Skip to main content

Nonlinear Methods for Design-Space Dimensionality Reduction in Shape Optimization

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Big Data (MOD 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10710))

Included in the following conference series:

Abstract

In shape optimization, design improvements significantly depend on the dimension and variability of the design space. High dimensional and variability spaces are more difficult to explore, but also usually allow for more significant improvements. The assessment and breakdown of design-space dimensionality and variability are therefore key elements to shape optimization. A linear method based on the principal component analysis (PCA) has been developed in earlier research to build a reduced-dimensionality design-space, resolving the 95% of the original geometric variance. The present work introduces an extension to more efficient nonlinear approaches. Specifically the use of Kernel PCA, Local PCA, and Deep Autoencoder (DAE) is discussed. The methods are demonstrated for the design-space dimensionality reduction of the hull form of a USS Arleigh Burke-class destroyer. Nonlinear methods are shown to be more effective than linear PCA. DAE shows the best performance overall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Diez, M., Campana, E.F., Stern, F.: Design-space dimensionality reduction in shape optimization by Karhunen-Loève expansion. Comput. Method. Appl. Mech. Eng. 283, 1525–1544 (2015)

    Article  Google Scholar 

  2. Raghavan, B., Breitkopf, P., Tourbier, Y., Villon, P.: Towards a space reduction approach for efficient structural shape optimization. Struct. Multi. Optim. 48, 9871000 (2013)

    Article  Google Scholar 

  3. Lukaczyk, T., Palacios, F., Alonso, J.J., Constantine, P.: Active subspaces for shape optimization. In: Proceedings of the 10th AIAA Multidisciplinary Design Optimization Specialist Conference, 13–17 January 2014, National Harbor, Maryland, USA (2014)

    Google Scholar 

  4. Schölkopf, B., Smola, A., Müller, K.R.: Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 10(5), 1299–1319 (1998)

    Article  Google Scholar 

  5. Kambhatla, N., Leen, T.K.: Dimension reduction by local principal component analysis. Neural Comput. 9(7), 1493–1516 (1997)

    Article  Google Scholar 

  6. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theor. 28(2), 129–137 (1982)

    Article  MathSciNet  Google Scholar 

  7. Von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416 (2007)

    Article  MathSciNet  Google Scholar 

  8. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  9. Bishop, C.M.: Pattern Recognition and Machine Learning (Information Science and Statistics). Springer, New York (2006)

    MATH  Google Scholar 

  10. Smola, A.J., Schölkopf, B.: Learning with Kernels. Citeseer (1998)

    Google Scholar 

  11. Bakır, G.H., Weston, J., Schölkopf, B.: Learning to find pre-images. Adv. Neural Inf. Process. Syst. 16, 449–456 (2004)

    Google Scholar 

  12. Ng, A.Y., Jordan, M.I., Weiss, Y., et al.: On spectral clustering: analysis and an algorithm. In: NIPS, vol. 14, pp. 849–856 (2001)

    Google Scholar 

  13. Aggarwal, C.C., Reddy, C.K.: Data Clustering: Algorithms and Applications. Chapman and Hall/CRC (2013)

    Google Scholar 

  14. Bourlard, H., Kamp, Y.: Auto-association by multilayer perceptrons and singular value decomposition. Biol. Cybern. 59(4), 291–294 (1988)

    Article  MathSciNet  Google Scholar 

  15. Baldi, P., Hornik, K.: Neural networks and principal component analysis: learning from examples without local minima. Neural Netw. 2(1), 53–58 (1989)

    Article  Google Scholar 

  16. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  17. Stern, F., Longo, J., Penna, R., Olivieri, A., Ratcliffe, T., Coleman, H.: International collaboration on benchmark CFD validation data for surface combatant DTMB model 5415. In: Proceedings of the Twenty-Third Symposium on Naval Hydrodynamics, 17–22 September 2000, Val de Reuil, France (2000)

    Google Scholar 

  18. Serani, A., Fasano, G., Liuzzi, G., Lucidi, S., Iemma, U., Campana, E.F., Stern, F., Diez, M.: Ship hydrodynamic optimization by local hybridization of deterministic derivative-free global algorithms. Appl. Ocean Res. 59, 115–128 (2016)

    Article  Google Scholar 

  19. Kingma, D., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  20. Diez, M., Serani, A., Stern, F., Campana, E.F.: Combined geometry and physics based method for design-space dimensionality reduction in hydrodynamic shape optimization. In: Proceedings of the 31st Symposium on Naval Hydrodynamics, Monterey, CA, USA (2016)

    Google Scholar 

  21. Serani, A., Campana, E.F., Diez, M., Stern, F.: Towards augmented design-space exploration via combined geometry and physics based Karhunen-Loève expansion. In: 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference (MA&O), AVIATION 2017, 5–9 June 2017, Denver, USA (2017)

    Google Scholar 

Download references

Acknowledgments

The work is supported by the US Office of Naval Research Global, NICOP grant N62909-15-1-2016, under the administration of Dr. Woei-Min Lin, Dr. Salahuddin Ahmed, and Dr. Ki-Han Kim, and by the Italian Flagship Project RITMARE. The research is performed within NATO STO Task Group AVT-252 Stochastic Design Optimization for Naval and Aero Military Vehicles. The authors wish to thank Prof. Frederick Stern and Dr. Manivannan Kandasamy of The University of Iowa for inspiring the current research on nonlinear dimensionality reduction methods.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Diez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

D’Agostino, D., Serani, A., Campana, E.F., Diez, M. (2018). Nonlinear Methods for Design-Space Dimensionality Reduction in Shape Optimization. In: Nicosia, G., Pardalos, P., Giuffrida, G., Umeton, R. (eds) Machine Learning, Optimization, and Big Data. MOD 2017. Lecture Notes in Computer Science(), vol 10710. Springer, Cham. https://doi.org/10.1007/978-3-319-72926-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72926-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72925-1

  • Online ISBN: 978-3-319-72926-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics