, Kormos RL, Stevenson LW, Blume ED, Myers SL, Miller MA, Baldwin JT, Young JB. Seventh INTERMACS annual report: 15,000 patients and counting. J Heart Lung Transplant. 2015;34(12):1495–504. https://doi.org/10.1016/j.healun.2015.

    Article  PubMed  Google Scholar 

  11. Cheng A, Williamitis CA, Slaughter MS. Comparison of continuous-flow and pulsatile-flow left ventricular assist devices: is there an advantage to pulsatility? Ann Cardiothorac Surg. 2014;3(6):573–81. https://doi.org/10.3978/j.issn.2225-319X.2014.08.24.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Takeda K, Naka Y, Yang JA, Uriel N, Colombo PC, Jorde UP, Takayama H. Outcome of unplanned right ventricular assist device support for severe right heart failure after implantable left ventricular assist device insertion. J Heart Lung Transplant. 2014;33(2):141–8. https://doi.org/10.1016/j.healun.2013.06.025.

    Article  PubMed  Google Scholar 

  13. Santamore WP, Dell'Italia LJ. Ventricular interdependence: significant left ventricular contributions to right ventricular systolic function. Prog Cardiovasc Dis. 1998;40(4):289–308. https://doi.org/10.1016/S0033-0620(98)80049-2.

    Article  PubMed  CAS  Google Scholar 

  14. Houston BA, Shah KB, Mehra MR, Tedford RJ. A new “twist” on right heart failure with left ventricular assist systems. J Heart Lung Transplant. 2017;36(7):701–7. https://doi.org/10.1016/j.healun.2017.03.014.

    Article  PubMed  Google Scholar 

  15. Gustafsson F, Rogers JG. Left ventricular assist device therapy in advanced heart failure: patient selection and outcomes. Eur J Heart Fail. 2017;19(5):595–602. https://doi.org/10.1002/ejhf.779.

    Article  PubMed  Google Scholar 

  16. Morgan JA, Paone G, Nemeh HW, Murthy R, Williams CT, Lanfear DE, Tita C, Brewer RJ. Impact of continuous-flow left ventricular assist device support on right ventricular function. J Heart Lung Transplant. 2013;32(4):398–403. https://doi.org/10.1016/j.healun.2012.12.018.

    Article  PubMed  Google Scholar 

  17. Kırali K, Özer T, Özgür MM. Pathophysiology in heart failure. In: Kırali K, editor. Cardiomyopaties: types and treatments. Crotia: InTech; 2017. p. 17–38. https://doi.org/10.5772/66887.

    Chapter  Google Scholar 

  18. Koprivanac M, Kelava M, Sirić F, Cruz VB, Moazami N, Mihaljević T. Predictors of right ventricular failure after left ventricular assist device implantation. Croat Med J. 2014;55(6):587–95. https://doi.org/10.3325/cmj.2014.55.587.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tromp TR, de Jonge N, Joles JA. Left ventricular assist devices: a kidney’s perspective. Heart Fail Rev. 2015;20(4):519–32. https://doi.org/10.1007/s10741-015-9481-z.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Hasin T, Topilsky Y, Schirger JA, Li Z, Zhao Y, Boilson BA, Clavell AL, Rodeheffer RJ, Frantz RP, Edwards BS, Pereira NL, Joyce L, Daly R, Park SJ, Kushwaha SS. Changes in renal function after implantation of continuous-flow left ventricular assist devices. J Am Coll Cardiol. 2012;59(1):26–36. https://doi.org/10.1016/j.jacc.2011.09.038.

    Article  PubMed  Google Scholar 

  21. Brisco MA, Testani JM, Cook JL. Renal dysfunction and chronic mechanical circulatory support: from patient selection to long-term management and prognosis. Curr Opin Cardiol. 2016;31(3):277–86. https://doi.org/10.1097/HCO.0000000000000278.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Brisco MA, Sundareswaran KS, Milano CA, Feldman D, Testani JM, Ewald GA, Slaughter MS, Farrar DJ, Goldberg LR. Incidence, risk, and consequences of atrial arrhythmias in patients with continuous-flow left ventricular assist devices. J Card Surg. 2014;29(4):572–80. https://doi.org/10.1111/jocs.12336.

    Article  PubMed  Google Scholar 

  23. Lampert BC, Teuteberg JJ. Right ventricular failure after left ventricular assist devices. J Heart Lung Transplant. 2015;34(9):1123–30. https://doi.org/10.1016/j.healun.2015.06.015.

    Article  PubMed  Google Scholar 

  24. Fitzpatrick JR 3rd, Frederick JR, Hsu VM, Kozin ED, O'Hara ML, Howell E, Dougherty D, McCormick RC, Laporte CA, Cohen JE, Southerland KW, Howard JL, Jessup ML, Morris RJ, Acker MA, Woo YJ. Risk score derived from pre-operative data analysis predicts the need for biventricular mechanical circulatory support. J Heart Lung Transplant. 2008;27(12):1286–92. https://doi.org/10.1016/j.healun.2008.09.006.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Matthews JC, Koelling TM, Pagani FD, Aaronson KD. The right ventricular failure risk score a preoperative tool for assessing the risk of right ventricular failure in left ventricular assist device candidates. J Am Coll Cardiol. 2008;51(22):2163–72. https://doi.org/10.1016/j.jacc.2008.03.009.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Drakos SG, Janicki L, Horne BD, Kfoury AG, Reid BB, Clayson S, Horton K, Haddad F, Li DY, Renlund DG, Fisher PW. Risk factors predictive of right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2010;105(7):1030–5. https://doi.org/10.1016/j.amjcard.2009.11.026.

    Article  PubMed  Google Scholar 

  27. Kormos RL, Teuteberg JJ, Pagani FD, Russell SD, John R, Miller LW, Massey T, Milano CA, Moazami N, Sundareswaran KS, Farrar DJ, HeartMate II Clinical Investigators. Right ventricular failure in patients with the HeartMate II continuous-flow left ventricular assist device: incidence, risk factors, and effect on outcomes. J Thorac Cardiovasc Surg. 2010;139(5):1316–24. https://doi.org/10.1016/j.jtcvs.2009.11.020.

    Article  PubMed  Google Scholar 

  28. Wang Y, Simon MA, Bonde P, Harris BU, Teuteberg JJ, Kormos RL, Antaki JF. Decision tree for adjuvant right ventricular support in patients receiving a left ventricular assist device. J Heart Lung Transplant. 2012;31(2):140–9. https://doi.org/10.1016/j.healun.2011.11.003.

    Article  PubMed  Google Scholar 

  29. Atluri P, Goldstone AB, Fairman AS, MacArthur JW, Shudo Y, Cohen JE, Acker AL, Hiesinger W, Howard JL, Acker MA, Woo YJ. Predicting right ventricular failure in the modern, continuous flow left ventricular assist device era. Ann Thorac Surg. 2013;96(3):857–63. https://doi.org/10.1016/j.athoracsur.2013.03.099.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Aissaoui N, Salem JE, Paluszkiewicz L, Morshuis M, Guerot E, Gorria GM, Fagon JY, Gummert J, Diebold B. Assessment of right ventricular dysfunction predictors before the implantation of a left ventricular assist device in end-stage heart failure patients using echocardiographic measures (ARVADE): combination of left and right ventricular echocardiographic variables. Arch Cardiovasc Dis. 2015;108(5):300–9. https://doi.org/10.1016/j.acvd.2015.01.011.

    Article  PubMed  Google Scholar 

  31. Loghmanpour NA, Kormos RL, Kanwar MK, Teuteberg JJ, Murali S, Antaki JF. A Bayesian model to predict right ventricular failure following left ventricular assist device therapy. JACC Heart Fail. 2016;4(9):711–21. https://doi.org/10.1016/j.jchf.2016.04.004.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Pettinari M, Jacobs S, Rega F, Verbelen T, Droogne W, Meyns B. Are right ventricular risk scores useful? Eur J Cardiothorac Surg. 2012;42(4):621–6. https://doi.org/10.1093/ejcts/ezs104.

    Article  PubMed  Google Scholar 

  33. Karimov JH, Sunagawa G, Horwath D, Fukamachi K, Starling RC, Moazami N. Limitations to chronic right ventricular assist device support. Ann Thorac Surg. 2016;102(2):651–8. https://doi.org/10.1016/j.athoracsur.2016.02.006.

    Article  PubMed  Google Scholar 

  34. Kalogeropoulos AP, Kelkar A, Weinberger JF, Morris AA, Georgiopoulou VV, Markham DW, Butler J, Vega JD, Smith AL. Validation of clinical scores for right ventricular failure prediction after implantation of continuous-flow left ventricular assist devices. J Heart Lung Transplant. 2015;34(12):1595–603. https://doi.org/10.1016/j.healun.2015.05.005.

    Article  PubMed  Google Scholar 

  35. Cowger J, Shah P, Stulak J, Maltais S, Aaronson KD, Kirklin JK, Pagani FD, Salerno C. INTERMACS profiles and modifiers: heterogeneity of patient classification and the impact of modifiers on predicting patient outcome. J Heart Lung Transplant. 2016;35(4):440–8. https://doi.org/10.1016/j.healun.2015.10.037.

    Article  PubMed  Google Scholar 

  36. Kato TS, Kitada S, Yang J, Wu C, Takayama H, Naka Y, Farr M, Mancini DM, Schulze PC. Relation of preoperative serum albumin levels to survival in patients undergoing left ventricular assist device implantation. Am J Cardiol. 2013;112(9):1484–8. https://doi.org/10.1016/j.amjcard.2013.06.023.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Dunlay SM, Park SJ, Joyce LD, Daly RC, Stulak JM, McNallan SM, Roger VL, Kushwaha SS. Frailty and outcomes after implantation of left ventricular assist device as destination therapy. J Heart Lung Transplant. 2014;33(4):359–65. https://doi.org/10.1016/j.healun.2013.12.014.

    Article  PubMed  Google Scholar 

  38. Rudski LG, Lai WW, Afilalo J, Hua L, Handschumacher MD, Chandrasekaran K, Solomon SD, Louie EK, Schiller NB. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23(7):685–713. https://doi.org/10.1016/j.echo.2010.05.010.

    Article  PubMed  Google Scholar 

  39. Potapov EV, Stepanenko A, Dandel M, Kukucka M, Lehmkuhl HB, Weng Y, Hennig F, Krabatsch T, Hetzer R. Tricuspid incompetence and geometry of the right ventricle as predictors of right ventricular function after implantation of a left ventricular assist device. J Heart Lung Transplant. 2008;27(12):1275–81. https://doi.org/10.1016/j.healun.2008.08.012.

    Article  PubMed  Google Scholar 

  40. Vivo RP, Cordero-Reyes AM, Qamar U, Garikipati S, Trevino AR, Aldeiri M, Loebe M, Bruckner BA, Torre-Amione G, Bhimaraj A, Trachtenberg BH, Estep JD. Increased right-to-left ventricle diameter ratio is a strong predictor of right ventricular failure after left ventricular assist device. J Heart Lung Transplant. 2013;32(8):792–9. https://doi.org/10.1016/j.healun.2013.05.016.

    Article  PubMed  Google Scholar 

  41. Kato TS, Farr M, Schulze PC, Maurer M, Shahzad K, Iwata S, Homma S, Jorde U, Takayama H, Naka Y, Gillam L, Mancini D. Usefulness of two-dimensional echocardiographic parameters of the left side of the heart to predict right ventricular failure after left ventricular assist device implantation. Am J Cardiol. 2012;109(2):246–51. https://doi.org/10.1016/j.amjcard.2011.08.040.

    Article  PubMed  Google Scholar 

  42. Grant AD, Smedira NG, Starling RC, Marwick TH. Independent and incremental role of quantitative right ventricular evaluation for the prediction of right ventricular failure after left ventricular assist device implantation. J Am Coll Cardiol. 2012;60(6):521–8. https://doi.org/10.1016/j.jacc.2012.02.073.

    Article  PubMed  Google Scholar 

  43. Kiernan MS, French AL, DeNofrio D, Parmar YJ, Pham DT, Kapur NK, Pandian NG, Patel AR. Preoperative three-dimensional echocardiography to assess risk of right ventricular failure after left ventricular assist device surgery. J Card Fail. 2015;21(3):189–97. https://doi.org/10.1016/j.cardfail.2014.12.009.

    Article  PubMed  Google Scholar 

  44. Kukucka M, Stepanenko A, Potapov E, Krabatsch T, Kuppe H, Habazettl H. Impact of tricuspid valve annulus dilation on mid-term survival after implantation of a left ventricular assist device. J Heart Lung Transplant. 2012;31(9):967–71. https://doi.org/10.1016/j.healun.2012.06.003.

    Article  PubMed  Google Scholar 

  45. Feldman D, Pamboukian SV, Teuteberg JJ, Birks E, Lietz K, Moore SA, Morgan JA, Arabia F, Bauman ME, Buchholz HW, Deng M, Dickstein ML, El-Banayosy A, Elliot T, Goldstein DJ, Grady KL, Jones K, Hryniewicz K, John R, Kaan A, Kusne S, Loebe M, Massicotte MP, Moazami N, Mohacsi P, Mooney M, Nelson T, Pagani F, Perry W, Potapov EV, Eduardo Rame J, Russell SD, Sorensen EN, Sun B, Strueber M, Mangi AA, Petty MG, Rogers J, International Society for Heart and Lung Transplantation. The 2013 International Society for Heart and Lung Transplantation Guidelines for mechanical circulatory support: executive summary. J Heart Lung Transplant. 2013;32(2):157–87. https://doi.org/10.1016/j.healun.2012.09.013.

    Article  PubMed  Google Scholar 

  46. Hayek S, Sims DB, Markham DW, Butler J, Kalogeropoulos AP. Assessment of right ventricular function in left ventricular assist device candidates. Circ Cardiovasc Imaging. 2014;7(2):379–89. https://doi.org/10.1161/CIRCIMAGING.113.001127.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Grandin EW, Zamani P, Mazurek JA, Troutman GS, Birati EY, Vorovich E, Chirinos JA, Tedford RJ, Margulies KB, Atluri P, Rame JE. Right ventricular response to pulsatile load is associated with early right heart failure and mortality after left ventricular assist device. J Heart Lung Transplant. 2017;36(1):97–105. https://doi.org/10.1016/j.healun.2016.06.015.

    Article  PubMed  Google Scholar 

  48. Kang G, Ha R, Banerjee D. Pulmonary artery pulsatility index predicts right ventricular failure after left ventricular assist device implantation. J Heart Lung Transplant. 2016;35(1):67–73. https://doi.org/10.1016/j.healun.2015.06.009.

    Article  PubMed  Google Scholar 

  49. Morine KJ, Kiernan MS, Pham DT, Paruchuri V, Denofrio D, Kapur NK. Pulmonary artery pulsatility index is associated with right ventricular failure after left ventricular assist device surgery. J Card Fail. 2016;22(2):110–6. https://doi.org/10.1016/j.cardfail.2015.10.019.

    Article  PubMed  Google Scholar 

  50. Yoshioka D, Takayama H, Colombo PC, Yuzefpolskaya M, Garan AR, Topkara VK, Han J, Kurlansky P, Naka Y, Takeda K. Changes in end-organ function in patients with prolonged continuous-flow left ventricular assist device support. Ann Thorac Surg. 2017;103(3):717–24. https://doi.org/10.1016/j.athoracsur.2016.12.018.

    Article  PubMed  Google Scholar 

  51. Zabarovskaja S, Hage C, Linde C, Daubert JC, Donal E, Gabrielsen A, Mellbin L, Lund LH. Adaptive cardiovascular hormones in a spectrum of heart failure phenotypes. Int J Cardiol. 2015;189:6–11. https://doi.org/10.1016/j.ijcard.2015.03.381.

    Article  PubMed  Google Scholar 

  52. Nymo SH, Aukrust P, Kjekshus J, McMurray JJ, Cleland JG, Wikstrand J, Muntendam P, Wienhues-Thelen U, Latini R, Askevold ET, Gravning J, Dahl CP, Broch K, Yndestad A, Gullestad L, Ueland T, CORONA Study Group. Limited added value of circulating inflammatory biomarkers in chronic heart failure. JACC Heart Fail. 2017;5(4):256–64. https://doi.org/10.1016/j.jchf.2017.01.008.

    Article  PubMed  Google Scholar 

  53. Sun RR, Lu L, Liu M, Cao Y, Li XC, Liu H, Wang J, Zhang PY. Biomarkers and heart disease. Eur Rev Med Pharmacol Sci. 2014;18(19):2927–35. https://doi.org/10.1007/s10741-015-9504-9.

    Article  PubMed  Google Scholar 

  54. Kramer F, Sabbah HN, Januzzi JJ, Zannad F, Peter van Tintelen J, Schelbert EB, Kim RJ, Milting H, Vonk R, Neudeck B, Clark R, Witte K, Dinh W, Pieske B, Butler J, Gheorghiade M. Redefining the role of biomarkers in heart failure trials: expert consensus document. Heart Fail Rev. 2017;22(3):263–77. https://doi.org/10.1007/s10741-017-9608-5.

    Article  PubMed  Google Scholar 

  55. Savic-Radojevic A, Pljesa-Ercegovac M, Matic M, Simic D, Radovanovic S, Simic T. Novel biomarkers of heart failure. Adv Clin Chem. 2017;79:93–152. https://doi.org/10.1016/bs.acc.2016.09.002.

    Article  PubMed  CAS  Google Scholar 

  56. Lichtenauer M, Jirak P, Wernly B, Paar V, Rohm I, Jung C, Schernthaner C, Kraus J, Motloch LJ, Yilmaz A, Hoppe UC, Christian Schulze P, Kretzschmar D, Pistulli R. A comparative analysis of novel cardiovascular biomarkers in patients with chronic heart failure. Eur J Intern Med. 2017;44:31–8. https://doi.org/10.1016/j.ejim.2017.05.027.

    Article  PubMed  CAS  Google Scholar 

  57. Gaggin HK, Januzzi JL Jr. Biomarkers and diagnostics in heart failure. Biochim Biophys Acta. 2013;1832(12):2442–50. https://doi.org/10.1016/j.bbadis.2012.12.014.

    Article  CAS  PubMed  Google Scholar 

  58. deFilippi CR, de Lemos JA, Christenson RH, Gottdiener JS, Kop WJ, Zhan M, Seliger SL. Association of serial measures of cardiac troponin T using a sensitive assay with incident heart failure and cardiovascular mortality in older adults. JAMA. 2010;304(22):2494–502. https://doi.org/10.1001/jama.2010.1708.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. van der Linden N, Klinkenberg LJ, Bekers O, Loon LJ, Dieijen-Visser MP, Zeegers MP, Meex SJ. Prognostic value of basal high-sensitive cardiac troponin levels on mortality in the general population: a meta-analysis. Medicine. 2016;95(52):e5703. https://doi.org/10.1097/MD.0000000000005703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Sze J, Mooney J, Barzi F, Hillis GS, Chow CK. Cardiac troponin and its relationship to cardiovascular outcomes in community populations: a systematic review and meta-analysis. Heart Lung Circ. 2016;25(3):217–28. https://doi.org/10.1016/j.hlc.2015.09.001.

    Article  PubMed  Google Scholar 

  61. Morbach C, Marx A, Kaspar M, Güder G, Brenner S, Feldmann C, Störk S, Vollert JO, Ertl G, Angermann CE, INH Study Group and the Competence Network Heart Failure. Prognostic potential of midregional pro-adrenomedullin following decompensation for systolic heart failure: comparison with cardiac natriuretic peptides. Eur J Heart Fail. 2017;19(9):1166–75. https://doi.org/10.1002/ejhf.859.

    Article  PubMed  CAS  Google Scholar 

  62. Nayak A, Neill C, Kormos RL, Lagazzi L, Halder I, McTiernan C, Larsen J, Inashvili A, Teuteberg J, Bachman TN, Hanley-Yanez K, McNamara DM, Simon MA. Chemokine receptor patterns and right heart failure in mechanical circulatory support. J Heart Lung Transplant. 2017;36(6):657–65. https://doi.org/10.1016/j.healun.2016.12.007.

    Article  PubMed  Google Scholar 

  63. Brisco MA, Kimmel SE, Coca SG, Putt ME, Jessup M, Tang WW, Parikh CR, Testani JM. Prevalence and prognostic importance of changes in renal function after mechanical circulatory support. Circ Heart Fail. 2014;7(1):68–75. https://doi.org/10.1161/CIRCHEARTFAILURE.113.000507.

    Article  PubMed  Google Scholar 

  64. Sumida M, Doi K, Kinoshita O, Kimura M, Ono M, Hamasaki Y, Matsubara T, Ishii T, Yahagi N, Nangaku M, Noiri E. Perioperative plasma neutrophil gelatinase-associated lipocalin measurement in patients who undergo left ventricular assist device implantation surgery. Circ J. 2014;78(8):1891–9. https://doi.org/10.1253/circj.CJ-14-0008.

    Article  PubMed  Google Scholar 

  65. Kashiyama N, Toda K, Nakamura T, Miyagawa S, Nishi H, Yoshikawa Y, Fukushima S, Saito S, Yoshioka D, Sawa Y. Evaluation of right ventricular function using liver stiffness in patients with left ventricular assist device. Eur J Cardiothorac Surg. 2017;51(4):715–21. https://doi.org/10.1093/ejcts/ezw419.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Palmer B, Lampert B, Mathier MA. Management of right ventricular failure in pulmonary hypertension (and after LVAD implantation). Curr Treat Options Cardiovasc Med. 2013;15(5):533–43. https://doi.org/10.1007/s11936-013-0267-0.

    Article  PubMed  Google Scholar 

  67. Baker WL, Radojevic J, Gluck JA. Systematic review of phosphodiesterase-5 inhibitor use in right ventricular failure following left ventricular assist device implantation. Artif Organs. 2016;40(2):123–8. https://doi.org/10.1111/aor.12518.

    Article  PubMed  CAS  Google Scholar 

  68. Imamura T, Kinugawa K, Nitta D, Hatano M, Kinoshita O, Nawata K, Kyo S, Ono M. Prophylactic intra-aortic balloon pump before ventricular assist device implantation reduces perioperative medical expenses and improves postoperative clinical course in INTERMACS profile 2 patients. Circ J. 2015;79(9):1963–9. https://doi.org/10.1253/circj.CJ-15-0122.

    Article  PubMed  Google Scholar 

  69. Goldraich L, Kawajiri H, Foroutan F, Braga J, Billia P, Misurka J, Stansfield WE, Yau T, Ross HJ, Rao V. Tricuspid valve annular dilation as a predictor of right ventricular failure after ımplantation of a left ventricular assist device. J Card Surg. 2016;31(2):110–6. https://doi.org/10.1111/jocs.12685.

    Article  PubMed  Google Scholar 

  70. Brewer RJ, Cabrera R, El-Atrache M, Zafar A, Hrobowski TN, Nemeh HM, Selektor Y, Paone G, Williams CT, Velez M, Tita C, Morgan JA, Lanfear DE. Relationship of tricuspid repair at the time of left ventricular assist device implantation and survival. Int J Artif Organs. 2014;37(11):834–8. https://doi.org/10.5301/ijao.5000369.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Dunlay SM, Deo SV, Park SJ. Impact of tricuspid valve surgery at the time of left ventricular assist device ınsertion on postoperative outcomes. ASAIO J. 2015;61(1):15–20. https://doi.org/10.1097/MAT.0000000000000145.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Song HK, Gelow JM, Mudd J, Chien C, Tibayan FA, Hollifield K, Naftel D, Kirklin J. Limited utility of tricuspid valve repair at the time of left ventricular assist device implantation. Ann Thorac Surg. 2016;101(6):2168–74. https://doi.org/10.1016/j.athoracsur.2016.03.040.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Robertson JO, Grau-Sepulveda MV, Okada S, O'Brien SM, Matthew Brennan J, Shah AS, Itoh A, Damiano RJ, Prasad S, Silvestry SC. Concomitant tricuspid valve surgery during implantation of continuous-flow left ventricular assist devices: a Society of Thoracic Surgeons database analysis. J Heart Lung Transplant. 2014;33(6):609–17. https://doi.org/10.1016/j.healun.2014.01.861.

    Article  PubMed  Google Scholar 

  74. Akhter SA, Salabat MR, Philip JL, Valeroso TB, Russo MJ, Rich JD, Jeevanandam V. Durability of De Vega tricuspid valve annuloplasty for severe tricuspid regurgitation during left ventricular assist device implantation. Ann Thorac Surg. 2014;98(1):81–3. https://doi.org/10.1016/j.athoracsur.2014.03.022.

    Article  PubMed  Google Scholar 

  75. Potapov E, Meyer D, Swaminathan M, Ramsay M, El Banayosy A, Diehl C, Veynovich B, Gregoric ID, Kukucka M, Gromann TW, Marczin N, Chittuluru K, Baldassarre JS, Zucker MJ, Hetzer R. Inhaled nitric oxide after left ventricular assist device implantation: a prospective, randomized, double-blind, multicenter, placebo-controlled trial. J Heart Lung Transplant. 2011;30(8):870–8. https://doi.org/10.1016/j.healun.2011.03.005.

    Article  PubMed  Google Scholar 

  76. Antoniou T, Prokakis C, Athanasopoulos G, Thanopoulos A, Rellia P, Zarkalis D, Kogerakis N, Koletsis EN, Bairaktaris A. Inhaled nitric oxide plus iloprost in the setting of post-left assist device right heart dysfunction. Ann Thorac Surg. 2012;94(3):792–8. https://doi.org/10.1016/j.athoracsur.2012.04.046.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kırali, K., Özer, T., Selçuk, E. (2018). POST-LVAD Right Ventricular Failure. In: Dumitrescu, S., Ţintoiu, I., Underwood, M. (eds) Right Heart Pathology. Springer, Cham. https://doi.org/10.1007/978-3-319-73764-5_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73764-5_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73763-8

  • Online ISBN: 978-3-319-73764-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics