Skip to main content

Anticoagulation Reversal

  • Chapter
  • First Online:
Book cover Anticoagulation Therapy

Abstract

Anticoagulant therapy has been commonly prescribed for the prevention and treatment of arterial and venous thromboembolism. But the proven benefits of such therapy have to be outweighed against the risks of major bleeding complications. Such risk varies according to age and has been reported to be as low as 2–3% per year in adults to as high as 6–8% per year in the elderly. Reversal strategies are important both for the treatment of such major hemorrhagic complications and also for minimizing the risk of major bleeding in patients who require emergent invasive procedures while on anticoagulation. While the first-generation anticoagulants—unfractionated heparin and vitamin K antagonists—exert their anticoagulant effects by inhibiting several different proteins involved in normal hemostasis, the latest generation of anticoagulant drugs has a target-specific mechanism of action with predominant or exclusive inhibition of one coagulation protein. As a result, the most common reversal strategies for the treatment and prevention of bleeding caused by older anticoagulants are based on the use of drugs and/or blood products that replace and/or boost the synthesis of coagulation proteins inhibited by those anticoagulants, whereas more target-specific reversing agents are being developed to neutralize the anticoagulant effect of contemporary, target-specific anticoagulants. In this chapter, we will review the efficacy and safety of currently available strategies for reversal of anticoagulants old and new, as well as the preliminary evidence available for reversal strategies that are currently in advanced stages of clinical development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schulman S, Beyth RJ, Kearon C, Levine MN. Hemorrhagic complications of anticoagulant and thrombolytic treatment. American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (8th Edition). Chest. 2008;133:257S–98S.

    Article  CAS  PubMed  Google Scholar 

  2. Atrial Fibrillation Investigators. Risk factors for stroke and efficacy of antithrombotic therapy in atrial fibrillation: analysis of pooled data from five randomized controlled trials. Arch Intern Med. 1994;154:1449–57.

    Article  Google Scholar 

  3. Ost D, Tepper J, Mihara H, et al. Duration of anticoagulation following venous thromboembolism: a meta-analysis. JAMA. 2005;294:706–15.

    Article  CAS  PubMed  Google Scholar 

  4. Abdelhafiz AH, Wheeldon NM. Results of an open-label, prospective study of anticoagulant therapy for atrial fibrillation in an outpatient anticoagulation clinic. Clin Ther. 2004;26:1470–8.

    Article  CAS  PubMed  Google Scholar 

  5. Jackson SL, Peterson GM, Vial JH, et al. Outcomes in the management of atrial fibrillation: clinical trial results can apply in practice. Intern Med J. 2001;31:329–36.

    Article  CAS  PubMed  Google Scholar 

  6. Miller CS, Grandi SM, Shimony A, et al. Meta-analysis of efficacy and safety of new oral anticoagulants (Dabigatran, Rivaroxaban, Apixaban) versus warfarin in patients with atrial fibrillation. Am J Cardiol. 2012;110:453–60.

    Article  CAS  PubMed  Google Scholar 

  7. Holster IL, Valkhoff VE, Kuipers EJ, Tjwa ETTL. New oral anticoagulants increase risk for gastrointestinal bleeding: a systematic review and meta-analysis. Gastroenterology. 2013;145:105–12.

    Article  CAS  PubMed  Google Scholar 

  8. Stenflo J, Fernlund P, Egan W, Roepstorff P. Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc Natl Acad Sci U S A. 1974;71:2730–3.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Nelsestuen GL, Zytkovicz TH, Howard JB. The mode of action of vitamin K. Identification of gamma-carboxyglutamic acid as a component of prothrombin. J Biol Chem. 1974;249:6347–50.

    CAS  PubMed  Google Scholar 

  10. Whitlon DS, Sadowski JA, Suttie JW. Mechanism of coumarin action: significance of vitamin K epoxide reductase inhibition. Biochemistry. 1978;17:1371–7.

    Article  CAS  PubMed  Google Scholar 

  11. Friedman PA, Rosenberg RD, Hauschka PV, Fitz-James A. A spectrum of partially carboxylated prothrombins in the plasmas of coumarin-treated patients. Biochim Biophys Acta. 1977;494:271–6.

    Article  CAS  PubMed  Google Scholar 

  12. Malhotra OP, Nesheim ME, Mann KG. The kinetics of activation of normal and gamma-carboxyglutamic acid-deficient prothrombins. J Biol Chem. 1985;260:279–87.

    CAS  PubMed  Google Scholar 

  13. Choonara IA, Malia RG, Haynes BP, et al. The relationship between inhibition of vitamin K1 2,3-epoxide reductase and reduction of clotting factor activity with warfarin. Br J Clin Pharmacol. 1988;25:1–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Hirsh J, Dalen JE, Anderson DR, et al. Oral anticoagulants: mechanism of action, clinical effectiveness, and optimal therapeutic range. American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (6th Edition). Chest. 2001;119:8S–21S.

    Article  CAS  PubMed  Google Scholar 

  15. Breckenridge A. Oral anticoagulant drugs: pharmacokinetic aspects. Semin Hematol. 1978;15:19–26.

    CAS  PubMed  Google Scholar 

  16. Kelly JG, O’Malley K. Clinical pharmacokinetics of oral anticoagulants. Clin Pharmacokinet. 1979;4:1–15.

    Article  CAS  PubMed  Google Scholar 

  17. Wessler S, Gitel SN. Warfarin. From bedside to bench. N Engl J Med. 1984;311:645–52.

    Article  CAS  PubMed  Google Scholar 

  18. Zivelin A, Rao LV, Rapaport SI. Mechanism of the anticoagulant effect of warfarin as evaluated in rabbits by selective depression of individual procoagulant vitamin K-dependent clotting factors. J Clin Invest. 1993;92:2131–40.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Patel P, Weitz J, Brooker LA, Paes B, Mitchell L, Andrew M. Decreased thrombin activity of fibrin clots prepared in cord plasma compared with adult plasma. Pediatr Res. 1996;39:826–30.

    Article  CAS  PubMed  Google Scholar 

  20. Sanden P, Renlund H, Svensson PJ, Själander A. Bleeding complications in venous thrombosis patients on well-managed warfarin. J Thromb Thrombolysis. 2016;41:351–8.

    Article  CAS  PubMed  Google Scholar 

  21. Goodman SG, Wojdyla DM, Piccini JP, et al. Factors associated with major bleeding events: insights from the ROCKET-AF trial (rivaroxaban once-daily oral direct factor Xa inhibition compared with vitamin K antagonism for prevention of stroke and embolism trial in atrial fibrillation). J Am Coll Cardiol. 2014;63:891–900.

    Article  PubMed  Google Scholar 

  22. DiMarco JP, Flaker G, Waldo AL, et al. Factors affecting bleeding risk during anticoagulant therapy in patients with atrial fibrillation: observations from the Atrial Fibrillation Follow-up Investigation of Rhythm Management (AFFIRM) study. Am Heart J. 2005;149:650–6.

    Article  PubMed  Google Scholar 

  23. Gage BF, Yan Y, Milligan PE, et al. Clinical classification schemes for predicting hemorrhage: results from the National Registry of Atrial Fibrillation (NRAF). Am Heart J. 2006;151:713–9.

    Article  PubMed  Google Scholar 

  24. Sandén P, Renlund H, Svensson PJ, Själander A. Bleeding complications and mortality in warfarin-treated VTE patients, dependence of INR variability and iTTR. Thromb Haemost. 2017;117:27–32.

    Article  PubMed  Google Scholar 

  25. Rose AJ, Ozonoff A, Berlowitz DR, et al. Warfarin dose management affects INR control. J Thromb Haemost. 2009;7:94–101.

    Article  CAS  PubMed  Google Scholar 

  26. Penning-van Beest FJ, van Meegen E, Rosendaal FR, Stricker BH. Characteristics of anticoagulant therapy and comorbidity related to overanticoagulation. Thromb Haemost. 2001;86:569–74.

    Article  CAS  PubMed  Google Scholar 

  27. Kucher N, Connolly S, Beckman JA, et al. International normalized ratio increase before warfarin-associated hemorrhage: brief and subtle. Arch Intern Med. 2004;164:2176–9.

    Article  PubMed  Google Scholar 

  28. Odén A, Fahlén M. Oral anticoagulation and risk of death: a medical record linkage study. BMJ. 2002;325:1073–5.

    Article  PubMed Central  PubMed  Google Scholar 

  29. Cannegieter SC, Rosendaal FR, Wintzen AR, et al. Optimal oral anticoagulant therapy in patients with mechanical heart valves. N Engl J Med. 1995;333:11–7.

    Article  CAS  PubMed  Google Scholar 

  30. Kooistra HA, Veeger NJGM, Khorsand N, et al. Long-term quality of VKA treatment and clinical outcome after extreme overanticoagulation in 14,777 AF and VTE patients. Thromb Haemost. 2015;113:881–90.

    Article  PubMed  Google Scholar 

  31. Dentali F, Ageno W, Crowther MA. Treatment of coumarin-associated coagulopathy: a systematic review and proposed treatment algorithms. J Thromb Haemost. 2006;4:1853–63.

    Article  CAS  PubMed  Google Scholar 

  32. Fondevila CG, Grosso SH, Santarelli MT, Pinto MD. Reversal of excessive oral anticoagulation with a low oral dose of vitamin K1 compared with acenocoumarine discontinuation. A prospective, randomized, open study. Blood Coagul Fibrinolysis. 2001;12:9–16.

    Article  CAS  PubMed  Google Scholar 

  33. Crowther MA, Julian J, McCarty D, et al. Treatment of warfarin-associated coagulopathy with oral vitamin K: a randomized clinical trial. Lancet. 2000;356:1551–3.

    Article  CAS  PubMed  Google Scholar 

  34. Hylek EM, Chang YC, Skates SJ, et al. Prospective study of the outcomes of ambulatory patients with excessive warfarin anticoagulation. Arch Intern Med. 2000;160:1612–7.

    Article  CAS  PubMed  Google Scholar 

  35. Patel RJ, Witt DM, Saseen JJ, et al. Randomized, placebo-controlled trial of oral phytonadione for excessive anticoagulation. Pharmacotherapy. 2000;20:1159–66.

    Article  CAS  PubMed  Google Scholar 

  36. Crowther MA, Ageno W, Garcia D, et al. Oral vitamin K versus placebo to correct excessive anticoagulation in patients receiving warfarin: a randomized trial. Ann Intern Med. 2009;150:293–300.

    Article  PubMed  Google Scholar 

  37. Ageno W, Crowther M, Steidl L, et al. Low dose oral vitamin K to reverse acenocoumarol-induced coagulopathy: a randomized controlled trial. Thromb Haemost. 2002;88:48–51.

    Article  CAS  PubMed  Google Scholar 

  38. Ageno W, Garcia D, Silingardi M, et al. A randomized trial comparing 1 mg of oral vitamin K with no treatment in the management of warfarin-associated coagulopathy in patients with mechanical heart valves. J Am Coll Cardiol. 2005;46:730–42.

    Article  CAS  Google Scholar 

  39. Gunther KE, Conway G, Leibach L, Crowther MA. Low-dose oral vitamin K is safe and effective for outpatient management of patients with an INR>10. Thromb Res. 2004;113:205–9.

    Article  CAS  PubMed  Google Scholar 

  40. Crowther MA, Garcia D, Ageno W, et al. Oral vitamin K effectively treats international normalised ratio (INR) values in excess of 10. Results of a prospective cohort study. Thromb Haemost. 2010;104:118–21.

    Article  CAS  PubMed  Google Scholar 

  41. Holbrook A, Schulman S, Witt DM, et al. Evidence-based management of anticoagulation therapy. American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (89h Edition). Chest. 2012;141:e152S–84S.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Crowther MA, Douketis JD, Schnurr T, et al. Oral vitamin K lowers the international normalized ratio more rapidly than subcutaneous vitamin K in the treatment of warfarin-associated coagulopathy. A randomized, controlled trial. Ann Intern Med. 2002;137:251–4.

    Article  CAS  PubMed  Google Scholar 

  43. Dezee KJ, Shimeall WT, Douglas KM, et al. Treatment of excessive anticoagulation with phytonadione (vitamin K): a meta-analysis. Arch Intern Med. 2006;166:391–7.

    CAS  PubMed  Google Scholar 

  44. Nee R, Doppenschmidt D, Donovan DJ, Andrews TC. Intravenous versus subcutaneous vitamin K1 in reversing excessive oral anticoagulation. Am J Cardiol. 1999;83:286–8.

    Article  CAS  PubMed  Google Scholar 

  45. Lubetsky A, Yonath H, Olchovsky D, et al. Comparison of oral vs intravenous phytonadione (vitamin K1) in patients with excessive anticoagulation: a prospective randomized controlled study. Arch Intern Med. 2003;163:2469–73.

    Article  CAS  PubMed  Google Scholar 

  46. Watson HG, Baglin T, Laidlaw SL, et al. A comparison of the efficacy and rate of response to oral and intravenous vitamin K in reversal of over-anticoagulation with warfarin. Br J Haematol. 2001;115:145–9.

    Article  CAS  PubMed  Google Scholar 

  47. Raj G, Kumar R, McKinney WP. Time course of reversal of anticoagulant effect of warfarin by intravenous and subcutaneous phytonadione. Arch Intern Med. 1999;159:2721–4.

    Article  CAS  PubMed  Google Scholar 

  48. Lubetsky A, Shasha Y, Olchovsky D, et al. Impact of pre-treatment INR level on the effect of intravenous low dose vitamin K in patients with excessive anticoagulation. Thromb Haemost. 2003;90:71–6.

    Article  CAS  PubMed  Google Scholar 

  49. Denas G, Marzot F, Offelli P, et al. Effectiveness and safety of a management protocol to correct over-anticoagulation with oral vitamin K: a retrospective study of 1,043 cases. J Thromb Thrombolysis. 2009;27:340–7.

    Article  CAS  PubMed  Google Scholar 

  50. Riegert-Johnson DL, Volcheck GW. The incidence of anaphylaxis following intravenous phytonadione (vitamin K1): a 5-year retrospective review. Ann Allergy Asthma Immunol. 2002;89:400–6.

    Article  CAS  PubMed  Google Scholar 

  51. Riegert-Johnson DL, Kumar S, Volcheck GW. A patient with anaphylactoid hypersensitivity to intravenous cyclosporine and subcutaneous phytonadione (vitamin K1). Bone Marrow Transplant. 2001;28:1176–7.

    Article  CAS  PubMed  Google Scholar 

  52. Rich EC, Drage CW. Severe complications of intravenous phytonadione therapy. Two cases with one fatality. Postgrad Med. 1982;72:303–6.

    Article  CAS  PubMed  Google Scholar 

  53. Ciesielski-Carlucci C, Leong P, Jacobs C. Case report of anaphylaxis from cisplatin/paclitaxel and review of their hypersensitivity reaction profiles. Am J Clin Oncol. 1997;20:373–5.

    Article  CAS  PubMed  Google Scholar 

  54. Volcheck GW, Van Dellen RG. Anaphylaxis to intravenous cyclosporin and tolerance to oral cyclosporin: case report and review of the literature. Ann Allergy Asthma Immunol. 1998;80:159–63.

    Article  CAS  PubMed  Google Scholar 

  55. Ageno W, Gallus AS, Wittkowsky A, et al. Oral anticoagulant therapy. Antithrombotic Therapy and Prevention of Thrombosis (9th edition): American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(Suppl):e44S–88S.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Tran HA, Chunilal SD, Harper PL, et al. An update of consensus guidelines for warfarin reversal. Med J Aust. 2013;198:1–7.

    Google Scholar 

  57. Fiore LD, Scola MA, Cantillon CE, Brophy MT. Anaphylactoid reactions to vitamin K. J Thromb Thrombolysis. 2001;11:175–83.

    Article  CAS  PubMed  Google Scholar 

  58. Douketis JD, Spyropoulos AC, Spencer FA, et al. Perioperative management of antithrombotic therapy. Antithrombotic Therapy and Prevention of Thrombosis (9th edition). American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(Suppl):e326S–50S.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Woods K, Douketis JD, Kathirgamanathan K, et al. Low-dose oral vitamin k to normalize the international normalized ratio prior to surgery in patients who require temporary interruption of warfarin. J Thromb Thrombolysis. 2007;24:93–7.

    Article  CAS  PubMed  Google Scholar 

  60. Steib A, Barre J, Mertes M, et al. Can oral vitamin K before elective surgery substitute for preoperative heparin bridging in patients on vitamin K antagonists? J Thromb Haemost. 2010;8:499–503.

    Article  CAS  PubMed  Google Scholar 

  61. Glover JJ, Morrill GB. Conservative treatment of overanticoagulated patients. Chest. 1995;108:987–90.

    Article  CAS  PubMed  Google Scholar 

  62. Ageno W, Garcia D, Aguilar MI, et al. Prevention and treatment of bleeding complications in patients receiving vitamin K antagonists, part 2: treatment. Am J Hematol. 2009;84:584–8.

    Article  CAS  PubMed  Google Scholar 

  63. Contreras M, Ala FA, Greaves M, et al. Guidelines for the use of fresh frozen plasma. British Committee for Standards in Haematology, Working Party of the Blood Transfusion Task Force. Transfus Med. 1992;2:57–63.

    Article  CAS  PubMed  Google Scholar 

  64. Popovsky MA. Transfusion-related acute lung injury: incidence, pathogenesis and the role of multicomponent apheresis in its prevention. Transfus Med Hemother. 2008;35:76–9.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Chapman SA, Irwin ED, Beal AL, et al. Prothrombin complex concentrate versus standard therapies for INR reversal in trauma patients receiving warfarin. Ann Pharmacother. 2011;45:869–75.

    Article  CAS  PubMed  Google Scholar 

  66. Boulis NM, Bobek MP, Schmaier A, Hoff JT. Use of factor IX complex in warfarin-related intracranial hemorrhage. Neurosurgery. 1999;45:1113–9.

    Article  CAS  PubMed  Google Scholar 

  67. Schulman S, Bijsterveld NR. Anticoagulants and their reversal. Transfus Med Rev. 2007;21:37–48.

    Article  PubMed  Google Scholar 

  68. KCentra. Highlights of prescribing information. Revised 02/2017. http://labeling.cslbehring.com/PI/US/Kcentra/EN/Kcentra-Prescribing-Information.pdf.

  69. Profilnine SD. Prescribing information. Revised 08/2010. https://www.fda.gov/ucm/groups/fdagov-public/@fdagov-bio-gen/documents/document/ucm261964.pdf.

  70. Bebulin. Prescribing information. Revised 09/2015. http://www.shirecontent.com/PI/PDFs/BEBULIN_USA_ENG.pdf.

  71. Baglin TP, Keeling DM, Watson HG. Guidelines on oral anticoagulation (warfarin): third edition–2005 update. Br J Haematol. 2006;132:277–85.

    Article  CAS  PubMed  Google Scholar 

  72. Palareti GA. Guide to oral anticoagulant therapy. Italian federation of anticoagulation clinics. Haemostasis. 1998;28(Suppl 1):1–46.

    PubMed  Google Scholar 

  73. Franchini M, Lippi G. Prothrombin complex concentrates: an update. Blood Transfus. 2010;8:149–54.

    PubMed Central  PubMed  Google Scholar 

  74. Pabinger I, Brenner B, Kalina U, et al. Prothrombin complex concentrate (Beriplex® P/N) for emergency anticoagulation reversal: a prospective multinational clinical trial. J Thromb Haemost. 2008;6:622–31.

    Article  CAS  PubMed  Google Scholar 

  75. Hellstern P. Production and composition of prothrombin complex concentrates correlation between composition and therapeutic efficiency. Thromb Res. 1999;95:S7–S12.

    Article  CAS  PubMed  Google Scholar 

  76. Holland L, Warkentin TE, Refaai M, et al. Suboptimal effect of a three-factor prothrombin complex concentrate (Profilnine-SD) in correcting supratherapeutic international normalized ratio due to warfarin overdose. Transfusion. 2009;49:1171–7.

    Article  CAS  PubMed  Google Scholar 

  77. Tran H, Collecutt M, Whitehead S, Salem HH. Prothrombin complex concentrates used alone in urgent reversal of warfarin anticoagulation. Intern Med J. 2011;41:337–43.

    Article  CAS  PubMed  Google Scholar 

  78. Chiu D, Grigg M, Levi E. Operating on patients with warfarin: simpler alternative approach [letter]. ANZ J Surg. 2009;79:409–10.

    Article  PubMed  Google Scholar 

  79. Crawford JH, Augustson BM. Prothrombinex use for the reversal of warfarin: is fresh frozen plasma needed [letter]? Med J Aust. 2006;184:365–6.

    PubMed  Google Scholar 

  80. Makris M, Greaves M, Phillips WS, et al. Emergency oral anticoagulant reversal: the relative efficacy of infusions of fresh frozen plasma and clotting factor concentrate on correction of the coagulopathy. Thromb Haemost. 1997;77:477–80.

    Article  CAS  PubMed  Google Scholar 

  81. Fredriksson K, Norrving B, Strömblad LG. Emergency reversal of anticoagulation after intracerebral hemorrhage. Stroke. 1992;23:972–7.

    Article  CAS  PubMed  Google Scholar 

  82. Cartmill M, Dolan G, Byrne JL, Byrne PO. Prothrombin complex concentrate for oral anticoagulant reversal in neurosurgical emergencies. Br J Neurosurg. 2000;14:458–61.

    Article  CAS  PubMed  Google Scholar 

  83. Khorsand N, Veeger NJ, Muller M, et al. Fixed versus variable dose of prothrombin complex concentrate for counteracting vitamin K antagonist therapy. Transfus Med. 2011;21:116–23.

    Article  CAS  PubMed  Google Scholar 

  84. Preston FE, Laidlaw ST, Sampson B, Kitchen S. Rapid reversal of oral anticoagulation with warfarin by a prothrombin complex concentrate (Beriplex®): efficacy and safety in 42 patients. Br J Haematol. 2002;116:619–24.

    Article  CAS  PubMed  Google Scholar 

  85. van Aart L, Eijkhout HW, Kamphuis JS, et al. Individualized dosing regimen for prothrombin complex concentrate more effective than standard treatment in the reversal of oral anticoagulant therapy: an open, prospective randomized controlled trial. Thromb Res. 2006;118:313–20.

    Article  CAS  PubMed  Google Scholar 

  86. Lorenz R, Kienast J, Otto U, et al. Successful emergency reversal of phenprocoumon anticoagulation with prothrombin complex concentrate: a prospective clinical study. Blood Coagul Fibrinolysis. 2007;18:565–70.

    Article  CAS  PubMed  Google Scholar 

  87. Imberti D, Barillari G, Biasioli C, et al. Prothrombin complex concentrates for urgent anticoagulation reversal in patients with intracranial hemorrhage. Pathophysiol Haemost Thromb. 2009;36:259–65.

    Article  CAS  Google Scholar 

  88. Leissinger CA, Blatt PM, Hoots WK, Ewenstein B. Role of prothrombin complex concentrates in reversing warfarin anticoagulation: a review of the literature. Am J Hematol. 2008;83:137–43.

    Article  CAS  PubMed  Google Scholar 

  89. Chai-Adisaksopha C, Hillis C, Siegal DM, et al. Prothrombin complex concentrates versus fresh frozen plasma for warfarin reversal. A systematic review and meta-analysis. Thromb Haemost. 2016;116:879–90.

    Article  PubMed  Google Scholar 

  90. Farsad BF, Golpira R, Najafi H, et al. Comparison between prothrombin complex concentrate (PCC) and fresh frozen plasma (FFP) for the urgent reversal of warfarin in patients with mechanical heart valves in a tertiary care cardiac center. Iran J Pharm Res. 2015;14:877–85.

    CAS  Google Scholar 

  91. Baggs JH, Patanwala AE, Williams EM, Erstad BL. Dosing of 3-factor prothrombin complex concentrate for international normalized ratio reversal. Ann Pharmacother. 2012;46:51–6.

    Article  CAS  PubMed  Google Scholar 

  92. Imberti D, Barillari G, Biasioli C, et al. Emergency reversal of anticoagulation with a three-factor prothrombin complex concentrate in patients with intracranial haemorrhage. Blood Transfus. 2011;9:148–55.

    PubMed Central  PubMed  Google Scholar 

  93. Dentali F, Marchesi C, Pierfranceschi MG, et al. Safety of prothrombin complex concentrates for rapid anticoagulation reversal of vitamin K antagonists: a meta-analysis. Thromb Haemost. 2011;106:429–38.

    Article  CAS  PubMed  Google Scholar 

  94. Hedner U, Kisiel W. Use of human factor VIIa in the treatment of two hemophilia a patients with high-titer inhibitors. J Clin Invest. 1983;71:1836–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. ten Cate H, Bauer KA, Levi M, et al. The activation of factor X and prothrombin by recombinant factor VIIa in vivo is mediated by tissue factor. J Clin Invest. 1993;92:1207–12.

    Article  PubMed Central  PubMed  Google Scholar 

  96. Butenas S, Brummel KE, Branda RF, et al. Mechanism of factor VIIa-dependent coagulation in hemophilia blood. Blood. 2002;99:923–30.

    Article  CAS  PubMed  Google Scholar 

  97. Erhardtsen E, Nony P, Dechavanne M, et al. The effect of recombinant factor VIIa (NovoSeven) in healthy volunteers receiving acenocoumarol to an International Normalized Ratio above 2.0. Blood Coagul Fibrinolysis. 1998;9:741–8.

    Article  CAS  PubMed  Google Scholar 

  98. Deveras RAE, Kessler CM. Reversal of warfarin-induced excessive anticoagulation with recombinant human factor VIIa concentrate. Ann Intern Med. 2002;137:884–8.

    Article  CAS  PubMed  Google Scholar 

  99. Lin J, Hanigan WC, Tarantino M, Wang J. The use of recombinant activated factor VII to reverse warfarin-induced anticoagulation in patients with hemorrhages in the central nervous system: preliminary findings. J Neurosurg. 2003;98:737–40.

    Article  CAS  PubMed  Google Scholar 

  100. Freeman WD, Brott TG, Barrett KM, et al. Recombinant factor VIIa for rapid reversal of warfarin anticoagulation in acute intracranial hemorrhage. Mayo Clin Proc. 2004;79:1495–500.

    Article  CAS  PubMed  Google Scholar 

  101. Tanaka KA, Szlam F, Dickneite G, Levy JH. Effects of prothrombin complex concentrate and recombinant activated factor VII on vitamin K antagonist induced anticoagulation. Thromb Res. 2008;122:117–23.

    Article  CAS  PubMed  Google Scholar 

  102. Sorensen B, Johansen P, Nielsen GL, et al. Reversal of the International Normalized Ratio with recombinant activated factor VII in central nervous system bleeding during warfarin thromboprophylaxis: clinical and biochemical aspects. Blood Coagul Fibrinolysis. 2003;14:469–77.

    Article  CAS  PubMed  Google Scholar 

  103. Berntorp E, Stigendal L, Lethagen S, et al. NovoSeven in warfarin-treated patients. Blood Coagul Fibrinolysis. 2000;11(Suppl 1):S113–5.

    Article  CAS  PubMed  Google Scholar 

  104. Levi M, Peters M, Büller HR. Efficacy and safety of recombinant factor VIIa for treatment of severe bleeding: a systematic review. Crit Care Med. 2005;33:883–90.

    Article  CAS  PubMed  Google Scholar 

  105. Roberts HR. Clinical experience with activated factor VII: focus on safety aspects. Blood Coagul Fibrinolysis. 1998;9(Suppl 1):S115–8.

    CAS  PubMed  Google Scholar 

  106. Peerlinck K, Vermylen J. Acute myocardial infarction following administration of recombinant activated factor VII (NovoSeven) in a patient with haemophilia A and inhibitor. Thromb Haemost. 1999;82:1775–6.

    Article  CAS  PubMed  Google Scholar 

  107. Mayer SA, Brun NC, Vegtrup K, et al. Recombinant activated factor VIIa for acute intracerebral hemorrhage. N Engl J Med. 2005;352:777–85.

    Article  CAS  PubMed  Google Scholar 

  108. Aledort LM. Comparative thrombotic event incidence after infusion of recombinant factor VIIa versus factor VIII inhibitor bypass activity. J Thromb Haemost. 2004;2:1700–8.

    Article  CAS  PubMed  Google Scholar 

  109. O’Connell KA, Wood JJ, Wise RP, et al. Thromboembolic adverse events after use of recombinant human coagulation factor VIIa. JAMA. 2006;295:293–8.

    Article  PubMed  Google Scholar 

  110. Rosovsky RP, Crowther MA. What is the evidence for the off-label use of recombinant factor VIIa (rFVIIa) in the acute reversal of warfarin? ASH evidence-based review 2008. Hematology Am Soc Hematol Educ Program. 2008;2008:36–8.

    Google Scholar 

  111. McLean J. The thromboplastic action of cephalin. Am J Phys. 1916;41:250–7.

    Google Scholar 

  112. Johnson E, Mulloy B. The molecular weight range of commercial heparin preparations. Carbohydr Res. 1976;51:119–27.

    Article  CAS  PubMed  Google Scholar 

  113. Johnson E, Kirkwood T, Stirling Y, et al. Four heparin preparations: anti-Xa potentiating effect of heparin after subcutaneous injection. Thromb Hamost. 1976;35:586–91.

    Article  CAS  Google Scholar 

  114. Andersson L, Barrowcliffe T, Holmer E, et al. Anticoagulant properties of heparin fractionated by affinity chromatography chromatography on matrix-bound antithrombin III and by gel filtration. Thromb Res. 1976;9:575–83.

    Article  CAS  PubMed  Google Scholar 

  115. Abildgaard U. Highly purified antithrombin III with heparin cofactor activity prepared by disc electrophoresis. Scand J Clin Lab Invest. 1968;21:89–91.

    Article  CAS  PubMed  Google Scholar 

  116. Rosenberg R, Lam L. Correlation between structure and function of heparin. Proc Natl Acad Sci U S A. 1979;76:1218–22.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Lindahl U, Backstrom G, Hook M, et al. Structure of the antithrombin-binding site of heparin. Proc Natl Acad Sci U S A. 1979;76:3198–202.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  118. Rosenberg R, Bauer K. The heparin-antithrombin system: a natural anticoagulant mechanism. 3rd ed. Philadelphia, PA: Lippincott; 1994.

    Google Scholar 

  119. Casu B, Oreste P, Torri G, et al. The structure of heparin oligosaccharide fragments with high anti-(factor Xa) activity containing the minimal antithrombin III-binding sequence. Biochem J. 1981;97:599–609.

    Article  Google Scholar 

  120. Choay J, Lormeau J, Petitou M, et al. Structural studies on a biologically active hexasaccharide obtained from heparin. Ann N Y Acad Sci. 1981;370:644–9.

    Article  CAS  PubMed  Google Scholar 

  121. Hirsh J, Warkentin TE, Shaughnessy SG, et al. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing, monitoring, efficacy, and safety. American College of Chest Physicians Evidence-Based Clinical Practice Guidelines (6th Edition). Chest. 2001;119:64S–94S.

    Article  CAS  PubMed  Google Scholar 

  122. Andersson L-O, Barrowcliffe T, Holmer E, et al. Molecular weight dependency of the heparin potentiated inhibition of thrombin and activated factor X: effect of heparin neutralization in plasma. Thromb Res. 1979;5:531–41.

    Article  Google Scholar 

  123. Rosenberg RD, Jordon RE, Favreau LV, et al. Highly active heparin species with multiple binding sites for antithrombin. Biochem Biophys Res Commun. 1979;86:1319–24.

    Article  CAS  PubMed  Google Scholar 

  124. Danielsson A, Raub E, Lindahl U, et al. Role of ternary complexes in which heparin binds both antithrombin and proteinase, in the acceleration of the reactions between antithrombin and thrombin or factor Xa. J Biol Chem. 1986;261:15467–73.

    CAS  PubMed  Google Scholar 

  125. Lane D, Denton J, Flynn A, et al. Anticoagulant activities of heparin oligosaccharides and their neutralization by platelet factor 4. Biochem J. 1984;218:725–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Oosta G, Gardner W, Beeler D, et al. Multiple functional domains of the heparin molecule. Proc Natl Acad Sci U S A. 1981;78:829–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Jordan R, Oosta G, Gardner W, et al. The kinetics of hemostatic enzyme-antithrombin interactions in the presence of low molecular weight heparin. J Biol Chem. 1980;255:10081–90.

    CAS  PubMed  Google Scholar 

  128. Holmer E, Kurachi K, Soderstrom G. The molecular-weight dependence of the rate-enhancing effect of heparin on the inhibition of thrombin, factor Xa, factor IXa, factor XIa, factor XIIa and kallikrein by antithrombin. Biochem J. 1981;193:395–400.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  129. Holmer E, Soderberg K, Bergqvist D, et al. Heparin and its low molecular weight derivatives: anticoagulant and antithrombotic properties. Haemostasis. 1986;16:1–7.

    CAS  PubMed  Google Scholar 

  130. Garcia DA, Baglin TP, Weitz JI, et al. Parenteral anticoagulants. Antithrombotic Therapy and Prevention of Thrombosis (9th edition). American College of Chest Physicians Evidence-Based Clinical Practice Guidelines. Chest. 2012;141(Suppl):e24S–43S.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  131. Protamine sulfate heparin agents 20:12.08. In: McEvoy GK, Litvak K, Welsh OH, et al, editors. AHFS drug information 1999. Bethesda, MD: American Society of Health-System Pharmacists; 1999. p. 1265–7.

    Google Scholar 

  132. Lindblad B, Borgström A, Wakefield TW, et al. Protamine reversal of anticoagulation achieved with a low molecular weight heparin. The effects on eicosanoids, clotting and complement factors. Thromb Res. 1987;48:31–40.

    Article  CAS  PubMed  Google Scholar 

  133. Racanelli A, Fareed J, Walenga JM, Coyne E. Biochemical and pharmacologic studies on the protamine interactions with heparin, its fractions and fragments. Semin Thromb Hemost. 1985;11:176–89.

    Article  CAS  PubMed  Google Scholar 

  134. Wolzt M, Weltermann A, Nieszpaur-Los M, et al. Studies on the neutralizing effects of protamine on unfractionated and low molecular weight heparin (Fragmin) at the site of activation of the coagulation system in man. Thromb Haemost. 1995;73:439–43.

    CAS  PubMed  Google Scholar 

  135. Hirsh J, Levine MN. Low molecular weight heparin. Blood. 1992;79:1–17.

    CAS  PubMed  Google Scholar 

  136. Crowther MA, Berry LR, Monagle PT, Chan AK. Mechanisms responsible for the failure of protamine to inactivate low-molecular-weight heparin. Br J Haematol. 2002;116:178–86.

    Article  CAS  PubMed  Google Scholar 

  137. Doutremepuich C, Bonini F, Toulemonde F, et al. In vivo neutralization of low-molecular weight heparin fraction CY 216 by protamine. Semin Thromb Hemost. 1985;11:318–22.

    Article  CAS  PubMed  Google Scholar 

  138. Racanelli A, Fareed J, Huan XQ. Low molecular weight heparin induced bleeding can be neutralized by protamine. Haemostasis. 1988;18(Suppl 2):163–4.

    Google Scholar 

  139. Van Ryn-McKenna J, Cai L, Ofosu FA, et al. Neutralization of enoxaparine-induced bleeding by protamine sulfate. Thromb Haemost. 1990;63:271–4.

    Article  PubMed  Google Scholar 

  140. Massonnet-Castel S, Pelissier E, Bara L, et al. Partial reversal of low molecular weight heparin (PK 10169) anti-Xa activity by protamine sulfate: in vitro and in vivo study during cardiac surgery with extracorporeal circulation. Haemostasis. 1986;16:139–46.

    CAS  PubMed  Google Scholar 

  141. Ng HJ, Koh LP, Lee LH. Successful control of postsurgical bleeding by recombinant factor VIIa in a renal failure patient given low molecular weight heparin and aspirin. Ann Hematol. 2003;82:257–8.

    CAS  PubMed  Google Scholar 

  142. Wakefield TW, Andrews PC, Wrobleski SK, et al. Effective and less toxic reversal of low-molecular weight heparin anticoagulation by a designer variant of protamine. J Vasc Surg. 1995;21:839–50.

    Article  CAS  PubMed  Google Scholar 

  143. Wakefield TW, Andrews PC, Wrobleski SK, et al. A [+18RGD] protamine variant for nontoxic and effective reversal of conventional heparin and low-molecular-weight heparin anticoagulation. J Surg Res. 1996;63:280–6.

    Article  CAS  PubMed  Google Scholar 

  144. Lu G, DeGuzman FR, Hollenbach SJ, et al. A specific antidote for reversal of anticoagulation by direct and indirect inhibitors of coagulation factor Xa. Nat Med. 2013;19:446–51.

    Article  CAS  PubMed  Google Scholar 

  145. Connolly SJ, Milling TJ Jr, Eikelboom JW, et al. Andexanet alfa for acute major bleeding associated with factor Xa inhibitors. N Engl J Med. 2016;375:1131–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  146. Ansell JE, Laulicht BE, Bakhru SH, et al. Ciraparantag safely and completely reverses the anticoagulant effects of low-molecular weight heparin. Thromb Res. 2016;146:113–8.

    Article  CAS  PubMed  Google Scholar 

  147. Choay J, Petitou M, Lormeau JC, et al. Structure-activity relationship in heparin: a synthetic pentasaccharide with high affi nity for antithrombin III and eliciting high anti-factor Xa activity. Biochem Biophys Res Commun. 1983;116:492–9.

    Article  CAS  PubMed  Google Scholar 

  148. Thunberg L, Bäckström G, Lindahl U. Further characterization of the antithrombin-binding sequence in heparin. Carbohydr Res. 1982;100:393–410.

    Article  CAS  PubMed  Google Scholar 

  149. Choay J. Biologic studies on chemically synthesized pentasaccharide and tetrasaccharide fragments. Semin Thromb Hemost. 1985;11:81–5.

    Article  CAS  PubMed  Google Scholar 

  150. Harenberg J. Development of idraparinux and idrabiotaparinux for anticoagulant therapy. Thromb Haemost. 2009;102:811–5.

    Article  CAS  PubMed  Google Scholar 

  151. Harenberg J, Jörg I, Vukojevic Y, et al. Anticoagulant effects of idraparinux after termination of therapy for prevention of recurrent venous thromboembolism: observations from the van Gogh trials. Eur J Clin Pharmacol. 2008;64:555–63.

    Article  CAS  PubMed  Google Scholar 

  152. Veyrat-Follet C, Vivier N, Trellu M, et al. The pharmacokinetics of idraparinux, a long-acting indirect factor Xa inhibitor: population pharmacokinetic analysis from Phase III clinical trials. J Thromb Haemost. 2009;7:559–65.

    Article  CAS  PubMed  Google Scholar 

  153. Bijsterveld NR, Moons AH, Boekholdt SM, et al. Ability of recombinant factor VIIa to reverse the anticoagulant effect of the pentasaccharide fondaparinux in healthy volunteers. Circulation. 2002;106:2550–4.

    Article  CAS  PubMed  Google Scholar 

  154. Bijsterveld NR, Vink R, van Aken BE, et al. Recombinant factor VIIa reverses the anticoagulant effect of the long-acting pentasaccharide idraparinux in healthy volunteers. Br J Haematol. 2004;124:653–8.

    Article  CAS  PubMed  Google Scholar 

  155. Luporsi P, Chopard R, Janin S, et al. Use of recombinant factor VIIa (NovoSeven®) in 8 patients with ongoing life-threatening bleeding treated with fondaparinux. Acute Card Care. 2011;13:93–8.

    Article  CAS  PubMed  Google Scholar 

  156. Huntington JA, McCoy A, Belzar KJ, et al. The conformational activation of antithrombin. A 2.85-A structure of a fluorescein derivative reveals an electrostatic link between the hinge and heparin binding regions. J Biol Chem. 2000;275:15377–83.

    Article  CAS  PubMed  Google Scholar 

  157. Savi P, Herault JP, Duchaussoy P, et al. Reversible biotinylated oligosaccharides: a new approach for a better management of anticoagulant therapy. J Thromb Haemost. 2008;6:1697–706.

    Article  CAS  PubMed  Google Scholar 

  158. Kang YS, Saito Y, Pardridge WM. Pharmacokinetics of [3H] biotin bound to different avidin analogues. J Drug Target. 1995;3:159–65.

    Article  CAS  PubMed  Google Scholar 

  159. Wilchek M, Bayer EA. The avidin–biotin complex in bioanalytical applications. Anal Biochem. 1988;171:1–32.

    Article  CAS  PubMed  Google Scholar 

  160. Paty I, Trellu M, Destors J-M, et al. Reversibility of the anti-FXa activity of idrabiotaparinux (biotinylated idraparinux) by intravenous avidin infusion. J Thromb Haemost. 2010;8:722–9.

    Article  CAS  PubMed  Google Scholar 

  161. Sørensen B, Ingerslev JA. Direct thrombin inhibitor studied by dynamic whole blood clot formation. Haemostatic response to ex-vivo addition of recombinant factor VIIa or activated prothrombin complex concentrate. Thromb Haemost. 2006;96:446–53.

    Article  PubMed  CAS  Google Scholar 

  162. Ibbotson SH, Grant PJ, Kerry R, et al. The influence of infusions of 1-desamino-8-D-arginine vasopressin (DDAVP) in vivo on the anticoagulant effect of recombinant hirudin (CGP39393) in vitro. Thromb Haemost. 1991;65:64–6.

    Article  CAS  PubMed  Google Scholar 

  163. Bove CM, Casey B, Marder VJDDAVP. Reduces bleeding during continued hirudin administration in the rabbit. Thromb Haemost. 1996;75:471–5.

    CAS  PubMed  Google Scholar 

  164. Warkentin TE, Crowther MA. Reversing anticoagulants both old and new. Can J Anaesth. 2002;49:S11–25.

    PubMed  Google Scholar 

  165. Nutescu E, Chuatrisom I, Hellenbart E. Drug and dietary interactions of warfarin and novel oral anticoagulants: an update. J Thromb Thrombolysis. 2011;31:326–43.

    Article  CAS  PubMed  Google Scholar 

  166. van Ryn J, Sieger P, Kink-Eiband M, Gansser D, Clemens A. Adsorption of dabigatran etexilate in water or dabigatran in pooled human plasma by activated charcoal in vitro. Blood. 2009;114:440.

    Google Scholar 

  167. Crowther M, Crowther MA. Antidotes for novel oral anticoagulants: current status and future potential. Arterioscler Thromb Vasc Biol. 2015;35:1736–45.

    Article  CAS  PubMed  Google Scholar 

  168. Chai-Adisaksopha C, Hillis C, Lim W, Boonyawat K, Moffat K, Crowther M. Hemodialysis for the treatment of dabigatran-associated bleeding: a case report and systematic review. J Thromb Haemost. 2015;13:1790–8.

    Article  CAS  PubMed  Google Scholar 

  169. Eerenberg ES, Kamphuisen PW, Sijpkens MK, et al. Reversal of rivaroxaban and dabigatran by prothrombin complex concentrate: a randomized, placebo-controlled, crossover study in healthy subjects. Circulation. 2011;124:1573–9.

    Article  CAS  PubMed  Google Scholar 

  170. Woltz M, Levi M, Sarich TC, et al. Effect of recombinant factor VIIa on melagatran-induced inhibition of thrombin generation and platelet activation in healthy volunteers. Thromb Haemost. 2004;91:1090–6.

    Google Scholar 

  171. van Ryn J, Stangier J, Haertter S, et al. Dabigatran etexilate — a novel, reversible, oral direct thrombin inhibitor: interpretation of coagulation assays and reversal of anticoagulant activity. Thromb Haemost. 2010;103:1116–27.

    Article  PubMed  Google Scholar 

  172. Schiele F, van Ryn J, Canada K, et al. A specific antidote for dabigatran: functional and structural characterization. Blood. 2013;121:3554–62.

    Article  CAS  PubMed  Google Scholar 

  173. van Ryn J, Spronk HM, Rossaint R, Grottke O. Ex vivo prothrombin complex concentrates and a specific antidote are effective in reversing dabigatran-induced coagulopathy in pigs. Blood. 2013;122(21):A2387. (Abstract).

    Google Scholar 

  174. van Ryn J, Litzenburger T, Gan G, Coble K, Schurer J. In vitro characterization, pharmacokinetics and reversal of supratherapeutic doses of dabigatran-induced bleeding in rats by a specific antibody fragment antidote to dabigatran. ASH Ann Meet Abstr. 2012;120(21):3418.

    Google Scholar 

  175. Glund S, Stangier J, Schmohl M, et al. A specific antidote for dabigatran: immediate, complete and sustained reversal of dabigatran induced anticoagulation in healthy male volunteers. Circulation. 2013;128(22):A17765. (Abstract).

    Google Scholar 

  176. Pollack CV Jr, Reilly PA, Eikelboom J, et al. Idarucizumab for dabigatran reversal. N Engl J Med. 2015;373:511–20.

    Article  CAS  PubMed  Google Scholar 

  177. Godier A, Miclot A, Le Bonniec B, et al. Evaluation of prothrombin complex concentrate and recombinant activated factor VII to reverse rivaroxaban in a rabbit model. Anesthesiology. 2012;116:94–102.

    Article  CAS  PubMed  Google Scholar 

  178. Wang X, Mondal S, Wang J, et al. Effect of activated charcoal on apixaban pharmacokinetics in healthy subjects. Am J Cardiovasc Drugs. 2014;14:147–54.

    Article  CAS  PubMed  Google Scholar 

  179. Crowther M, Lu G, Conley PB, et al. Reversal of factor Xa inhibitors-induced anticoagulation in healthy subjects by andexanet alfa. Crit Care Med. 2014;42(12):A1469.

    Article  Google Scholar 

  180. Siegal DM, Curnutte JT, Connolly SJ, et al. Andexanet alfa for the reversal of factor Xa inhibitor activity. N Engl J Med. 2015;373:2413–24.

    Article  CAS  PubMed  Google Scholar 

  181. Laulicht B, Bakhru S, Lee C, et al. Small molecule antidote for anticoagulants. Circulation. 2012;126:Abstract #11395.

    Google Scholar 

  182. Ansell JE, Bakhru SH, Laulicht BE, et al. Single-dose ciraparantag safely and completely reverses anticoagulant effects of edoxaban. Thromb Haemost. 2017;117:238–45.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo P. V. Gomes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hornacek, D., Gomes, M.P. . (2018). Anticoagulation Reversal. In: Lau, J., Barnes, G., Streiff, M. (eds) Anticoagulation Therapy . Springer, Cham. https://doi.org/10.1007/978-3-319-73709-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73709-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73708-9

  • Online ISBN: 978-3-319-73709-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics