Skip to main content

Primary and Secondary Pulmonary Hypertension

  • Chapter
  • First Online:
Right Heart Pathology
  • 1898 Accesses

Abstract

Pulmonary hypertension (PH) is a complex syndrome that may complicate different cardiovascular, respiratory and systemic disorders. Once considered an orphan disease, currently things have changed in recent years due to major progress seen towards the understanding of this multidisciplinary disorder. PH is defined as an increase in mean pulmonary artery pressure (PAP) ≥25 mmHg at rest as measured invasively by right heart catheterization (RHC). According to common pathophysiological and therapeutic characteristics, 5 clinical groups of PH are defined. Pulmonary arterial hypertension (PAH) or group 1 of PH includes idiopathic and heritable PAH, PAH associated with connective tissue disorders, congenital heart diseases, toxins and drugs, HIV infection and portal hypertension. The common feature of these PH forms is involvement of the distal pulmonary arteries. In PH, the right ventricle (RV) adapts to a dual pressure overload composed by the fixed pulmonary vascular resistance and the pulsatile pressure overload due to pulmonary artery stiffness. RV function is the main determinant of the outcome in PH patients. Based on clinical suspicion or screening of high risk populations, transthoracic echocardiography establishes the probability of PH while the RHC is mandatory to confirm the diagnosis, to assess the severity of haemodynamic impairment and to perform pulmonary vasoreactivity testing in selected PAH patients and to assess the response to PAH treatment or confirm disease worsening. Other diagnostic tools are useful to identify the different forms of PAH and PH and to test the exercise capacity of the patients. Treatment of PAH has evolved considerably over the past 30 years, in part due to the advances in knowledge of the disease and the availability of drugs that target known pathways in the disease pathobiology. Despite this real progress, PAH remains a chronic progressive disorder. Current therapeutic approaches are medical therapy, interventional and surgical procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Galie N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS guidelines for the diagnosis and treatment of pulmonary hypertension. Eur Heart J. 2016;37:67–119.

    Article  PubMed  Google Scholar 

  2. Kovacs G, Berghold A, Scheidl S, Olschewski H. Pulmonary arterial pressure during rest and exercise in healthy subjects: a systematic review. Eur Respir J. 2009;34:888–94.

    Article  PubMed  CAS  Google Scholar 

  3. Barst RJ, McGoon M, Torbicki A, et al. Diagnosis and differential assessment of pulmonary arterial hypertension. J Am Coll Cardiol. 2004;43(Suppl 1):S40–7.

    Article  Google Scholar 

  4. Hoeper MM, Humbert M, Souza R, et al. A global view on pulmonary hypertension. Lancet Respir Med. 2016;4:306–22.

    Article  PubMed  Google Scholar 

  5. Pepke-Zaba J, Delcroix M, Lang I, et al. Chronic thromboembolic pulmonary hypertension (CTEPH): results from an international prospective registry. Circulation. 2011;124:1973–81.

    Article  PubMed  Google Scholar 

  6. Soubrier F, Chung WK, Machado R, et al. Genetics and genomics of pulmonary arterial hypertension. J Am Coll Cardiol. 2013;62:D13–21.

    Article  PubMed  CAS  Google Scholar 

  7. McLaughlin VV, McGoon MD. Pulmonary arterial hypertension. Circulation. 2006;114:1417–31.

    Article  PubMed  Google Scholar 

  8. Simonneau G, Gatzoulis MA, Adatia I, et al. Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol. 2013;62:D34–41.

    Article  PubMed  Google Scholar 

  9. Eyries M, Montani D, Girerd B, et al. EIF2AK4 mutations cause pulmonary veno-occlusive disease, a recessive form of pulmonary hypertension. Nat Genet. 2014;46:65–9.

    Article  PubMed  CAS  Google Scholar 

  10. Dorfmuller P. Pathology of pulmonary vascular diseases. In: Peacock AJ, Naeije R, Rubin LJ, editors. Pulmonary circulation. Diseases and their treatment. 4th ed. Boca Raton: CRC Press, Taylor & Francis Group; 2016. p. 61–78.

    Google Scholar 

  11. Ormiston ML, Morrell NW. Pathobiology of pulmonary hypertension. In: Peacock AJ, Naeije R, Rubin LJ, editors. Pulmonary circulation. Diseases and their treatment. 4th ed. Boca Raton: CRC Press, Taylor & Francis Group; 2016. p. 79–95.

    Google Scholar 

  12. Vonk-Noordegraaf A, Haddad F, Chin KM, et al. Right heart adaptation to pulmonary hypertension: physiology and pathobiology. J Am Coll Cardiol. 2013;62:D22–33.

    Article  PubMed  Google Scholar 

  13. Vonk-Noordegraaf A, Westerhof BE, Westerhof N. The relationship between the right ventricle and its load in pulmonary hypertension. J Am Coll Cardiol. 2017;69:236–43.

    Article  PubMed  Google Scholar 

  14. Rich S, Dantzker DR, Ayres S, et al. Primary pulmonary hypertension. A national prospective study. Ann Intern Med. 1987;107:216–23.

    Article  PubMed  CAS  Google Scholar 

  15. Rich S, McLaughlin VV, O’Neill W. Stenting to reverse left ventricular ischemia due to left main coronary artery compression in primary pulmonary hypertension. Chest. 2001;120:1412–5.

    Article  PubMed  CAS  Google Scholar 

  16. McGoon M, Gutterman D, Stern V, et al. Screening, early detection and diagnosis of pulmonary arterial hypertension. Chest. 2004;126:14S–34S.

    Article  PubMed  Google Scholar 

  17. Rudski LG, Lai WW, Afilalo J, et al. Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of Echocardiography endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography. J Am Soc Echocardiogr. 2010;23:685–713.

    Article  PubMed  Google Scholar 

  18. Tunariu N, Gibbs SJR, Win Z, et al. Ventilation-perfusion scintigraphy is more sensitive than multidetector CTPA in detecting chronic thromboembolic pulmonary disease as a treatable cause of pulmonaryhypertension. J Nucl Med. 2007;48:680–4.

    Article  PubMed  Google Scholar 

  19. Rajaram S, Swift AJ, Condliffe R, et al. CT features of pulmonary arterial hypertension and its major subtypes: a systematic CT evaluation of 292 patients from the ASPIRE registry. Thorax. 2015;70:382–7.

    Article  PubMed  CAS  Google Scholar 

  20. van Wolferen SA, Marcus JT, Boonstra A, et al. Prognostic value of right ventricular mass, volume, and function in idiopathic pulmonary arterial hypertension. Eur Heart J. 2007;28:1250–7.

    Article  PubMed  Google Scholar 

  21. van de Veerdonk MC, Kind T, Marcus JT, et al. Progressive right ventricular dysfunction in patients with pulmonary arterial hypertension responding to therapy. J Am Coll Cardiol. 2011;58:2511–9.

    Article  PubMed  Google Scholar 

  22. Blumberg FC, Arzt M, Lange T, et al. Impact of right ventricular reserve on exercise capacity and survival in patients with pulmonary hypertension. Eur J Heart Fail. 2013;15:771–5.

    Article  PubMed  Google Scholar 

  23. Fujimoto N, Borlaug BA, Lewis GD, et al. Hemodynamic responses to rapid saline loading: the impact of age, sex, and heart failure. Circulation. 2013;127:55–62.

    Article  PubMed  CAS  Google Scholar 

  24. D’Alonzo GE, Barst RJ, Ayres SM, et al. Survival in patients with primary pulmonary hypertension. Results from a national prospective registry. Ann Intern Med. 1991;115:343–9.

    Article  PubMed  Google Scholar 

  25. Gomberg-Maitland M, Dufton C, Oudiz RJ, Benza RL. Compelling evidence of long-term outcomes in pulmonary arterial hypertension? A clinical perspective. J Am Coll Cardiol. 2011;57:1053–61.

    Article  PubMed  CAS  Google Scholar 

  26. Chan L, Chin LM, Kennedy M, et al. Benefits of intensive treadmill exercise training on cardiorespiratory function and quality of life in patients with pulmonary hypertension. Chest. 2013;143:333–43.

    Article  PubMed  Google Scholar 

  27. Jaïs X, Olsson KM, Barbera JA, et al. Pregnancy outcomes in pulmonary arterial hypertension in the modern management era. Eur Respir J. 2012;40:881–5.

    Article  PubMed  Google Scholar 

  28. Olsson KM, Delcroix M, Ghofrani HA, et al. Anticoagulation and survival in pulmonary arterial hypertension: results from the Comparative, Prospective Registry of Newly Initiated Therapies for Pulmonary Hypertension (COMPERA). Circulation. 2014;129:57–65.

    Article  PubMed  CAS  Google Scholar 

  29. Sitbon O, Humbert M, Jais X, et al. Long-term response to calcium channel blockers in idiopathic pulmonary arterial hypertension. Circulation. 2005;111:3105–11.

    Article  PubMed  CAS  Google Scholar 

  30. Barst RJ, Rubin LJ, Long WA, et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. N Engl J Med. 1996;334:296–302.

    Article  PubMed  CAS  Google Scholar 

  31. Simonneau G, Barst RJ, Galie N, et al. Continuous subcutaneous infusion of treprostinil, a prostacyclin analogue, in patients with pulmonary arterial hypertension. A double-blind, randomized, placebo-controlled trial. Am J Respir Crit Care Med. 2002;165:800–4.

    Article  PubMed  Google Scholar 

  32. McLaughlin VV, Benza RL, Rubin LJ, et al. Addition of inhaled treprostinil to oral therapy for pulmonary arterial hypertension. A randomized controlled clinical trial. J Am Coll Cardiol. 2010;55:1915–22.

    Article  PubMed  CAS  Google Scholar 

  33. Olschewski H, Simonneau G, Galiè N, AIR Study Group, et al. Inhaled iloprost in severe pulmonary hypertension. N Engl J Med. 2002;347:322–9.

    Article  PubMed  CAS  Google Scholar 

  34. Sitbon O, Channick R, Chin KM, GRIPHON Investigators, et al. Selexipag for the treatment of pulmonary arterial hypertension. N Engl J Med. 2015;373:2522–33.

    Article  CAS  PubMed  Google Scholar 

  35. Galiè N, Olschewski H, Oudiz RJ, et al. Ambrisentan for the treatment of pulmonary arterial hypertension. Results of the ambrisentan in pulmonary arterial hypertension, randomized, doubleblind, placebo-controlled, multicenter, efficacy (ARIES) study 1 and 2. Circulation. 2008;117:3010–9.

    Article  CAS  PubMed  Google Scholar 

  36. Pulido T, Adzerikho I, Channick RN, et al. Macitentan and morbidity and mortality in pulmonary arterial hypertension. N Engl J Med. 2013;369:809–18.

    Article  CAS  PubMed  Google Scholar 

  37. Galie N, Ghofrani AH, Torbicki A, Sildenafil Use in Pulmonary Arterial Hypertension (SUPER) Study Group, et al. Sildenafil citrate therapy for pulmonary arterial hypertension. N Engl J Med. 2005;353:2148–57.

    Article  CAS  PubMed  Google Scholar 

  38. Galiè N, Brundage BH, Ghofrani HA, et al. Tadalafil therapy for pulmonary arterial hypertension. Circulation. 2009;119:2894–903.

    Article  CAS  PubMed  Google Scholar 

  39. Jing Z-C, Yu Z-X, Shen J-Y, et al. Vardenafil in pulmonary arterial hypertension: a randomized, double-blind, placebo-controlled study. Am J Respir Crit Care Med. 2011;183:1723–9.

    Article  CAS  PubMed  Google Scholar 

  40. Ghofrani H-A, Galiè N, Grimminger F, et al. Riociguat for the treatment of pulmonary arterial hypertension. N Engl J Med. 2013;369:330–40.

    Article  PubMed  CAS  Google Scholar 

  41. Galiè N, Barberà JA, Frost AE, et al. Initial use of ambrisentan plus tadalafil in pulmonary arterial hypertension. N Engl J Med. 2015;373:834–44.

    Article  PubMed  CAS  Google Scholar 

  42. Sitbon O, Jaïs X, Savale L, et al. Upfront triple combination therapy in pulmonary arterial hypertension: a pilot study. Eur Respir J. 2014;43:1691–7.

    Article  PubMed  Google Scholar 

  43. Montani D, Bergot E, Günther S, et al. Pulmonary arterial hypertension in patients treated by dasatinib. Circulation. 2012;125:2128–37.

    Article  PubMed  CAS  Google Scholar 

  44. Hopkins WE, Ochoa LL, Richardson GW, Trulock EP. Comparison of the hemodynamics and survival of adults with severe primary pulmonary hypertension or Eisenmenger syndrome. J Heart Lung Transplant. 1996;15:100–5.

    PubMed  CAS  Google Scholar 

  45. Manes A, Palazzini M, Leci E, et al. Current era survival of patients with pulmonary arterial hypertension associated with congenital heart disease: a comparison between clinical subgroups. Eur Heart J. 2014;35:716–24.

    Article  PubMed  Google Scholar 

  46. Galiè N, Beghetti M, Gatzoulis MA, et al. Bosentan therapy in patients with Eisenmenger syndrome: a multicenter, double-blind, randomized, placebo-controlled study. Circulation. 2006;114:48–54.

    Article  PubMed  CAS  Google Scholar 

  47. Gatzoulis MA, Beghetti M, Galiè N, et al. Longer-term bosentan therapy improves functional capacity in Eisenmenger syndrome: results of the BREATHE-5 open-label extension study. Int J Cardiol. 2007;127:27–32.

    Article  PubMed  Google Scholar 

  48. Coghlan JG, Denton CP, Gruenig E, et al. Evidence-based detection of pulmonary arterial hypertension in systemic sclerosis: the DETECT study. Ann Rheum Dis. 2014;73:1340–9.

    Article  PubMed  Google Scholar 

  49. Launay D, Sitbon O, Hachulla E, et al. Survival in systemic sclerosis-associated pulmonary arterial hypertension in the modern management era. Ann Rheum Dis. 2013;72:1940–6.

    Article  PubMed  Google Scholar 

  50. Nunes H, Humbert M, Sitbon O, et al. Prognostic factors for survival in human immunodeficiency virus-associated pulmonary arterial hypertension. Am J Respir Crit Care Med. 2003;167:1433–9.

    Article  PubMed  Google Scholar 

  51. Krowka MJ, Plevak DJ, Findlay JY, et al. Pulmonary hemodynamics and perioperative cardiopulmonary-related mortality in patients with portopulmonary hypertension undergoing liver transplantation. Liver Transpl. 2000;6:443–50.

    Article  PubMed  CAS  Google Scholar 

  52. Provencher S, Herve P, Jaïs X, et al. Deleterious effects of beta-blockers on exercise capacity and hemodynamics in patients with portopulmonary hypertension. Gastroenterology. 2006;130:120–6.

    Article  PubMed  CAS  Google Scholar 

  53. Montani D, O’Callaghan DS, Savale L, et al. Pulmonary veno-occlusive disease: recent progress and current challenges. Respir Med. 2010;104:S23–32.

    Article  PubMed  Google Scholar 

  54. Best DH, Sumner KL, Austin ED, et al. EIF2AK4 mutations in pulmonary capillary hemangiomatosis. Chest. 2014;145:231–6.

    Article  PubMed  CAS  Google Scholar 

  55. Montani D, Achouh L, Dorfmuller P, et al. Pulmonary veno-occlusive disease: clinical, functional, radiologic, and hemodynamic characteristics and outcome of 24 cases confirmed by histology. Medicine (Baltimore). 2008;87:220–33.

    Article  Google Scholar 

  56. Vachiery JL, Adir Y, Barbera JA, et al. Pulmonary hypertension due to left heart disease. J Am Coll Cardiol. 2013;62:D100–8.

    Article  PubMed  Google Scholar 

  57. D’Alto M, Romeo E, Argiento P, et al. Echocardiographic prediction of pre- versus postcapillary pulmonary hypertension. J Am Soc Echocardiogr. 2015;28:108–15.

    Article  PubMed  Google Scholar 

  58. Kessler R, Faller M, Weitzenblum E, et al. “Natural history” of pulmonary hypertension in a series of 131 patients with chronic obstructive lung disease. Am J Respir Crit Care Med. 2001;164:219–24.

    Article  PubMed  CAS  Google Scholar 

  59. Weitzenblum E, Sautegeau A, Ehrhart M, et al. Long-term oxygen therapy can reverse the progression of pulmonary hypertension in patients with chronic obstructive pulmonary disease. Am Rev Respir Dis. 1985;131:493–8.

    PubMed  CAS  Google Scholar 

  60. Lang IM, Pesavento R, Bonderman D, Yuan JX. Risk factors and basic mechanisms of chronic thromboembolic pulmonary hypertension: a current understanding. Eur Respir J. 2013;41:462–8.

    Article  PubMed  Google Scholar 

  61. McLaughlin VV, Humbert M. Pulmonary hypertension. In: Braunwald’s heart disease: a textbook of cardiovascular medicine. 10th ed. Philadelphia: Elsevier; 2015. p. 1682–702.

    Google Scholar 

  62. Skoro-Sajer N, Marta G, Gerges C, et al. Surgical specimens, haemodynamics and long-term outcomes after pulmonary endarterectomy. Thorax. 2014;69:116–22.

    Article  PubMed  Google Scholar 

  63. Ghofrani HA, D’Armini AM, Grimminger F, et al. Riociguat for the treatment of chronic thromboembolic pulmonary hypertension. N Engl J Med. 2013;369:319–29.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ginghină, C., Enache, R. (2018). Primary and Secondary Pulmonary Hypertension. In: Dumitrescu, S., Ţintoiu, I., Underwood, M. (eds) Right Heart Pathology. Springer, Cham. https://doi.org/10.1007/978-3-319-73764-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73764-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73763-8

  • Online ISBN: 978-3-319-73764-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics