Skip to main content

Strain-Energy Functions

  • Chapter
  • First Online:
Hyperelasticity Primer
  • 1005 Accesses

Abstract

The isotropic elastic properties of a hyperelastic material model are described in terms of a strain-energy (stored-energy) function, typically as a function of the three invariants of each of the two Cauchy-Green deformation tensors, given in terms of the principal extension ratios, or stretches. A number of different strain-energy formulations exist, having properties and characteristics that make them appropriate for characterizing different hyperelastic material systems. The primary, and probably best known and most widely employed, strain-energy function formulation is the Mooney-Rivlin model, which reduces to the widely known neo-Hookean model. Other models which have been demonstrated to be quite appropriate and desirable for modeling rubberlike materials are the Ogden, Yeoh, Arruda-Boyce (statistically based), and Gent models. Flexible foams which exhibit finite elasticity characteristics can be modeled as hyperelastic material systems to a large extent. Strain-energy function models which are designated as foam models are the Blatz-Ko model and the Ogden-Storaker model. Soft tissues can also be modeled employing hyperelastic material models. Models designated as soft tissue models are the Fung model, the Holzapfel-Gasser-Ogden (HGO) model, and the Veronda-Westmann model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi M, Barakat MS, Vahidkhah K, Azadani AN (2016) Characterization of three-dimensional anisotropic heart valve tissue mechanical properties using inverse finite element analysis. J Mech Behav Biomed Mater 62:33–44

    Article  Google Scholar 

  • Aboudi J (2000) Micromechanical modeling of finite viscoelastic multiphase composites. Z Angew Math Phys 51:114–134

    Article  MathSciNet  MATH  Google Scholar 

  • Ahmadian MT, Nikooyan AA (2006) Modeling and prediction of soft tissue directional stiffness using in-vitro force-displacement data. Int J Sci Res 16:385–389

    Google Scholar 

  • Akhtar R, Sherratt MJ, Cruickshank JK, Derby B (2011) Characterizing the elastic properties of tissues. Mater Today 14(3):96–105

    Article  Google Scholar 

  • Almansi E (1911) Sulle deformazioni finite dei solidi elastici isotropi, I and II. Rend Accad Lincei 20(1):705–744, 20(2):289–296

    MATH  Google Scholar 

  • Arruda EM, Boyce MC (1993) A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials. J Mech Phys Solids 41:389–412

    Article  MATH  Google Scholar 

  • Beatty MF (1987) Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues—with examples. Appl Mech Rev 40:1699–1734

    Article  Google Scholar 

  • Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, New York

    MATH  Google Scholar 

  • Biot MA (1939) Nonlinear theory of elasticity and the linearized case for a body under initial stress. Philos Mag 27(7):468–489

    Article  MATH  Google Scholar 

  • Biot MA (1965) Mechanics of incremental deformations. Wiley, New York

    Google Scholar 

  • Blatz PJ, Ko WL (1962) Application of finite elastic theory to the deformation of rubbery materials. Trans Soc Rheol 6:223–251

    Article  Google Scholar 

  • Bonet J (2001) Large strain viscoelastic constitutive models. Int J Solids Struct 38:2953–2968

    Article  MATH  Google Scholar 

  • Bonet J, Wood RD (2008) Nonlinear continuum mechanics for finite element analysis, 2nd edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Bower AF (2010) Applied mechanics of solids. CRC, Boca Raton

    Google Scholar 

  • Chung TJ (1988) Continuum mechanics. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Chuong CJ, Fung YC (1986) On residual stresses in arteries. J Biomech Eng 108:189–192

    Article  Google Scholar 

  • Dill EH (2007) Continnum mechanics: elasticity, plasticity, viscoelasticity. CRC, Boca Raton

    Google Scholar 

  • Drozdov AD (1996) Finite elasticity and viscoelasticity—a course in the nonlinear mechanics of solids. World Scientific, Singapore

    Book  MATH  Google Scholar 

  • Fung YC (1973) Biorheology of soft tissues. Biorheology 10:139–155

    Article  Google Scholar 

  • Fung YC (1993) Biomechanics: mechanical properties of living tissues, 2nd edn. Springer, New York

    Google Scholar 

  • Fung YC, Fronek K, Patitucci P (1979) Pseudoelasticity of arteries and the choice of its mathematical expression. Am J Physiol 237:620–631

    Google Scholar 

  • Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3(6):15–35

    Article  Google Scholar 

  • Gefen A, Dilmoney B (2007) Mechanics of the normal woman’s breast. Technol Health Care 15(4):259–271

    Google Scholar 

  • Gent AN (1996) A new constitutive relation for rubber. Rubber Chem Technol 69:59–61

    Article  Google Scholar 

  • Gokhale NH, Barbone PE, Oberai AA (2008) Solution of the nonlinear elasticity imaging inverse problem: the compressible case. Inverse Problems 24(4):2008. IOP Publishing Ltd, 045010

    Article  MathSciNet  MATH  Google Scholar 

  • Gould PL (1983) Introduction to linear elasticity. Springer, New York

    Book  MATH  Google Scholar 

  • Gurtin ME (1981) Topics in finite elasticity. CBMS-NSF Regional Conference series in Applied Mathematics, SIAM, Philadelphia, p 35

    Google Scholar 

  • Hackett RM, Bennett JG (2000) An implicit finite element material model for energetic particulate composite materials. Int J Numer Methods Eng 49:1191–1209

    Article  MATH  Google Scholar 

  • Hill R (1968) On constitutive inequalities for simple materials. J Mech Phys Solids 16:229–242

    Article  MATH  Google Scholar 

  • Hill R (1970) Constitutive inequalities for isotropic elastic solids under finite strain. Proc R Soc Lond A314:457–472

    Article  MATH  Google Scholar 

  • Hill R (1978) Aspects of invariance in solid mechanics. Adv Appl Mech 18:1–75

    MathSciNet  MATH  Google Scholar 

  • Hjelmstad KD (2005) Fundamentals of structural mechanics, 2nd edn. Springer, New York

    Google Scholar 

  • Holzapfel GA (2000) Nonlinear solid mechanics: a continuum approach for engineering. Wiley, Chichester

    MATH  Google Scholar 

  • Holzapfel GA, Gasser TC, Ogden RW (2000) A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast 61:1–48. https://doi.org/10.1023/A:1010835316564

    Article  MathSciNet  MATH  Google Scholar 

  • Holzapfel GA, Gasser TC (2001) A viscoelastic model for fiber-reinforced composites at finite strains: continuum basis, computational aspects and applications. Comput Methods Appl Mech Eng 190:4379–4403. https://doi.org/10.1016/S0045-7825(00)00323-6

    Article  Google Scholar 

  • Hughes TJR, Pister KS (1978) Consistent linearization in mechanics of solids and structures. Comput Struct 8:391–397

    Article  MathSciNet  MATH  Google Scholar 

  • Jaunzemis W (1967) Continuum mechanics. Macmillan, New York

    MATH  Google Scholar 

  • Kaliske M, Rothert H (1997) Formulation and implementation of three-dimensional viscoelasticity at small and finite strains. Comput Mech 18:228–239

    Article  MATH  Google Scholar 

  • Lubliner J (1985) A model of rubber viscoelasticity. Mech Res Commun 12(2):93–99

    Article  Google Scholar 

  • Low G, Kruse SA, Lomas DJ (2016) General review of magnetic resonance elastrography. World J Radiol 8(1):59–72. https://doi.org/10.4329/wjr.v8.i1.59

    Article  Google Scholar 

  • Malvern LE (1969) Introduction to the mechanics of a continuous medium. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Marsden JE, Hughes TJR (1983) Mathematical foundations of elasticity. Prentice-Hall, Englewood Cliffs

    MATH  Google Scholar 

  • Mooney M (1940) A theory of large elastic deformations. J Appl Phys 11:582–592

    Article  MATH  Google Scholar 

  • Murphy JG (2013) Transversely isotropic biological, soft tissue must be modelled using both anisotropic invariants. Eur J Mech A Solids 42:90–96

    Article  MathSciNet  Google Scholar 

  • Mullins L (1969) Softening of rubber by deformation. Rubber Chem Technol 42:339–362

    Article  Google Scholar 

  • Oberai AA, Gokhale NH, FeiJoo GR (2003) Solution of inverse problems in elasticity imaging using the adjoint method. Inverse Problems 19:297–313

    Article  MathSciNet  MATH  Google Scholar 

  • Oberai AA, Gokhale NH, Doyley MM, Bamber JC (2004) Evaluation of the adjoint equation based algorithm for elasticity imaging. Phys Med Biol 49:2955–2974

    Article  Google Scholar 

  • Oberai AA, Gokhale NH, Goenezen S, Barbone PE, Hall TJ, Sommer AM, Jiang J (2009) Linear and nonlinear elasticity imaging of soft tissue in vivo: demonstration of feasibility. Phys Med Biol 54(5):1191–1207. https://doi.org/10.1088/0031-9155/54/5/006

    Article  Google Scholar 

  • Ogden RW (1972a) Large deformation isotropic elasticity: on the correlation of theory and experiment for incompressible rubberlike solids. Proc R Soc Lond A326:565–584

    Article  MATH  Google Scholar 

  • Ogden RW (1972b) Large deformation isotropic elasticity: on the correlation of theory and experiment for compressible rubberlike solids. Proc Roy Soc Lond A 328:567–583

    Article  MATH  Google Scholar 

  • Ogden RW (1997) Non-linear elastic deformations. Dover, New York

    Google Scholar 

  • Ophir J, Alam SK, Garra BS, Kallel F, Konofagou EE, Krouskop T, Merritt CR, Righetti R, Souchon R, Srinivasan S, Varghese T (2002) Elastography: imaging the elastic properties of soft tissues with ultrasound. J Med Ultrason 29:155. https://doi.org/10.1007/BF02480847

    Article  Google Scholar 

  • Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35:3455–3482

    Article  MATH  Google Scholar 

  • Riande E, Diaz-Calleja R, Prolongo MG, Masegsa RM, Salom C (2000) Polymer viscoelasticity—stress and strain in practice. Marcel Dekker, New York

    Google Scholar 

  • Rivlin RS (1948) Large elastic deformation of isotropic materials IV: further developments of the general theory. Philos Trans R Soc Lond A A241:379–397

    Article  MathSciNet  MATH  Google Scholar 

  • Rivlin RS (1956) Large elastic deformations. In: Eirich RF (ed) Rheology: theory and applications, 1st edn. Academic, New York

    Google Scholar 

  • Schrodt M, Benderoth G, Kühhorn A, Silber G (2005) Hyperelastic description of polymer soft foams at finite deformations. Tech Mech 25(3–4):162–173

    Google Scholar 

  • Seth BR (1964) Generalized strain measure with applications to physical problems. In: Reiner M, Abir D (eds) Second-order effects in elasticity, plasticity and fluid dynamics. Pergamon, Oxford, pp 162–172

    Google Scholar 

  • Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York

    MATH  Google Scholar 

  • Storakers B (1986) On material representation and constitutive branching in finite compressible elasticity. J Mech Phys Solids 34(2):125–145

    Article  Google Scholar 

  • Sussman T, Bathe KJ (1987) A finite element formulation for nonlinear incompressible elastic and inelastic analysis. Comput Struct 26:357–409

    Article  MATH  Google Scholar 

  • Truesdell C, Noll W (1965) The non-linear theories of mechanics. In: Flügge S (ed) Encyclopedia of physics, vol 3, 3rd edn. Springer, Heidelberg

    Google Scholar 

  • Venkatesh K, Srinivasa Murthy PL (2012) Experimental validation and data acquisition for hyperelastic material models in finite element analysis. Int J Mech Ind Eng 2(4):72–76

    Google Scholar 

  • Veronda DR, Westmann RA (1970) Mechanical characterization of skin—finite deformations. J Biomech 3(1):111–122, IN9, 123–124

    Article  Google Scholar 

  • Volokh K (2016) Mechanics of soft materials. Springer, Singapore

    Book  Google Scholar 

  • Yeoh OH (1990) Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem Technol 63:792–805

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hackett, R.M. (2018). Strain-Energy Functions. In: Hyperelasticity Primer. Springer, Cham. https://doi.org/10.1007/978-3-319-73201-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73201-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73200-8

  • Online ISBN: 978-3-319-73201-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics