Skip to main content

Heat Shock Protein and Thermal Stress in Chicken

  • Chapter
  • First Online:
Book cover Heat Shock Proteins in Veterinary Medicine and Sciences

Part of the book series: Heat Shock Proteins ((HESP,volume 12))

Abstract

Chicken has been selected for higher production performance over the years and are highly sensitive to changes in their environment. The average global temperature has increased over the century and is further expected to rise. In open house rearing system chicken is vulnerable to this increasing environmental temperature and may experience thermal stress. Heat shock proteins (HSP) are highly conserved family of proteins playing important role in normal cellular physiology and cytoprotection against different stressors including heat stress. In chicken levels of different members of HSP family are increased in almost all the tissues in response to heat stress. This increased HSP level protects cellular proteins from heat stress induced damage. Efforts to overcome the heat stress conditions in chicken have lead to development of thermal manipulation protocols whereby epigenetic modifications are introduced. Through epigenetic adaptation the birds acquire protection against the adverse effects of heat stress. This chapter discusses the findings on cellular HSP responses to heat stress and the thermal manipulation strategy to overcome heat stress in chicken.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CO2 :

Carbon dioxide

HSP:

Heat shock protein

RH:

Relative humidity

TM:

Thermal manipulation

References

  • Aengwanich, W., & Simaraks, S. (2004). Pathology of heart, lung, liver and kidney in broilers under chronic heat stress. Songklanakarin. Journal of Science and Technology, 26, 417–424.

    Google Scholar 

  • Al-Zhgoul, M. B., Dalab, A. E., Ababneh, M. M., Jawasreh, K. I., Al Busadah, K. A., & Ismail, Z. B. (2013). Thermal manipulation during chicken embryogenesis results in enhanced Hsp70 gene expression and the acquisition of thermotolerance. Research in Veterinary Science, 95, 502–507.

    Article  CAS  PubMed  Google Scholar 

  • Ashburner, M., & Bonner, J. J. (1979). The induction of gene activity in drosophila by heat shock. Cell, 17, 241–254.

    Article  CAS  PubMed  Google Scholar 

  • Bakthisaran, R., Tangirala, R., & Rao, C. M. (2015). Small heat shock proteins: Role in cellular functions and pathology. Biochimica et Biophysica Acta – Proteins and Proteomics, 1854, 291–319.

    Article  CAS  Google Scholar 

  • Charles, D. R. (2002). Responses to the thermal environment. In D. A. Charles & A. W. Walker (Eds.), Poultry environment problems, a guide to solutions (pp. 1–16). Nottingham: Nottingham University Press.

    Google Scholar 

  • Cheng, C. Y., Tu, W. L., Wang, S. H., Tang, P. C., Chen, C. F., Chen, H.-H., et al. (2015). Annotation of differential gene expression in small yellow follicles of a broiler-type strain of Taiwan country chickens in response to acute heat stress. PLoS One, 10, e0143418.

    Article  PubMed  PubMed Central  Google Scholar 

  • Csermely, P., Schnaider, T., Soti, C., Prohászka, Z., & Nardai, G. (1998). The 90-kDa molecular chaperone family: Structure, function, and clinical applications. A comprehensive review. Pharmacology & Therapeutics, 79, 129–168.

    Article  CAS  Google Scholar 

  • Daghir, N. J. (2008). Poultry production in hot climates (p. 49). Cambridge: CABI.

    Book  Google Scholar 

  • Darre, M. J., & Harrison, P. C. (1987). Heart rate, blood pressure, cardiac output, and total peripheral resistance of single comb white leghorn hens during an acute exposure to 35C ambient temperature. Poultry Science, 66, 541–547.

    Article  CAS  PubMed  Google Scholar 

  • De Maio, A., & Vazquez, D. (2013). Extracellular heat shock proteins: A new location, a new function. Extracellular heat shock proteins: A new location, a new function. Shock, 40, 239–246.

    Article  PubMed  PubMed Central  Google Scholar 

  • Deans, C., & Maggert, K. A. (2015). What do you mean, “epigenetic”? Genetics, 199, 887–896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dörner, G. (1974). Environment-dependent brain differentiation and fundamental processes of life. Acta Biologica et Medica Germanica, 33, 129–148.

    PubMed  Google Scholar 

  • Edington, B. V., & Hightower, L. E. (1990). Induction of a chicken small heat shock (stress) protein: Evidence of multilevel posttranscriptional regulation. Molecular and Cellular Biology, 10, 4886–4898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gabriel, J. E., Ferro, J. A., Stefani, R. M. P., Ferro, M. I. T., Gomes, S. L., & Macari, M. (1996). Effect of acute heat stress on heat shock protein 70 messenger RNA and on heat shock protein expression in the liver of broilers. British Poultry Science, 37, 443–449.

    Article  CAS  PubMed  Google Scholar 

  • Gabriel, J. E., da Mota, A. F., Boleli, I. C., Macari, M., & Coutinho, L. L. (2002). Effect of moderate and severe heat stress on avian embryonic hsp70 gene expression. Growth, Development, and Aging, 66, 27–33.

    CAS  PubMed  Google Scholar 

  • Givisiez, P. E., Ferro, J. A., Ferro, M. I., Kronka, S. N., Decuypere, E., & Macari, M. (1999). Hepatic concentration of heat shock protein 70 kD (Hsp70) in broilers subjected to different thermal treatments. British Poultry Science, 40, 292–296.

    Article  CAS  PubMed  Google Scholar 

  • Guerreiro, E. N., Giachetto, P. F., Givisiez, P. E. N., et al. (2004). Brain and hepatic Hsp70 protein levels in heat-acclimated broiler chickens during heat stress. Braz ilian Journal of Poultry Science, 6, 201–206.

    Google Scholar 

  • Hartl, F. U., & Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: From nascent chain to folded protein. Science, 295, 1852–1858.

    Article  CAS  PubMed  Google Scholar 

  • IPCC. (2014). Climate change 2014: Synthesis report. In Core Writing Team, R. K. Pachauri, & L. A. Meyer (Eds.), Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. Geneva: IPCC.

    Google Scholar 

  • Jablonka, E. (2009). Transgenerational epigenetic inheritance: Prevalence, mechanisms, and implications for the study of heredity and evolution. The Quarterly Review of Biology, 84, 131–176.

    Article  PubMed  Google Scholar 

  • Karaca, A. G., Parker, H. M., Yeatman, J. B., & Mcdaniel, C. D. (2002). The effects of heat stress and sperm quality classification on broiler breeder male fertility and semen ion concentrations. British Poultry Science, 43, 621–628.

    Article  CAS  PubMed  Google Scholar 

  • Kelley, P. M., & Schlesinger, M. J. (1978). The effect of amino acid analogues and heat shock on gene expression in chicken embryo fibroblasts. Cell, 15, 1277–1286.

    Article  CAS  PubMed  Google Scholar 

  • Lan, X., Hsieh, J. C. F., Schmidt, C. J., Zhu, Q., & Lamont, S. J. (2016). Liver transcriptome response to hyperthermic stress in three distinct chicken lines. BMC Genomics, 17, 955.

    Article  PubMed  PubMed Central  Google Scholar 

  • Landry, J., Chrétien, P., Lambert, H., Hickey, E., & Weber, L. A. (1989). Heat shock resistance conferred by expression of the human HSP27 gene in rodent cells. The Journal of Cell Biology, 109, 7–15.

    Article  CAS  PubMed  Google Scholar 

  • Lee, D. H. K. (1965). Climatic stress indices for domestic animals. International Journal of Biometeorology, 9, 29–35.

    Article  CAS  PubMed  Google Scholar 

  • Li, C., Guo, S., Zhang, M., Gao, J., & Guo, Y. (2015). DNA methylation and histone modification patterns during the late embryonic and early postnatal development of chickens. Poultry Science, 94, 706–721.

    Article  CAS  PubMed  Google Scholar 

  • Liang, H. M., Lin, D. Y., Hsuuw, Y. D., et al. (2016). Association of heat shock protein 70 gene polymorphisms with acute thermal tolerance, growth, and egg production traits of native chickens in Taiwan. Archives Animal Breeding, 59, 173–181.

    Article  Google Scholar 

  • Lindquist, S., & Craig, E. A. (1988). The heat shock proteins. Annual Review of Genetics, 22, 631–677.

    Article  CAS  PubMed  Google Scholar 

  • Luo, Q. B., Song, X. Y., Ji, C. L., Zhang, X. Q., & Zhang, D. X. (2014). Exploring the molecular mechanism of acute heat stress exposure in broiler chickens using gene expression profiling. Gene, 546, 200–205.

    Article  CAS  PubMed  Google Scholar 

  • Maak, S., Melesse, A., Schmidt, R., Schneider, F., & Von Lengerken, G. (2003). Effect of long-term heat exposure on peripheral concentrations of heat shock protein 70 (Hsp70) and hormones in laying hens with different genotypes. British Poultry Science, 44, 133–138.

    Article  CAS  PubMed  Google Scholar 

  • Mahmoud, K. Z., Edens, F. W., Eisen, E. J., & Havenstein, G. B. (2003). Effect of ascorbic acid and acute heat exposure on heat shock protein 70 expression by young white leghorn chickens. Comparative Biochemistry and Physiology, Part C Toxicology and Pharmacology, 136, 329–335.

    Article  Google Scholar 

  • Mahmoud, K. Z., Edens, F. W., Eisen, E. J., & Havenstein, G. B. (2004). The effect of dietary phosphorus on heat shock protein mRNAs during acute heat stress in male broiler chickens (Gallus Gallus). Comparative Biochemistry and Physiology, Part C Toxicology and Pharmacology, 137, 11–18.

    Article  Google Scholar 

  • Mashaly, M., Hendricks, G. L., Kalama, M. A., Gehad, A. E., Abbas, A. O., & Patterson, P. H. (2004). Effect of heat stress on production parameters and immune response of commercial laying hens. Poultry Science, 83, 889–894.

    Article  CAS  PubMed  Google Scholar 

  • Mezquita, B., Mezquita, C., & Mezquita, J. (1998). Marked differences between avian and mammalian testicular cells in the heat shock induction and polyadenylation of Hsp70 and ubiquitin transcripts. FEBS Letters, 436, 382–386.

    Article  CAS  PubMed  Google Scholar 

  • Mezquita, B., Mezquita, J., Durfort, M., & Mezquita, C. (2001). Constitutive and heat-shock induced expression of Hsp70 mRNA during chicken testicular development and regression. Journal of Cellular Biochemistry, 82, 480–490.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, B. W., & Siegel, H. S. (1973). Physiological response of chickens to heat stress measured by radio telemetry. Poultry Science, 52, 1111–1119.

    Article  CAS  PubMed  Google Scholar 

  • Mitchell, M.A., Sandercock, D.A., Macleod, M.G. and Hunter, R.R. (2005). Thermoregulatory and metabolic heat production responses during acute heat stress in genetically improved broiler chickens. Proceedings of the International Poultry Scientific Forum (Southern Poultry Science Society) Atlanta, Georgia, USA, p. 110.

    Google Scholar 

  • Nätt, D., Rubin, C., Wright, D., Johnsson, M., Beltéky, J., Andersson, L., & Jensen, P. (2012). Heritable genome-wide variation of gene expression and promoter methylation between wild and domesticated chickens. BMC Genomics, 13, 59.

    Article  PubMed  PubMed Central  Google Scholar 

  • Padhi, A., Ghaly, M. M., & Ma, L. (2016). Testis-enriched heat shock protein A2 (HSPA2): Adaptive advantages of the birds with internal testes over the mammals with testicular descent. Scientific Reports, 6, 18770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parsell, D. A., & Lindquist, S. (1994). Heat shock proteins and stress tolerance. Cold Spring Harbor Monograph Archive, 26, 457–494.

    CAS  Google Scholar 

  • Pasti, C., Gallois-Montbrun, S., Munier-Lehmann, H., Veron, M., Gilles, A., & Deville-Bonne, D. (2003). Reaction of human UMP-CMP kinase with natural and analog substrates. European Journal of Biochemistry, 270, 1784–1790.

    Article  CAS  PubMed  Google Scholar 

  • Quinteiro-Filho, W. M., Ribeiro, A., Ferraz-de-Paula, V., et al. (2010). Heat stress impairs performance parameters, induces intestinal injury, and decreases macrophage activity in broiler chickens. Poultry Science, 89, 1905–1914.

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar, U., Reddy, M. R., Rama Rao, S. V., Radhika, K., & Shanmugam, M. (2011). Evaluation of growth, carcass, immune competence, stress parameters in naked neck chicken and their normal siblings under tropical winter and summer temperatures. Asian-Australasian Journal of Animal Sciences, 24, 509–516.

    Article  Google Scholar 

  • Rajkumar, U., Vinoth, A., Shanmugam, M., Rajaravindra, K. S., & Rama Rao, S. V. (2015). Effect of embryonic thermal exposure on heat shock proteins (Hsps) gene expression and serum T3 concentration in coloured broiler populations. Animal Biotechnology, 26, 260–267.

    Article  CAS  PubMed  Google Scholar 

  • Rajkumar, U., Vinoth, A., Shanmugam, M., Rajaravindra, K. S., & Rama Rao, S. V. (2017). Effect of increased incubation temperature on Hsp 90 and 60 gene expressions in coloured broiler chickens. Journal of Applied Animal Research, 45, 298–303.

    Article  CAS  Google Scholar 

  • Ritossa, F. M. (1962). A new puffing pattern induced by temperature shock and DNP in drosophila. Experientia, 18, 571–573.

    Article  CAS  Google Scholar 

  • Rozenboim, I., Tako, E., Gal-Garber, O., Proudman, J. A., & Uni, Z. (2007). The effect of heat stress on ovarian function of laying hens. Poultry Science, 86, 1760–1765.

    Article  CAS  PubMed  Google Scholar 

  • Settar, P., Yalçin, S., Türkmut, L., Ozkan, S., & Cahanar, A. (1999). Season by genotype interaction related to broiler growth rate and heat tolerance. Poultry Science, 78, 1353–1358.

    Article  CAS  PubMed  Google Scholar 

  • Shanmugam, M., Vinoth, A., Rajaravindra, K. S., & Rajkumar, U. (2015). Thermal manipulation during embryogenesis improves certain semen parameters in layer breeder chicken during hot climatic conditions. Animal Reproduction Science, 161, 112–118.

    Article  CAS  PubMed  Google Scholar 

  • Shevtsov, M., & Multhoff, G. (2016). Heat shock protein-peptide and HSP-based immunotherapies for the treatment of cancer. Frontiers in Immunology, 7, 171.

    PubMed  PubMed Central  Google Scholar 

  • Slawinska, A., Hsieh, J. C., Schmidt, C. J., & Lamont, S. J. (2016). Heat stress and lipopolysaccharide stimulation of chicken macrophage-like cell line activates expression of distinct sets of genes. PLoS One, 11, e0164575.

    Article  PubMed  PubMed Central  Google Scholar 

  • Song, J., Xiao, K., Ke, Y. L., et al. (2014). Effect of a probiotic mixture on intestinal microflora, morphology, and barrier integrity of broilers subjected to heat stress. Poultry Science, 93, 581–588.

    Article  CAS  PubMed  Google Scholar 

  • Sun, L., Lamont, S. J., Cooksey, A. M., et al. (2015). Transcriptome response to heat stress in a chicken hepatocellular carcinoma cell line. Cell Stress & Chaperones, 20, 939–950.

    Article  CAS  Google Scholar 

  • Tamzil, M. H., Noor, R. R., Hardjosworo, P. S., Manalu, W., & Sumantri, C. (2013). Acute heat stress responses of three lines of chickens with different heat shock protein (HSP)-70 genotypes. International Journal of Poultry Science, 12, 264–272.

    Article  Google Scholar 

  • Triantaphyllopoulos, K. A., Ikonomopoulos, I., & Bannister, A. J. (2016). Epigenetics and inheritance of phenotype variation in livestock. Epigenetics & Chromatin, 9, 31.

    Article  Google Scholar 

  • Tu, W. L., Cheng, C. Y., Wang, S. H., et al. (2016). Profiling of differential gene expression in the hypothalamus of broiler-type Taiwan country chickens in response to acute heat stress. Theriogenology, 85, 483–494.

    Article  CAS  PubMed  Google Scholar 

  • Tzschentke, B., & Plagemann, A. (2006). Imprinting and critical periods in early development. World’s Poultry Science Journal, 62, 626–637.

    Article  Google Scholar 

  • Varasteh, S., Braber, S., Akbari, P., Garssen, J., & Fink-Gremmels, J. (2015). Differences in susceptibility to heat stress along the chicken intestine and the protective effects of galacto-oligosaccharides. PLoS One, 10, e0138975.

    Article  PubMed  PubMed Central  Google Scholar 

  • Velichko, A. K., Markova, E. N., Petrova, N. V., Razin, S. V., & Kantidze, O. L. (2013). Mechanisms of heat shock response in mammals. Cellular and Molecular Life Sciences, 70, 4229–4241.

    Article  CAS  PubMed  Google Scholar 

  • Vinoth, A. (2016). Effect of thermal manipulation on heat shock proteins in chicken-An attempt for epigenetic modulation. Ph.D thesis.Department of Industrial Biotechnology, Bharathidasan University, Tiruchirappalli, India.

    Google Scholar 

  • Vinoth, A., Thirunalasundari, T., Shanmugam, M., & Rajkumar, U. (2016). Effect of early age thermal conditioning on expression of heat shock proteins in liver tissue and biochemical stress indicators in colored broiler chicken. European Journal of Experimental Biology, 6, 53–63.

    Google Scholar 

  • Vinoth, A., Thirunalasundari, T., Tharian, J. A., Shanmugam, M., & Rajkumar, U. (2015). Effect of thermal manipulation during embryogenesis on liver heat shock protein expression in chronic heat stressed coloured broiler chickens. Journal of Thermal Biology, 53, 162–171.

    Article  CAS  PubMed  Google Scholar 

  • Waddington, C. H. (1942). The epigenotype. Endeavour, 1, 18–20.

    Google Scholar 

  • Wang, S., & Edens, F. W. (1998). Heat conditioning induces heat shock proteins in broiler chickens and turkey poults. Poultry Science, 77, 1636–1645.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S. H., Cheng, C. Y., Chen, C. J., et al. (2014). Changes in protein expression in testes of L2 strain Taiwan country chickens in response to acute heat stress. Theriogenology, 82, 80–94.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S. H., Cheng, C. Y., Tang, P. C., et al. (2013). Differential gene expressions in testes of L2 strain Taiwan country chicken in response to acute heat stress. Theriogenology, 79, 374–382.

    Article  CAS  PubMed  Google Scholar 

  • Wang, S. H., Cheng, C. Y., Tang, P. C., et al. (2015). Acute heat stress induces differential gene expressions in the testes of a broiler-type strain of Taiwan country chickens. PLoS One, 10, e0125816.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wolfenson, D., Frei, Y. F., Snapir, N., & Berman, A. (1981). Heat stress effects on capillary blood flow and its redistribution in the laying hen. Pflügers Archiv, 390, 86–93.

    Article  CAS  PubMed  Google Scholar 

  • Xie, J., Tang, L., Lu, L., et al. (2014). Differential expression of heat shock transcription factors and heat shock proteins after acute and chronic heat stress in laying chickens (Gallus Gallus). PLoS One, 9, e102204.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie, J., Tang, L., Lu, L., et al. (2015). Effects of acute and chronic heat stress on plasma metabolites, hormones and oxidant status in restrictedly fed broiler breeders. Poultry Science, 94, 1635–1644.

    Article  CAS  PubMed  Google Scholar 

  • Yahav, S. (2009). Alleviating heat stress in domestic fowl – different strategies. World’s Poultry Science Journal, 65, 719–732.

    Article  Google Scholar 

  • Yahav, S. (2015). Regulation of body temperature - strategies and mechanisms. In Sturkie's avian physiology. Edited by Scanes, C. Elsevier Publications, Chapter 37, pp. 869–905.

    Google Scholar 

  • Yahav, S., Collin, A., Shinder, D., & Picard, M. (2004). Thermal manipulations during broiler chick's embryogenesis - the effect of timing and temperature. Poultry Science, 83, 1959–1963.

    Article  CAS  PubMed  Google Scholar 

  • Yahav, S., Goldfeld, S., Plavnik, I., & Hurwitz, S. (1995). Physiological responses of chickens and turkeys to relative humidity during exposure to high ambient temperature. Journal of Thermal Biologico, 20, 245–253.

    Article  Google Scholar 

  • Yahav, S., Shamay, A., Horev, G., Bar-Ilan, D., Genina, O., & Friedman-Einat, M. (1997). Effect of acquisition of improved thermotolerance on the induction of heat shock proteins in broiler chickens. Poultry Science, 76, 1428–1434.

    Article  CAS  PubMed  Google Scholar 

  • Yan, J., Bao, E., & Yu, J. (2009). Heat shock protein 60 expression in heart, liver and kidney of broilers exposed to high temperature. Research in Veterinary Science, 86, 533–538.

    Article  CAS  PubMed  Google Scholar 

  • Yan, Q.C. (2001). Effect of temperature on semen characteristics and sperm heat shock protein 70 in males of Taiwan country chicken. Master thesis. Department of animal science, Taichung: National Chung Hsing University

    Google Scholar 

  • Yu, J., & Bao, E. (2008). Effect of acute heat stress on heat shock protein 70 and its corresponding mrna expression in the heart, liver, and kidney of broilers. Asian-Australas Journal of Animal Science, 21, 1116–1126.

    Article  CAS  Google Scholar 

  • Yu, J., & Bao, E. (2009). Expression of heat shock protein 90 (Hsp90) and transcription of its corresponding mRNA in broilers exposed to high temperature. British Poultry Science, 50, 504–511.

    Article  PubMed  Google Scholar 

  • Yu, J., Bao, E., Yan, J., & Lei, L. (2008). Expression and localization of Hsps in the heart and blood vessel of heat-stressed broilers. Cell Stress & Chaperones, 13, 327–335.

    Article  CAS  Google Scholar 

  • Zhang, W. W., Kong, L. N., Zhang, X. Q., & Luo, Q. B. (2014). Alteration of HSF3 and HSP70 mRNA expression in the tissues of two chicken breeds during acute heat stress. Genetics and Molecular Research, 13, 9787–9794.

    Article  CAS  PubMed  Google Scholar 

  • Zhen, F. S., Du, H. L., Xu, H. P., Luo, Q. B., & Zhang, X. Q. (2006). Tissue and allelic-specific expression of hsp70 gene in chickens: Basal and heat-stress-induced mRNA level quantified with real-time reverse transcriptase polymerase chain reaction. British Poultry Science, 47, 449–455.

    Article  CAS  PubMed  Google Scholar 

  • Zuo, J., Xu, M., Abdullahi, Y. A., Ma, L., Zhang, Z., & Feng, D. (2015). Constant heat stress reduces skeletal muscle protein deposition in broilers. Journal of the Science of Food and Agriculture, 95, 429–436.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Indian Council of Agricultural Research under National Initiative on Climate Resilient Agriculture (NICRA) project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanmugam Murugesan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murugesan, S., Ullengala, R., Amirthalingam, V. (2017). Heat Shock Protein and Thermal Stress in Chicken. In: Asea, A., Kaur, P. (eds) Heat Shock Proteins in Veterinary Medicine and Sciences. Heat Shock Proteins, vol 12. Springer, Cham. https://doi.org/10.1007/978-3-319-73377-7_6

Download citation

Publish with us

Policies and ethics