Skip to main content

Right Heart Anatomy: A Short Uptodate

  • Chapter
  • First Online:
Right Heart Pathology

Abstract

Despite of the first description of Sir William Harvey in 1616 looking the significance of right ventricle function for human heart and lungs, its importance was disregarded in clinical practice. Starting with 1950s until the 1970s, cardiovascular surgeons assessed techniques to treat right-heart hypoplasia and as a result they accepted the significance of right heart function. During last decade, the impact of right heart evaluation has been established for the treatment of cardiopulmonary disorders. Knowledge of the right heart anatomy, imaging pathology and related clinical manifestations is essential to prevent neglected features of cardiovascular diseases and false-positive diagnoses. Understanding image features of the human heart acquired by histological studies, echocardiography, computed tomography (CT), micro-CT studies, or diffusion tensor magnetic resonance imaging (DT-MRI) has a very important role in the correctness of anatomically outlining of the cardiac features, especially those associated to the conduction system. Studying classic anatomy of the heart on cadaveric samplings is a requirement to know what imaging investigations brings for the study of RV anatomy and physiology. Considering that, it has to be underlined important anatomical features of the human right heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Haddad F, Hunt SA, Rosenthal DN, Murphy DJ. Right ventricular function in cardiovascular disease, part I: anatomy, physiology, aging, and functional assessment of the right ventricle. Circulation. 2008;117(11):1436–48. https://doi.org/10.1161/CIRCULATIONAHA.107.653576.

    Article  PubMed  Google Scholar 

  2. Harvey W. Exercitatio Anatomica de Motu Cordis et Sanguinis in Animalibus. 1628. Goldstein J. The right ventricle: what’s right and what’s wrong. Coron Artery Dis. 2005;16:1–3.

    Article  Google Scholar 

  3. Goldstein J. The right ventricle: what’s right and what’s wrong. Coron Artery Dis. 2005;16:1–3.

    Google Scholar 

  4. Ghio S, Klersy C, Magrini G, et al. Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. Int J Cardiol. 2010;140:272.

    Article  PubMed  Google Scholar 

  5. Ifrim M, et al. Riscul malformativ in reproducerea umana. (malformation risk in human reproduction). Bucharest: Editura Medicala; 1979.

    Google Scholar 

  6. Malouf JF, Edwards WD, Tajik AJ, Seward JB. Functional anatomy of the heart. In: Fuster V, Alexander RW, O’Rourke RA, Roberts R, King SB, Wellens HJJ, eds. Hurt’s the Heart. 11th ed. New York, NY: McGraw-Hill, 2005;45–82.

    Google Scholar 

  7. Snell RS. The thorax: part II-the thoracic cavity. In: Clinical anatomy by regions. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 77–130.

    Google Scholar 

  8. Friedberg MK, Redington AN. Right versus left ventricular failure: differences, similarities, and interactions. Circulation. 2014;129:1033–44.

    Article  PubMed  Google Scholar 

  9. Zaffran S, Kelly RG, Meilhac SM, Buckingham ME, Brown NA. Right ventricular myocardium derives from the anterior heart field. Circ Res. 2004;95:261–8.

    Article  CAS  PubMed  Google Scholar 

  10. Firpo C, Hoffman JI, Silverman NH. Evaluation of fetal heart dimensions from 12 weeks to term. Am J Cardiol. 2001;87(5):594–600.

    Article  CAS  PubMed  Google Scholar 

  11. Borgdorff MA, Dickinson MG, Berger RM, Bartelds B. Right ventricular failure due to chronic pressure load: what have we learned in animal models since the NIH working group statement? Heart Fail Rev. 2015;20(4):475–91. https://doi.org/10.1007/s10741-015-9479-6.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sánchez-Quintana D, Doblado-Calatrava M, Cabrera JA, Macías Y, Saremi F. Anatomical basis for the cardiac interventional electrophysiologist. Biomed Res Int. 2015;2015:547364. https://doi.org/10.1155/2015/547364.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Pelosi A, Rubinstein J. In: Millis R, editor. Cardiac anatomy, advances in electrocardiograms - methods and analysis, PhD: InTech; 2012. doi:10.5772/21737. https://www.intechopen.com/books/advances-in-electrocardiograms-methods-and-analysis/cardiac-anatomy. (Open access article).

    Chapter  Google Scholar 

  14. Ifrim M, et al. Human Atlas of topographical, functional and clinical anatomy viscera. Citrus Heights: ARA Publisher: American Romanian Academy of Arts and Sciences; 2016. ISBN: 978-1-935924-20-3.

    Google Scholar 

  15. Cabrera JA, Saremi F, Sánchez-Quintana D. Left atrial appendage: anatomy and imaging landmarks pertinent to percutaneous transcatheter occlusion. Heart. 2014;100(20):1636–50. https://doi.org/10.1136/heartjnl-2013-304464.

    Article  PubMed  Google Scholar 

  16. Malik SB, Kwan D, Shah AB, Hsu JY. The right atrium: gateway to the heart--anatomic and pathologic imaging findings. Radiographics. 2015;35(1):14–31. https://doi.org/10.1148/rg.351130010.

    Article  PubMed  Google Scholar 

  17. Netter FH. In: Netter FH, Dalley AF, editors. Atlas of human anatomy. 5th ed. East Hanover: Navartis; 2010.

    Google Scholar 

  18. Matsuyama TA, Inoue S, Kobayashi Y, et al. Anatomical diversity and age-related histological changes in the human right atrial posterolateral wall. Europace. 2004;6(4):307–15. https://doi.org/10.1016/j.eupc.2004.03.011.

    Article  PubMed  Google Scholar 

  19. Akcay M, Bilen ES, Bilge M, Durmaz T, Kurt M. Prominent crista terminalis: as an anatomic structure leading to atrial arrhythmias and mimicking right atrial mass. J Am Soc Echocardiogr. 2007;20(2):e9–e10. https://doi.org/10.1016/j.echo.2006.08.037.

    Article  Google Scholar 

  20. Ifrim M, Capusan I. Morfologie normala si patologica a tesutului conjunctiv (normal and pathological morphology of the connective tissue). Bucharest: Editura Medicala; 1983.

    Google Scholar 

  21. Sehar N, Mears J, Bisco S, Patel S, Lachman N, Asirvatham SJ. Anatomic guidance for ablation: atrial flutter, fibrillation, and outflow tract ventricular tachycardia. Indian Pacing Electrophysiol J. 2010;10(8):339–56.

    PubMed  PubMed Central  Google Scholar 

  22. Asirvatham SJ, et al. Prevalence of a right atrial pouch and extension of pectinate muscles across the tricuspid valve-IVC isthmus. Circulation. 2001;104:409.

    Google Scholar 

  23. Sánchez-Quintana D, Anderson RH, Cabrera JA, et al. The terminal crest: morphological features relevant to electrophysiology. Heart. 2002;88(4):406–11. https://doi.org/10.1136/heart.88.4.406.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cabrera JA, et al. Angiographic anatomy of the inferior right atrial isthmus in patients with and without history of common atrial flutter. Circulation. 1999;99:3017.

    Article  CAS  PubMed  Google Scholar 

  25. Cabrera JA, Sánchez-Quintana D, Ho SY, Medina A, Anderson RH. The architecture of the atrial musculature between the orifice of the inferior caval vein and the tricuspid valve: the anatomy of the isthmus. J Cardiovasc Electrophysiol. 1998;9(11):1186–95. https://doi.org/10.1111/j.1540-8167.1998.tb00091.x.

    Article  PubMed  CAS  Google Scholar 

  26. Cosio FG, et al. Radiofrequency ablation of the inferior vena cava-tricuspid valve isthmus in common atrial flutter. Am J Cardiol. 1993;71:705.

    Article  CAS  PubMed  Google Scholar 

  27. Da Costa A, et al. Effect of isthmus anatomy and ablation catheter on radiofrequency catheter ablation of the cavotricuspid isthmus. Circulation. 2004;110:1030.

    Article  PubMed  Google Scholar 

  28. Cabrera JA, Sánchez-Quintana D, Farré J, Rubio JM, Siew YH. The inferior right atrial isthmus: further architectural insights for current and coming ablation technologies. J Cardiovasc Electrophysiol. 2005;16(4):402–8. https://doi.org/10.1046/j.1540-8167.2005.40709.x.

    Article  PubMed  Google Scholar 

  29. Saremi F, Channual S, Raney A, et al. Imaging of patent foramen ovale with 64-section multidetector CT. Radiology. 2008;249(2):483–92. https://doi.org/10.1148/radiol.2492080175.

    Article  PubMed  Google Scholar 

  30. Hightower JS, Taylor AG, Ursell PC, LaBerge JM. The Chiari network: a rare cause of intracardiac guide wire entrapment. J Vasc Interv Radiol. 2015;26(4):604–6. https://doi.org/10.1016/j.jvir.2014.12.004.

    Article  PubMed  Google Scholar 

  31. Chang SL, Tai CT, Lin YJ, et al. The electroanatomic characteristics of the cavotricuspid isthmus: implications for the catheter ablation of atrial flutter. J Cardiovasc Electrophysiol. 2007;18(1):18–22. https://doi.org/10.1111/j.1540-8167.2006.00647.x.

    Article  PubMed  Google Scholar 

  32. Heidbüchel H, Willems R, Van Rensburg H, Adams J, Ector H, Van de Werf F. Right atrial angiographic evaluation of the posterior isthmus: relevance for ablation of typical atrial flutter. Circulation. 2000;101(18):2178–84. https://doi.org/10.1161/01.cir.101.18.2178.

    Article  PubMed  Google Scholar 

  33. El Yaman MM, et al. Methods to access the surgically excluded cavotricuspid isthmus for complete ablation of typical atrial flutter in patients with congenital heart defects. Heart Rhythm. 2009;6:949. https://doi.org/10.1016/j.hrthm.2009.03.017.

    Article  PubMed  Google Scholar 

  34. McKay T. Prominent crista terminalis and Eustachian ridge in the right atrium: two dimensional (2D) and three dimensional (3D) imaging. Eur J Echocardiogr. 2007;8:288. https://doi.org/10.1016/j.euje.2006.03.006.

    Article  PubMed  Google Scholar 

  35. Nakagawa H, et al. Role of the tricuspid annulus and the eustachian valve/ridge on atrial flutter. Relevance to catheter ablation of the septal isthmus and a new technique for rapid identification of ablation success. Circulation. 1996;94:407.

    Article  CAS  PubMed  Google Scholar 

  36. Da Costa A, et al. Cavotricuspid isthmus angiography predicts atrial flutter ablation efficacy in 281 patients randomized between 8 mm- and externally irrigated-tip catheter. Eur Heart J. 2006;27(15):1833–40. https://doi.org/10.1093/eurheartj/ehl121.

    Article  PubMed  Google Scholar 

  37. Morton JB, et al. Phased-array intracardiac echocardiography for defining cavotricuspid isthmus anatomy during radiofrequency ablation of typical atrial flutter. J Cardiovasc Electrophysiol. 2003;14(6):591–7.

    Article  PubMed  Google Scholar 

  38. Okishige K, et al. Clinical study regarding the anatomical structures of the right atrial isthmus using intra-cardiac echocardiography: implication for catheter ablation of common atrial flutter. J Interv Card Electrophysiol. 2005;12(1):9–12. https://doi.org/10.1007/s10840-005-5835-0.

    Article  PubMed  Google Scholar 

  39. Anderson RH, Boyett MR, Dobrzynski H, Moorman AFM. The anatomy of the conduction system: implications for the clinical cardiologist. J Cardiovasc Transl Res. 2013;6:187–96.

    Article  PubMed  Google Scholar 

  40. Anderson RH, Spicer DE, Hlavacek AJ, Hill A, Loukas M. Describing the cardiac components-attitudinally appropriate nomenclature. J Cardiovasc Transl Res. 2013;6(2):118–23. https://doi.org/10.1007/s12265-012-9434-z.

    Article  PubMed  Google Scholar 

  41. Romfh A, Pluchinotta FR, Porayette P, Valente AM, Sanders SP. Congenital heart defects in adults: a field guide for cardiologists. J Clin Exp Cardiol. 2012;2015(Suppl 8):7.

    Google Scholar 

  42. Faletra FF, Nucifora G, Ho SY. Imaging the atrial septum using real-time three-dimensional transesophageal echocardiography: technical tips, normal anatomy, and its role in transseptal puncture. J Am Soc Echocardiogr. 2011;24(6):593–9. https://doi.org/10.1016/j.echo.2011.01.022.

    Article  PubMed  Google Scholar 

  43. Mori S, Fukuzawa K, Takaya T, et al. Clinical cardiac structural anatomy reconstructed within the cardiac contour using multidetector-row computed tomography: atrial septum and ventricular septum. Clin Anat. 2015;29(3):342–52. https://doi.org/10.1002/ca.22546.

    Article  PubMed  Google Scholar 

  44. Anderson RH, Spicer DE, Brown NA, Mohun TJ. The development of septation in the four-chambered heart. Anat Rec. 2014;297(8):1414–29. https://doi.org/10.1002/ar.22949.

    Article  Google Scholar 

  45. Lai W, Mertens L, Cohen M, Geva T. Echocardiography in pediatric and congenital heart disease: from fetus to adult. Hoboken: Wiley-Blackwell; 2009.

    Book  Google Scholar 

  46. Hasan A, Parvez A, Ajmal MR. Patent foramen ovale: clinical significance. J Indian Acad Clin Med. 2004;5(4):339–44.

    Google Scholar 

  47. Tzeis S, Andrikopoulos G, Deisenhofer I, Ho SY, Theodorakis G. Transseptal catheterization: considerations and caveats. Pacing Clin Electrophysiol. 2010;33(2):231–42. https://doi.org/10.1111/j.1540-8159.2009.02598.x.

    Article  PubMed  Google Scholar 

  48. Choudhary G, Malik AA, Stapleton D, Reddy PC. In: Lakshmanadoss U, editor. Assessment of right ventricle by echocardiogram, echocardiography in heart failure and cardiac electrophysiology: InTech; 2016. doi: https://doi.org/10.5772/64781. https://www.intechopen.com/books/echocardiography-in-heart-failure-and-cardiac-electrophysiology/assessment-of-right-ventricle-by-echocardiogram. (Open access article).

    Chapter  Google Scholar 

  49. Ho SY, Nihoyannopoulos P. Anatomy, echocardiography, and normal right ventricular dimensions. Heart. 2006;92(Suppl 1):i2–13. https://doi.org/10.1136/hrt.2005.077875.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Saleh S, Liakopoulos OJ, Buckberg GD. The septal motor of biventricular function. Eur J Cardiothorac Surg. 2006;29(Suppl 1):S126–38. https://doi.org/10.1016/j.ejcts.2006.02.048.

    Article  PubMed  Google Scholar 

  51. Sheehan FH, Ge S, Vick GW, Urnes K, Kerwin WS, Bolson EL, Chung T, Kovalchin JP, Sahn DJ, Jerosch-Herold M, Stolpen AH. Three-dimensional shape analysis of right ventricular remodeling in repaired tetralogy of Fallot. Am J Cardiol. 2008;101(1):107–13. https://doi.org/10.1016/j.amjcard.2007.07.080.

    Article  PubMed  Google Scholar 

  52. Sánchez-Quintana D, López-Mínguez JR, Macías Y, Cabrera JA, Saremi F. Left atrial anatomy relevant to catheter ablation. Cardiol Res Pract. 2014;2014:289720. https://doi.org/10.1155/2014/289720.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Ram F, Dhar M. A modified procedure for calculating person years of life lost. Janasamkhya. 1992;10(1-2):1–12.

    PubMed  CAS  Google Scholar 

  54. Rogers JH, Bolling SF. The tricuspid valve: current perspective and evolving management of tricuspid regurgitation. Circulation. 2009;119(20):2718–25.

    Article  PubMed  Google Scholar 

  55. Ostenfeld E, Flachskampf FA. Assessment of right ventricular volumes and ejection fraction by echocardiography: from geometric approximations to realistic shapes. Echo Res Pract. 2015;2(1):R1–R11.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Partridge JB, Anderson RH. Left ventricular anatomy: its nomenclature, segmentation, and planes of imaging. Clin Anat. 2009;22(1):77–84. https://doi.org/10.1002/ca.20646.

    Article  PubMed  Google Scholar 

  57. Saremi F, Ho SY, Sánchez-Quintana D. Morphological assessment of RVOT: CT and CMR imaging. J Am Coll Cardiol Img. 2013;6(5):631–5. https://doi.org/10.1016/j.jcmg.2012.06.018.

    Article  Google Scholar 

  58. Anderson RH, Razavi R, Taylor AM. Cardiac anatomy revisited. J Anat. 2004;205(3):159–77. https://doi.org/10.1111/j.0021-8782.2004.00330.x.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Spicer DE, Anderson RH. Methodological review of ventricular anatomy - the basis for understanding congenital cardiac malformations. J Cardiovasc Transl Res. 2013;6(2):145–54. https://doi.org/10.1007/s12265-012-9432-1.

    Article  PubMed  Google Scholar 

  60. Scanavacca M, Lara S, Hardy C, Pisani CF. How to identify & treat epicardial origin of outflow tract tachycardias. J Atr Fibrillation. 2015;7(6):1195. https://doi.org/10.4022/jafib.1195.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Bashore TM. Adult congenital heart disease: right ventricular outflow tract lesions. Circulation. 2007;115(14):1933–47.

    Article  PubMed  Google Scholar 

  62. Foale R, Nihoyannopoulos P, McKenna W, et al. Echocardiographic measurement of the normal adult right ventricle. Br Heart J. 1986;5:633–44.

    Google Scholar 

  63. Grant RP, Downey FM, MacMahon H. The architecture of the right ventricular outflow tract in the normal human heart and in the presence of ventricular septal defects. Circulation. 1961;24:223–35.

    Article  CAS  PubMed  Google Scholar 

  64. Iaizzo PA, editor. Handbook of cardiac anatomy, physiology, and device. 2nd ed. New York: Springer; 2009. ISBN: 9781603273718.

    Google Scholar 

  65. James TN. The internodal pathways of the human heart. Prog Cardiovasc Dis. 2001;43(6):495–535.

    Article  CAS  PubMed  Google Scholar 

  66. Anderson RH, Ho SY. The architecture of the sinus node, the atrioventricular conduction axis, and the internodal atrial myocardium. J Cardiovasc Electrophysiol. 1998;9(11):1233–48.

    Article  CAS  PubMed  Google Scholar 

  67. Hai JJ, Lachman N, Syed FF, Desimone CV, Asirvatham SJ. The anatomic basis for ventricular arrhythmia in the normal heart: what the student of anatomy needs to know. Clin Anat. 2014;27(6):885–93. https://doi.org/10.1002/ca.22362.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Anderson RH, Becker AE, Brechenmacher C, Davies MJ, Rossi L. The human atrioventricular junctional area. A morphological study of the A-V node and bundle. Eur J Cardiol. 1975;3:11–25.

    PubMed  CAS  Google Scholar 

  69. Anderson RH, Ho SY. The morphology of the specialized atrioventricular junctional area: the evolution of understanding. PACE. 2002;25:957–66.

    Article  PubMed  Google Scholar 

  70. Anderson RH, Yanni J, Boyett MR, Chandler NJ, Dobrzynski H. The anatomy of the Cardiac Conduction System. Clin Anat. 2009;22:99–113.

    Article  PubMed  Google Scholar 

  71. Loukas M, Klaassen Z, Tubbs RS, et al. Anatomical observations of the moderator band. Clin Anat. 2010;23(4):443–50. https://doi.org/10.1002/ca.20968.

    Article  PubMed  Google Scholar 

  72. Stephenson RS, Atkinson A, Kottas P, Perde F, Jafarzadeh F, Bateman M, Iaizzo PA, Zhao J, Zhang H, Anderson RH, Jarvis JC, Dobrzynski H. High resolution 3-dimensional imaging of the human cardiac conduction system from microanatomy to mathematical modeling. Sci Rep. 2017;7(1):7188. https://doi.org/10.1038/s41598-017-07694-8.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tawara S. The conduction system of the mammalian heart: an anatomico-histological study of the atrioventricular bundle and the purkinje fibers. London: Imperial College Press; 2000.

    Book  Google Scholar 

  74. Davies F, Francis ETB. The conducting system of the vertebrate heart. Biol Rev. 1946;21:173–88. https://doi.org/10.1111/j.1469-185X.1946.tb00323.x.

    Article  PubMed  CAS  Google Scholar 

  75. Truex RC, Smythe MQ. Reconstruction of the human atrioventricular node. Anat Rec. 1967;158:11–9. https://doi.org/10.1002/ar.1091580103.

    Article  PubMed  CAS  Google Scholar 

  76. Oosthoek PW, Virágh S, Lamers WH, Moorman AF. Immunohistochemical delineation of the conduction system. II: the atrioventricular node and Purkinje fibers. Circ Res. 1993;73:482–91. https://doi.org/10.1161/01.RES.73.3.482.

    Article  PubMed  CAS  Google Scholar 

  77. Bovendeerd PH, Huyghe JM, Arts T, van Campen DH, Reneman RS. Influence of endocardial-epicardial crossover of muscle fibers on left ventricular wall mechanics. J Biomech. 1994;27(7):941–51.

    Article  CAS  PubMed  Google Scholar 

  78. Buckberg GD, Coghlan HC, Torrent-Guasp F. The structure and function of the helical heart and its buttress wrapping. V. Anatomic and physiologic considerations in the healthy and failing heart. Semin Thorac Cardiovasc Surg. 2001;13(4):358–85.

    Article  CAS  PubMed  Google Scholar 

  79. Mirsky I, Parmley WW. Assessment of passive elastic stiffness for isolated heart muscle and the intact heart. Circ Res. 1973;33(2):233–43.

    Article  CAS  PubMed  Google Scholar 

  80. Ho SY, Sánchez-Quintana D. The importance of atrial structure and fibers. Clin Anat. 2009;22:52–63. https://doi.org/10.1002/ca.20634.

    Article  PubMed  CAS  Google Scholar 

  81. Ferrer A, Sebastián R, Sánchez-Quintana D, Rodríguez JF, Godoy EJ, Martínez L, Saiz J. Detailed anatomical and electrophysiological models of human atria and torso for the simulation of atrial activation. PLoS One. 2015;10(11):e0141573. https://doi.org/10.1371/journal.pone.0141573.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Pashakhanloo F, Herzka DA, Ashikaga H, Mori S, Gai N, Bluemke DA, Trayanova NA, McVeigh ER. Myofiber architecture of the human atria as revealed by submillimeter diffusion tensor imaging. Circ Arrhythm Electrophysiol. 2016;9(4):e004133. https://doi.org/10.1161/CIRCEP.116.004133.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Anderson B. Chapter 2: ventricular systolic function. In: Anderson B, editor. A sonographer’s guide to the assessment of heart disease. Sydney: MGA Graphics; 2014. p. 24. www.echotext.info. ISBN:9780992322205.

    Google Scholar 

  84. Greenbaum RA, Ho SY, Gibson DG, Becker AE, Anderson RH. Left ventricular fibre architecture in man. Br Heart J. 1981;45(3):248–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Torrent-Guasp F, Kocica MJ, Corno AF, Komeda M, Carreras-Costa F, Flotats A, Cosin-Aguillar J, Wen H. Towards new understanding of the heart structure and function. Eur J Cardiothorac Surg. 2005;27(2):191–201. https://doi.org/10.1016/j.ejcts.2004.11.026.

    Article  PubMed  Google Scholar 

  86. Sheehan F, Redington A. The right ventricle: anatomy, physiology and clinical imaging. Heart. 2008;94(11):1510–5. https://doi.org/10.1136/hrt.2007.132779.

    Article  PubMed  Google Scholar 

  87. Bleeker GB, Steendijk P, Holman ER, CM Y, Breithardt OA, Kaandorp TA, Schalij MJ, van der Wall EE, Nihoyannopoulos P, Bax JJ. Assessing right ventricular function: the role of echocardiography and complementary technologies. Heart. 2006;92(Suppl 1):i19–26. https://doi.org/10.1136/hrt.2005.082503.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Kaul S. The interventricular septum in health and disease. Am Heart J. 1986;112:568–81.

    Article  CAS  PubMed  Google Scholar 

  89. Lindqvist P, Morner S, Karp K, Waldenstrom A. New aspects of septal function by using 1-dimensional strain and strain rate imaging. J Am Soc Echocardiogr. 2006;19:1345–9.

    Article  PubMed  Google Scholar 

  90. Klima U, Guerrero JL, Vlahakes GJ. Contribution of the interventricular septum to maximal right ventricular function. Eur J Cardiothorac Surg. 1998;14:250–5.

    Article  CAS  PubMed  Google Scholar 

  91. Buckberg G, Athanasuleas C, Saleh S. Septal myocardial protection during cardiac surgery for prevention of right ventricular dysfunction. Anatol J Cardiol. 2008;8(suppl 2):108–16.

    Google Scholar 

  92. Woods RH. A few applications of a physical theorem to membranes in the human body in a state of tension. Trans R Acad Med Ireland. 1892;10:417–27. https://doi.org/10.1007/BF03171228.

    Article  Google Scholar 

  93. Hou Y, Crossman DJ, Rajagopal V, Baddeley D, Jayasinghe I, Soeller C. Super-resolution fluorescence imaging to study cardiac biophysics: α-actinin distribution and z-disk topologies in optically thick cardiac tissue slices. Prog Biophys Mol Biol. 2014;115:328–39. https://doi.org/10.1016/j.pbiomolbio.2014.07.003.

    Article  PubMed  CAS  Google Scholar 

  94. Rajagopal V, et al. Examination of the effects of heterogeneous organization of RyR clusters, myofibrils and mitochondria on Ca2+ release patterns in cardiomyocytes. PLoS Comput Biol. 2015;11:e1004417. https://doi.org/10.1371/journal.pcbi.1004417.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Chabiniok R, Wang VY, Hadjicharalambous M, Asner L, Lee J, Sermesant M, Kuhl E, Young AA, Moireau P, Nash MP, Chapelle D, Nordsletten DA. Multiphysics and multiscale modelling, data–model fusion and integration of organ physiology in the clinic: ventricular cardiac mechanics. Interface Focus. 2016;6(2):20150083. https://doi.org/10.1098/rsfs.2015.0083.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Opie LH. Heart physiology: from cell to circulation. Philadelphia: Lippincott Williams and Wilkins; 2004.

    Google Scholar 

  97. May-Newman K, Omens JH, Pavelec RS, McCulloch AD. Three-dimensional transmural mechanical interaction between the coronary vasculature and passive myocardium in the dog. Circ Res. 1994;74:1166–78. https://doi.org/10.1161/01.RES.74.6.1166.

    Article  PubMed  CAS  Google Scholar 

  98. Reeve AM, Nash MP, Taberner AJ, Nielsen PM. Constitutive relations for pressure-driven stiffening in poroelastic tissues. J Biomech Eng. 2014;136:081011. https://doi.org/10.1115/1.4027666.

    Article  Google Scholar 

  99. Chapelle D, Gerbeau J-F, Sainte-Marie J, Vignon-Clementel I. A poroelastic model valid in large strains with applications to perfusion in cardiac modeling. Comput Mech. 2010;46:91–101. https://doi.org/10.1007/s00466-009-0452-x.

    Article  Google Scholar 

  100. Michler C, et al. A computationally efficient framework for the simulation of cardiac perfusion using a multi-compartment Darcy porous-media flow model. Int J Numer Methods Biomed Eng. 2013;29:217–32. https://doi.org/10.1002/cnm.2520.

    Article  CAS  Google Scholar 

  101. Lee J, Cookson A, Chabiniok R, Rivolo S, Hyde E, Sinclair M, Michler C, Sochi T, Smith N. Multiscale modelling of cardiac perfusion. In: Quarteroni A, editor. Modeling the heart and the circulatory system. Basel: Springer; 2015. p. 51–96.

    Google Scholar 

  102. Buckberg G, Hoffman JI. Right ventricular architecture responsible for mechanical performance: unifying role of ventricular septum. J Thorac Cardiovasc Surg. 2014;148(6):3166–71.e1. https://doi.org/10.1016/j.jtcvs.2014.05.044.

    Article  PubMed  Google Scholar 

  103. Loukas M, Aly I, Tubbs RS, Anderson RH. The naming game: a discrepancy among the medical community. Clin Anat. 2016;29:285–9. https://doi.org/10.1002/ca.22666.

    Article  PubMed  Google Scholar 

  104. Saremi F, Pourzand L, Krishnan S, et al. Right atrial cavotricuspid isthmus: anatomic characterization with multi-detector row CT. Radiology. 2008;247(3):658–68. https://doi.org/10.1148/radiol.2473070819.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ifrim, M., Bontaş, E., Cochior, D., Ţintoiu, I.C. (2018). Right Heart Anatomy: A Short Uptodate. In: Dumitrescu, S., Ţintoiu, I., Underwood, M. (eds) Right Heart Pathology. Springer, Cham. https://doi.org/10.1007/978-3-319-73764-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73764-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73763-8

  • Online ISBN: 978-3-319-73764-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics