Skip to main content

Physics of Wind Parks

  • Chapter
  • First Online:
Wind Energy Meteorology

Part of the book series: Green Energy and Technology ((GREEN))

Abstract

The assessment of meteorological conditions in wind parks needs special treatment because here the flow approaching most of the turbines in the park interior is no longer undisturbed. Wakes produced by upwind turbines can massively influence downwind turbines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The thrust coefficient is the ratio of resistance force T to the dynamic force 0.50D (rotor area D). The resistance force of an ideal turbine is given by T = 0.5u0²A[4r(1  r)] with r = (u0 − u*h)/u0. u*h is the mean of uh and u0. We have u*h = u0 (1  r). Thus, CT = [4r(1 − r)]. For uh = 0 it follows u*h = 0.5u0, r = 0.5 and CT = 1. For uh = u0 follows u*h = u0, r = 0 and CT = 0. The yield is P = Tu*h = 0.5u 30 A[4r(1 − r)2] and the yield coefficient is CP = [4r(1  r)2]. For optimal yield at the Betz‘s limit is r = 1/3 (calculated from ∂CP(r)/∂r = 0) and CT = 8/9 (Manwell et al. 2010)

References

  • Barthelmie R.J., L.E. Jensen: Evaluation of wind farm efficiency and wind turbine wakes at the Nysted offshore wind farm. Wind Energy 13, 573–586 (2010)

    Google Scholar 

  • Barthelmie, R.J., L. Folkerts, F.T. Ormel, P. Sanderhoff, P.J. Eecen, O. Stobbe, N.M. Nielsen: Offshore Wind Turbine Wakes Measured by Sodar. J. Atmos. Oceanogr. Technol. 20, 466–477 (2003)

    Google Scholar 

  • Barthelmie, R.J., S. Pryor, S. Frandsen, S. Larsen: Analytical Modelling of Large Wind Farm Clusters. Poster, Proc. EAWE 2004 Delft (2004). (available from: http://www.risoe.dk/vea/storpark/Papers%20and%20posters/delft_013.pdf)

  • Barthelmie, R., Hansen O.F., Enevoldsen K., Højstrup J., Frandsen S., Pryor S., Larsen S.E., Motta M., and Sanderhoff P.: Ten Years of Meteorological Measurements for Offshore Wind Farms. J. Sol. Energy Eng. 127, 170–176 (2005)

    Google Scholar 

  • Barthelmie, R., Frandsen, S.T., Rethore, P.E., Jensen, L.: Analysis of atmospheric impacts on the development of wind turbine wakes at the Nysted wind farm. Proc. Eur. Offshore Wind Conf. 2007, Berlin 4.-6.12.2007 (2007)

    Google Scholar 

  • BDEW: Analyse und Bewertung von Möglichkeiten zur Weiterentwicklung des Regelenergiemarktes Strom. Grobkonzept—final. BDEW, Berlin (2015)

    Google Scholar 

  • Boettcher, M., P. Hoffmann, H.-J. Lenhart, K.H. Schlünzen, R. Schoetter: Influence of large offshore wind farms on North German climate. Meteorol. Z., 24, 465–480 (2015)

    Google Scholar 

  • Bossanyi, E.A., Maclean C., Whittle G.E., Dunn P.D., Lipman N.H., Musgrove P.J.: The Efficiency of Wind Turbine Clusters. Proc. Third Intern. Symp. Wind Energy Systems, Lyngby (DK), August 26–29, 1980, 401–416 (1980)

    Google Scholar 

  • Christiansen, M.B., Hasager, C.B.: Wake effects of large offshore wind farms identified from satellite SAR. Rem. Sens. Environ. 98, 251–268 (2005)

    Google Scholar 

  • Crespo, A., Hernandez, J., Frandsen, S.: Survey of Modelling Methods for Wind Turbine Wakes and Wind Farms. Wind Energy 2, 1–24 (1999)

    Google Scholar 

  • Cutler, N., M. Kay, K. Jacka, T.S. Nielsen: Detecting, Categorizing and Forecasting Large Ramps in Wind Farm Power Output Using Meteorological Observations and WPPT. Wind Energy, 10, 453–470 (2007)

    Google Scholar 

  • Cutululis, N.A., N.K. Detlefsen, P.E. Sørensen: Offshore wind power prediction in critical weather conditions. 10th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Farms, 25–26 Oct 2011, Aarhus (DK). Available from: http://orbit.dtu.dk/fedora/ objects/orbit:71861/datastreams/file_6295429/content (2012)

  • Dotzek, N., S. Emeis, C. Lefebvre, J. Gerpott: Waterspouts over the North and Baltic Seas: Observations and climatology, prediction and reporting. Meteorol. Z. 19, 115–129 (2010)

    Google Scholar 

  • Dotzek, N.: An updated estimate of tornado occurrence in Europe.—Atmos. Res. 67–68, 153–161 (2003)

    Google Scholar 

  • DuPont, B., Cagan, J., & Moriarty, P. An advanced modeling system for optimization of wind farm layout and wind turbine sizing using a multi-level extended pattern search algorithm. Energy, 106, 802–814 (2016)

    Google Scholar 

  • Elliot, D.L.: Status of wake and array loss research. Report PNL-SA–19978, Pacific Northwest Laboratory, September 1991, 17 pp. (1991) (available from: http://www.osti.gov/energycitations/product.biblio.jsp?osti_id=6211976)

  • Elliot, D.L., J.C. Barnard: Observations of Wind Turbine Wakes and Surface Roughness Effects on Wind Flow Variability. Solar Energy, 45, 265–283 (1990)

    Google Scholar 

  • Emeis, S.: A simple analytical wind park model considering atmospheric stability. Wind Energy 13, 459–469 (2010)

    Google Scholar 

  • Emeis, S., S. Frandsen: Reduction of Horizontal Wind Speed in a Boundary Layer with Obstacles. Bound.-Lay. Meteorol. 64, 297–305 (1993)

    Google Scholar 

  • Emeis, S., S. Siedersleben, A. Lampert, A. Platis, J. Bange, B. Djath, J. Schulz-Stellenfleth, T. Neumann: Exploring the wakes of large offshore wind farms. Journal of Physics: Conference Series, 753, 092014 (11 pp.) (2016)

    Google Scholar 

  • EWEA (Eds.): Delivering Offshore Wind Power in Europe.—Report, European Wind Energy Association, Brussels, 32 pp. (2007) [Available at www.ewea.org/fileadmin/ewea_documents/images/publications/offshore_report/ewea-offshore_report.pdf]

  • Feng, J., W.Z. Sheng: The Science of Making Torque from Wind 2012, IOP Publishing Journal of Physics: Conference Series 555 (2014) 012035, https://doi.org/10.1088/1742-6596/555/1/012035 (2012)

  • Fitch, A. C., J. B. Olson, J. K. Lundquist, J. Dudhia, A. K. Gupta, J. Michalakes, and I. Barstad: Local and Mesoscale Impacts of Wind Farms as Parameterized in a Mesoscale NWP Model. Mon. Wea. Rev., 140, 3017–3038 (2012)

    Google Scholar 

  • Frandsen, S.: On the Wind Speed Reduction in the Center of Large Cluster of Wind Turbines. J. Wind Eng. Ind. Aerodyn. 39, 251–265 (1992)

    Google Scholar 

  • Frandsen, S.: Turbulence and turbulence generated structural loading in wind turbine clusters. Risø-R-1188(EN), 130 pp. (2007)

    Google Scholar 

  • Frandsen, S.T., Barthelmie, R.J., Pryor, S.C., Rathmann, O., Larsen, S., Højstrup, J., Thøgersen, M.: Analytical modelling of wind speed deficit in large offshore wind farms. Wind Energy 9, 39–53 (2006)

    Google Scholar 

  • Frandsen, S., Jørgensen, H.E., Barthelmie, R., Rathmann, O., Badger, J., Hansen, K., Ott, S., Rethore, P.E., Larsen, S.E., Jensen, L.E.: The making of a second-generation wind farm efficiency model-complex. Wind Energy 12, 431–444 (2009)

    Google Scholar 

  • Göçmen, T., P. van der Laan, P.-E. Réthoré, A. Peña Diaz, G.Chr. Larsen, S. Ott: Wind turbine wake models developed at the Technical University of Denmark: A review. Renewable and Sustainable Energy Reviews. 60, 752–769 (2016)

    Google Scholar 

  • Jensen, N.O.: A Note on Wind Generator Interaction. Risø-M-2411, Risø Natl. Lab., Roskilde (DK), 16 pp. (1983) (Available from http://www.risoe.dk/rispubl/VEA/veapdf/ris-m-2411.pdf)

  • Jimenez, A., A. Crespo, E. Migoya, J. Garcia: Advances in large-eddy simulation of a wind turbine wake. J. Phys. Conf. Ser., 75, 012041. https://doi.org/10.1088/1742-6596/75/1/012041(2007)

  • Koschmieder, H.: Über Böen und Tromben (On straight-line winds and tornadoes). Die Naturwiss. 34, 203–211, 235–238 (1946) [In German]

    Google Scholar 

  • Lissaman, P.B.S.: Energy Effectiveness of arbitrary arrays of wind turbines. AIAA paper 79–0114 (1979)

    Google Scholar 

  • Magnusson, M.: Near-wake behaviour of wind turbines. J. Wind Eng. Ind. Aerodyn. 80, 147–167 (1999)

    Google Scholar 

  • Manwell, J.F., J.G. McGowan, A.L. Rogers: Wind Energy Explained: Theory, Design and Application. 2nd edition. John Wiley & Sons, Chichester. 689 pp. (2010)

    Google Scholar 

  • Newman, B.G.: The spacing of wind turbines in large arrays. J. Energy Conversion 16, 169–171 (1977)

    Google Scholar 

  • Nygaard, N.G.: Wakes in very large wind farms and the effect of neighbouring wind farms. J. Phys. Conf. Ser., 524, 012162 (2014)

    Google Scholar 

  • Peña, A., O. Rathmann: Atmospheric stability-dependent infinite wind-farm models and the wake-decay coefficient. Wind Energ. 17, 1269–1285 (2014)

    Google Scholar 

  • Platis, A., S.K. Siedersleben, J. Bange, A. Lampert,, K. Bärfuss,, R. Hankers, B. Canadillas, R. Foreman, J. Schulz-Stellenfleth, B. Djath, T. Neumann, S. Emeis: First in situ evidence of wakes in the far field behind offshore wind farms. Scientific Reports, 8, 2163 (2018)

    Google Scholar 

  • Quarton, D.C.: Characterization of wind turbine wake turbulence and its implications on wind farm spacing. Final Report ETSU WN 5096, Department of Energy of the UK. Garrad-Hassan Contract (1989)

    Google Scholar 

  • Rodrigues, S., P. Bauer, P.A.N. Bosman: Multi-objective optimization of wind farm layouts—Complexity, constraint handling and scalability. Renew. Sust. Energ. Rev., 65, 587–609 (2016)

    Google Scholar 

  • Siedersleben, S.K., A. Platis, J.K. Lundquist, A. Lampert, K. Bärfuss, B. Canadillas, B. Djath, J. Schulz-Stellenfleth, T. Neumann, J. Bange, S. Emeis: Evaluation of a Wind Farm Parametrization for Mesoscale Atmospheric 2 Flow Models with Aircraft Measurements. Meteorol. Z., submitted (2018)

    Google Scholar 

  • Skamarock, W. C., and Coauthors: A description of the Advanced Research WRF version 3. NCAR Tech. Note NCAR/TN-475 + STR, 113 pp., doi:https://doi.org/10.5065/D68S4MVH (2008)

  • Smith, R.B.: Gravity wave effects on wind farm efficiency. Wind Energy, 13, 449–458 (2010)

    Google Scholar 

  • Steinfeld, G., Tambke, J., Peinke, J., Heinemann, D.: Application of a large-eddy simulation model to the analysis of flow conditions in offshore wind farms. Geophys. Res. Abstr. 12, EGU2010-8320 (2010)

    Google Scholar 

  • Stevens, R. J., Martínez-Tossas, L. A., Meneveau, C. : Comparison of wind farm large eddy simulations using actuator disk and actuator line models with wind tunnel experiments. Renewable Energy, 116, 470–478 (2018)

    Google Scholar 

  • Thom, H.C.S.: Tornado probabilities.—Mon. Wea. Rev. 91, 730–736 (1963)

    Google Scholar 

  • Thomsen, K., P. Sørensen: Fatigue loads for wind turbines operating in wakes. Journal of Wind Engineering and Industrial Aerodynamics, 80, 121–136 (1999)

    Google Scholar 

  • Troen, I., E.L. Petersen: European Wind Atlas. Risø National Laboratory, Roskilde, Denmark. 656 pp. (1989)

    Google Scholar 

  • Troldborg, N., J.N. Sørensen, R. Mikkelsen: Numerical simulations of wake characteristics of a wind turbine in uniform inflow. Wind Energy 13, 86–99 (2010)

    Google Scholar 

  • Vermeer, L.J., J.N. Sørensen, A. Crespo: Wind turbine wake aerodynamics. Progr. Aerospace Sci. 39, 467–510 (2003)

    Google Scholar 

  • Wu, Y.T., F. Porté-Agel : Simulation of turbulent flow inside and above wind farms: model validation and layout effects. Bound-Lay. Meteorol., 146, 181–205 (2013)

    Google Scholar 

  • Wussow, S., L. Sitzki, T. Hahm: 3D-simulations of the turbulent wake behind a wind turbine. J. Phys. Conf. Ser., 75, 012033, https://doi.org/10.1088/1742-6596/75/1/012033 (2007)

  • Xia G., L. Zhou: Detecting Wind Farm Impacts on Local Vegetation Growth in Texas and Illinois Using MODIS Vegetation Greenness Measurements. Rem. Sens., 9, 698 (16 pp.) (2017)

    Google Scholar 

  • Xia G., L. Zhou, J.M. Freedman, S.B. Roy, R.A. Harris, M.C. Cervarich: A case study of effects of atmospheric boundary layer turbulence, wind speed, and stability on wind farm induced temperature changes using observations from a field campaign. Climate Dyn, 1–18 (2015)

    Google Scholar 

  • Zhou L., Y. Tian, R.S. Baidya, C. Thorncroft, L.F. Bosart, Y. Hu: Impacts of wind farms on land surface temperature. Nat. Clim. Change, 2, 539–543 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Emeis .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Emeis, S. (2018). Physics of Wind Parks. In: Wind Energy Meteorology. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-72859-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72859-9_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72858-2

  • Online ISBN: 978-3-319-72859-9

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics