Skip to main content

Cellular Uptake and Mode-of-Action of Clostridium difficile Toxins

  • Chapter
  • First Online:
Updates on Clostridium difficile in Europe

Part of the book series: Advances in Experimental Medicine and Biology ((AMIDPH,volume 1050))

Abstract

Research on the human gut pathogen Clostridium difficile and its toxins has gained much attention, particularly as a consequence of the increasing threat to human health presented by emerging hypervirulent strains. Toxin A (TcdA) and B (TcdB) are the two major virulence determinants of C. difficile. Both are single-chain proteins with a similar multidomain architecture. Certain hypervirulent C. difficile strains also produce a third toxin, namely binary toxin CDT (Clostridium difficile transferase). As C. difficile toxins are the causative agents of C. difficile-associated diseases (CDAD), such as antibiotics-associated diarrhea and pseudomembranous colitis, considerable efforts have been expended to unravel their molecular mode-of-action and the cellular mechanisms responsible for their uptake. Notably, a high proportion of studies on C. difficile toxins were performed in European laboratories. In this chapter we will highlight important recent advances in C. difficile toxins research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aktories K (2011) Bacterial protein toxins that modify host regulatory GTPases. Nat Rev Microbiol 9:487–498

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Wegner A (1989) ADP-ribosylation of actin by clostridial toxins. J Cell Biol 109:1385–1387

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Bärmann M, Ohishi I, Tsuyama S, Jakobs KH, Habermann E (1986) Botulinum C2 toxin ADP-ribosylates actin. Nature 322:390–392

    Article  CAS  PubMed  Google Scholar 

  • Aktories K, Schwan C, Jank T (2017) Clostridium difficile toxin biology. Annu Rev Microbiol 71:281–307

    Article  CAS  PubMed  Google Scholar 

  • Albesa-Jove D, Bertrand T, Carpenter EP, Swain GV, Lim J, Zhang J et al (2010) Four distinct structural domains in Clostridium difficile toxin B visualized using SAXS. J Mol Biol 396:1260–1270

    Article  CAS  PubMed  Google Scholar 

  • Alvin JW, Lacy DB (2017) Clostridium difficile toxin glucosyltransferase domains in complex with a non-hydrolyzable UDP-glucose analogue. J Struct Biol 198:203–209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amimoto K, Noro T, Oishi E, Shimizu M (2007) A novel toxin homologous to large clostridial cytotoxins found in culture supernatant of Clostridium perfringens type C. Microbiology 153:1198–1206

    Article  CAS  PubMed  Google Scholar 

  • Barroso LA, Moncrief JS, Lyerly DM, Wilkins TD (1994) Mutagenesis of the Clostridium difficile toxin B gene and effect on cytotoxic activity. Microb Pathog 16:297–303

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Pfeifer G, Hofmann F, Maier E, Benz R, Aktories K (2001) Low pH-induced formation of ion channels by Clostridium difficile toxin B in target cells. J Biol Chem 276:10670–10676

    Article  CAS  PubMed  Google Scholar 

  • Barth H, Aktories K, Popoff MR, Stiles BG (2004) Binary bacterial toxins: biochemistry, biology, and applications of common Clostridium and Bacillus proteins. Microbiol Mol Biol Rev 68:373–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belyi Y, Niggeweg R, Opitz B, Vogelsgesang M, Hippenstiel S, Wilm M, Aktories K (2006) Legionella pneumophila glucosyltransferase inhibits host elongation factor 1A. Proc Natl Acad Sci U S A 103:16953–16958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bishop AL, Hall A (2000) Rho GTPases and their effector proteins. Biochem J 348:241–255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blonder J, Hale ML, Chan KC, Yu LR, Lucas DA, Conrads TP et al (2005) Quantitative profiling of the detergent-resistant membrane proteome of iota-b toxin induced vero cells. J Proteome Res 4:523–531

    Article  CAS  PubMed  Google Scholar 

  • Brito GAC, Fujji J, Carneiro-Filho BA, Lima AAM, Obrig T, Guerrant RL (2002) Mechanism of Clostridium difficile toxin A – induced apoptosis in T84 cells. J Infect Dis 186:1438–1447

    Article  CAS  PubMed  Google Scholar 

  • Burridge K, Wennerberg K (2004) Rho and Rac take center stage. Cell 116:167–179

    Article  CAS  PubMed  Google Scholar 

  • Busch C, Hofmann F, Selzer J, Munro J, Jeckel D, Aktories K (1998) A common motif of eukaryotic glycosyltransferases is essential for the enzyme activity of large clostridial cytotoxins. J Biol Chem 273:19566–19572

    Article  CAS  PubMed  Google Scholar 

  • Busch C, Hofmann F, Gerhard R, Aktories K (2000) Involvement of a conserved tryptophan residue in the UDP-glucose binding of large clostridial cytotoxin glycosyltransferases. J Biol Chem 275:13228–13234

    Article  CAS  PubMed  Google Scholar 

  • Chandrasekaran R, Kenworthy AK, Lacy DB (2016) Clostridium difficile toxin A undergoes clathrin-independent, PACSIN2-dependent endocytosis. PLoS Pathog 12:e1006070

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cherfils J, Zeghouf M (2013) Regulation of small GTPases by GEFs, GAPs, and GDIs. Physiol Rev 93:269–309

    Article  CAS  PubMed  Google Scholar 

  • Chumbler NM, Rutherford SA, Zhang Z, Farrow MA, Lisher JP, Farquhar E et al (2016) Crystal structure of Clostridium difficile toxin A. Nat Microbiol 1:15002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collery MM, Kuehne SA, McBride SM, Kelly ML, Monot M, Cockayne A et al (2017) What’s a SNP between friends: the influence of single nucleotide polymorphisms on virulence and phenotypes of Clostridium difficile strain 630 and derivatives. Virulence 8:767–781

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Considine RV, Simpson LL (1991) Cellular and molecular actions of binary toxins possessing ADP-ribosyltransferase activity. Toxicon 29:913–936

    Article  CAS  PubMed  Google Scholar 

  • Cowardin CA, Buonomo EL, Saleh MM, Wilson MG, Burgess SL, Kuehne SA et al (2016) The binary toxin CDT enhances Clostridium difficile virulence by suppressing protective colonic eosinophilia. Nat Microbiol 1:16108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czulkies BA, Mastroianni J, Lutz L, Lang S, Schwan C, Schmidt G et al (2017) Loss of LSR affects epithelial barrier integrity and tumor xenograft growth of CaCo-2 cells. Oncotarget 8:37009–37022

    Article  PubMed  Google Scholar 

  • D’Urzo N, Malito E, Biancucci M, Bottomley MJ, Maione D, Scarselli M, Martinelli M (2012) The structure of Clostridium difficile toxin A glucosyltransferase domain bound to Mn2+ and UDP provides insights into glucosyltransferase activity and product release. FEBS J 279:3085–3097

    Article  PubMed  CAS  Google Scholar 

  • Dingle T, Wee S, Mulvey GL, Greco A, Kitova EN, Sun J et al (2008) Functional properties of the carboxy-terminal host cell-binding domains of the two toxins, TcdA and TcdB, expressed by Clostridium difficile. Glycobiology 18:698–706

    Article  CAS  PubMed  Google Scholar 

  • Dominguez R, Holmes KC (2011) Actin structure and function. Annu Rev Biophys 40:169–186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donald RG, Flint M, Kalyan N, Johnson E, Witko SE, Kotash C et al (2013) A novel approach to generate a recombinant toxoid vaccine against Clostridium difficile. Microbiology 159:1254–1266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dove CH, Wang SZ, Price SB, Phelps CJ, Lyerly DM, Wilkins TD, Johnson JL (1990) Molecular characterization of the Clostridium difficile toxin A gene. Infect Immun 58:480–488

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drabek K, van HM, Stepanova T, Draegestein K, van HR, Sayas CL et al (2006) Role of CLASP2 in microtubule stabilization and the regulation of persistent motility. Curr Biol 16:2259–2264

    Article  CAS  PubMed  Google Scholar 

  • Egerer M, Giesemann T, Jank T, Satchell KJ, Aktories K (2007) Auto-catalytic cleavage of Clostridium difficile toxins A and B depends on a cysteine protease activity. J Biol Chem 282:25314–25321

    Article  CAS  PubMed  Google Scholar 

  • Egerer M, Giesemann T, Herrmann C, Aktories K (2009) Autocatalytic processing of Clostridium difficile toxin B. Binding of inositol hexakisphosphate. J Biol Chem 284:3389–3395

    Google Scholar 

  • Ernst K, Langer S, Kaiser E, Osseforth C, Michaelis J, Popoff MR et al (2015) Cyclophilin-facilitated membrane translocation as pharmacological target to prevent intoxication of mammalian cells by binary clostridial actin ADP-ribosylated toxins. J Mol Biol 427:1224–1238

    Article  CAS  PubMed  Google Scholar 

  • Ernst K, Schnell L, Barth H (2016) Host cell chaperones Hsp70/Hsp90 and peptidyl-prolyl cis/trans isomerases are required for the membrane translocation of bacterial ADP-ribosylating toxins. Curr Top Microbiol Immunol. May 20. [Epub ahead of print]

    Google Scholar 

  • Ernst K, Schmid J, Beck M, Hagele M, Hohwieler M, Hauff P et al (2017) Hsp70 facilitates trans-membrane transport of bacterial ADP-ribosylating toxins into the cytosol of mammalian cells. Sci Rep 7:2724

    Article  PubMed  PubMed Central  Google Scholar 

  • Farrow MA, Chumbler NM, Lapierre LA, Franklin JL, Rutherford SA, Goldenring JR, Lacy DB (2013) Clostridium difficile toxin B-induced necrosis is mediated by the host epithelial cell NADPH oxidase complex. Proc Natl Acad Sci U S A 110:18674–18679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiorentini C, Thelestam M (1991) Clostridium difficile toxin A and its effects on cells. Toxicon 29:543–567

    Article  CAS  PubMed  Google Scholar 

  • Fiorentini C, Fabbri A, Falzano L, Fattorossi A, Matarrese P, Rivabene R, Donelli G (1998) Clostridium difficile toxin B induces apoptosis in intestinal cultured cells. Infect Immun 66:2660–2665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frey SM, Wilkins TD (1992) Localization of two epitopes recognized by monoclonal antibody PCG-4 on Clostridium difficile toxin A. Infect Immun 60:2488–2492

    CAS  PubMed  PubMed Central  Google Scholar 

  • Frisch C, Gerhard R, Aktories K, Hofmann F, Just I (2003) The complete receptor-binding domain of Clostridium difficile toxin A is required for endocytosis. Biochem Biophys Res Commun 300:706–711

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Oda Y, Higashi T, Iwamoto N, Masuda S (2012) Lipolysis-stimulated lipoprotein receptor: a novel membrane protein of tricellular tight junctions. Ann N Y Acad Sci 1257:54–58

    Article  CAS  PubMed  Google Scholar 

  • Gao W, Yang J, Liu W, Wang Y, Shao F (2016) Site-specific phosphorylation and microtubule dynamics control Pyrin inflammasome activation. Proc Natl Acad Sci U S A 113:E4857–E4866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Mata R, Burridge K (2007) Catching a GEF by its tail. Trends Cell Biol 17:36–43

    Article  CAS  PubMed  Google Scholar 

  • Geissler B, Tungekar R, Satchell KJ (2010) Identification of a conserved membrane localization domain within numerous large bacterial protein toxins. Proc Natl Acad Sci U S A 107:5581–5586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genisyuerek S, Papatheodorou P, Guttenberg G, Schubert R, Benz R, Aktories K (2011) Structural determinants for membrane insertion, pore formation and translocation of Clostridium difficile toxin B. Mol Microbiol 79:1643–1654

    Article  CAS  PubMed  Google Scholar 

  • Genth H, Aktories K, Just I (1999) Monoglucosylation of RhoA at threonine-37 blocks cytosol-membrane cycling. J Biol Chem 274:29050–29056

    Article  CAS  PubMed  Google Scholar 

  • Gerding DN, Johnson S, Rupnik M, Aktories K (2014) Clostridium difficile binary toxin CDT: mechanism, epidemiology, and potential clinical importance. Gut Microbes 5:15–27

    Article  PubMed  Google Scholar 

  • Gerhard R (2016) Receptors and binding structures for Clostridium difficile toxins A and B. Curr Top Microbiol Immunol. [Epub ahead of print]

    Google Scholar 

  • Gerhard R, Nottrott S, Schoentaube J, Tatge H, Olling A, Just I (2008) Glucosylation of Rho GTPases by Clostridium difficile toxin A triggers apoptosis in intestinal epithelial cells. J Med Microbiol 57:765–770

    Article  CAS  PubMed  Google Scholar 

  • Gerhard R, Frenzel E, Goy S, Olling A (2013) Cellular uptake of Clostridium difficile TcdA and truncated TcdA lacking the receptor binding domain. J Med Microbiol 62:1414–1422

    Article  CAS  PubMed  Google Scholar 

  • Geyer M, Wilde C, Selzer J, Aktories K, Kalbitzer HR (2003) Glucosylation of Ras by Clostridium sordellii lethal toxin: consequences for the effector loop conformations observed by NMR spectroscopy. Biochemistry 42:11951–11959

    Article  CAS  PubMed  Google Scholar 

  • Gibert M, Monier MN, Ruez R, Hale ML, Stiles BG, Benmerah A et al (2011) Endocytosis and toxicity of clostridial binary toxins depend on a clathrin-independent pathway regulated by Rho-GDI. Cell Microbiol 13:154–170

    Article  CAS  PubMed  Google Scholar 

  • Giesemann T, Jank T, Gerhard R, Maier E, Just I, Benz R, Aktories K (2006) Cholesterol-dependent pore formation of Clostridium difficile toxin A. J Biol Chem 281:10808–10815

    Article  CAS  PubMed  Google Scholar 

  • Greco A, Ho JG, Lin SJ, Palcic MM, Rupnik M, Ng KK (2006) Carbohydrate recognition by Clostridium difficile toxin A. Nat Struct Mol Biol 13:460–461

    Article  CAS  PubMed  Google Scholar 

  • Guttenberg G, Hornei S, Jank T, Schwan C, Lu W, Einsle O et al (2012) Molecular characteristics of Clostridium perfringens TpeL toxin and consequences of mono-O-GlcNAcylation of Ras in living cells. J Biol Chem 287:24929–24940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Halabi-Cabezon I, Huelsenbeck J, May M, Ladwein M, Rottner K, Just I, Genth H (2008) Prevention of the cytopathic effect induced by Clostridium difficile toxin B by active Rac1. FEBS Lett 582:3751–3756

    Article  CAS  PubMed  Google Scholar 

  • Hale ML, Marvaud JC, Popoff MR, Stiles BG (2004) Detergent-resistant membrane microdomains facilitate Ib oligomer formation and biological activity of Clostridium perfringens iota-toxin. Infect Immun 72:2186–2193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Han S, Craig JA, Putnam CD, Carozzi NB, Tainer JA (1999) Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex. Nat Struct Biol 6:932–936

    Article  CAS  PubMed  Google Scholar 

  • Hecht G, Pothoulakis C, LaMont JT, Madara JL (1988) Clostridium difficile toxin A pertubs cytoskeletal structure and tight junction permeability of cultured human intestinal epithelial monolayers. J Clin Invest 82:1516–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hecht G, Koutsouris A, Pothoulakis C, LaMont JT, Madara JL (1992) Clostridium difficile toxin B disrupts the barrier function of T84 monolayers. Gastroenterology 102:416–423

    Article  CAS  PubMed  Google Scholar 

  • Heine K, Pust S, Enzenmuller S, Barth H (2008) ADP-ribosylation of actin by the Clostridium botulinum C2 toxin in mammalian cells results in delayed caspase-dependent apoptotic cell death. Infect Immun 76:4600–4608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hemmasi S, Czulkies BA, Schorch B, Veit A, Aktories K, Papatheodorou P (2015) Interaction of the Clostridium difficile binary toxin CDT and its host cell receptor, lipolysis-stimulated lipoprotein receptor (LSR). J Biol Chem 290:14031–14044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirase T, Kawashima S, Wong EY, Ueyama T, Rikitake Y, Tsukita S et al (2001) Regulation of tight junction permeability and occludin phosphorylation by Rhoa-p160ROCK-dependent and -independent mechanisms. J Biol Chem 276:10423–10431

    Article  CAS  PubMed  Google Scholar 

  • Ho JG, Greco A, Rupnik M, Ng KK (2005) Crystal structure of receptor-binding C-terminal repeats from Clostridium difficile toxin A. Proc Natl Acad Sci U S A 102:18373–18378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofmann F, Busch C, Prepens U, Just I, Aktories K (1997) Localization of the glucosyltransferase activity of Clostridium difficile toxin B to the N-terminal part of the holotoxin. J Biol Chem 272:11074–11078

    Article  CAS  PubMed  Google Scholar 

  • Hofmann F, Busch C, Aktories K (1998) Chimeric clostridial cytotoxins: identification of the N-terminal region involved in protein substrate recognition. Infect Immun 66:1076–1081

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holmes KC, Popp D, Gebhard W, Kabsch W (1990) Atomic model of the actin filament. Nature 347:44–49

    Article  CAS  PubMed  Google Scholar 

  • Ishida Y, Maegawa T, Kondo T, Kimura A, Iwakura Y, Nakamura S, Mukaida N (2004) Essential involvement of IFN-gamma in Clostridium difficile toxin A-induced enteritis. J Immunol 172:3018–3025

    Article  CAS  PubMed  Google Scholar 

  • Jafari NV, Kuehne SA, Bryant CE, Elawad M, Wren BW, Minton NP et al (2013) Clostridium difficile modulates host innate immunity via toxin-independent and dependent mechanism(s). PLoS One 8:e69846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaffe AB, Hall A (2005) Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol 21:247–269

    Article  CAS  PubMed  Google Scholar 

  • Jank T, Aktories K (2008) Structure and mode of action of clostridial glucosylating toxins: the ABCD model. Trends Microbiol 16:222–229

    Article  CAS  PubMed  Google Scholar 

  • Jank T, Reinert DJ, Giesemann T, Schulz GE, Aktories K (2005) Change of the donor substrate specificity of Clostridium difficile toxin B by site-directed mutagenesis. J Biol Chem 280:37833–37838

    Article  CAS  PubMed  Google Scholar 

  • Jank T, Giesemann T, Aktories K (2007) Clostridium difficile glucosyltransferase toxin B – essential amino acids for substrate-binding. J Biol Chem 282:35222–35231

    Article  CAS  PubMed  Google Scholar 

  • Jank T, Bogdanovic X, Wirth C, Haaf E, Spoerner M, Bohmer KE et al (2013) A bacterial toxin catalyzing tyrosine glycosylation of Rho and deamidation of Gq and Gi proteins. Nat Struct Mol Biol 20:1273–1280

    Article  CAS  PubMed  Google Scholar 

  • Jank T, Belyi Y, Aktories K (2015a) Bacterial glycosyltransferase toxins. Cell Microbiol 17:1752–1765

    Article  CAS  PubMed  Google Scholar 

  • Jank T, Eckerle S, Steinemann M, Trillhaase C, Schimpl M, Wiese S et al (2015b) Tyrosine glycosylation of Rho by Yersinia toxin impairs blastomere cell behaviour in zebrafish embryos. Nat Commun 6:7807

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen I, Miao EA (2015) Pyroptotic cell death defends against intracellular pathogens. Immunol Rev 265:130–142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Just I, Gerhard R (2004) Large clostridial cytotoxins. Rev Physiol Biochem Pharmacol 152:23–47

    Article  CAS  PubMed  Google Scholar 

  • Just I, Selzer J, Wilm M, Von Eichel-Streiber C, Mann M, Aktories K (1995a) Glucosylation of Rho proteins by Clostridium difficile toxin B. Nature 375:500–503

    Article  CAS  PubMed  Google Scholar 

  • Just I, Wilm M, Selzer J, Rex G, Von Eichel-Streiber C, Mann M, Aktories K (1995b) The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J Biol Chem 270:13932–13936

    Article  CAS  PubMed  Google Scholar 

  • Just I, Selzer J, Hofmann F, Green GA, Aktories K (1996) Inactivation of Ras by Clostridium sordellii lethal toxin-catalyzed glucosylation. J Biol Chem 271:10149–10153

    Article  CAS  PubMed  Google Scholar 

  • Kaiser E, Kroll C, Ernst K, Schwan C, Popoff M, Fischer G et al (2011) Membrane translocation of binary actin-ADP-ribosylating toxins from Clostridium difficile and Clostridium perfringens is facilitated by cyclophilin A and Hsp90. Infect Immun 79:3913–3921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, Pai H, Seo MR, Kang JO (2012) Clinical and microbiologic characteristics of tcdA-negative variant Clostridium difficile infections. BMC Infect Dis 12:109

    Article  PubMed  PubMed Central  Google Scholar 

  • Kodama A, Karakesisoglou I, Wong E, Vaezi A, Fuchs E (2003) ACF7: an essential integrator of microtubule dynamics. Cell 115:343–354

    Article  CAS  PubMed  Google Scholar 

  • Krivan HC, Clark GF, Smith DF, Wilkins TD (1986) Cell surface binding site for Clostridium difficile enterotoxin: evidence for a glycoconjugate containing the sequence Gal alpha 1-3Gal beta 1-4GlcNAc. Infect Immun 53:573–581

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuehne SA, Cartman ST, Heap JT, Kelly ML, Cockayne A, Minton NP (2010) The role of toxin A and toxin B in Clostridium difficile infection. Nature 467:711–713

    Article  CAS  PubMed  Google Scholar 

  • Kuehne SA, Collery MM, Kelly ML, Cartman ST, Cockayne A, Minton NP (2014) Importance of toxin A, toxin B, and CDT in virulence of an epidemic Clostridium difficile strain. J Infect Dis 209:83–86

    Article  CAS  PubMed  Google Scholar 

  • Kushnaryov VM, Sedmark JJ (1989) Effect of Clostridium difficile enterotoxin A on ultrastructure of chinese hamster ovary cells. Infect Immun 57(12):3914–3921

    CAS  PubMed  PubMed Central  Google Scholar 

  • La France ME, Farrow MA, Chandrasekaran R, Sheng JS, Rubin DH, Lacy DB (2015) Identification of an epithelial cell receptor responsible for Clostridium difficile TcdB-induced cytotoxicity. Proc Natl Acad Sci U S A 112:7073–7078

    Article  CAS  Google Scholar 

  • Lamaze C, Dujeancourt A, Baba T, Lo CG, Benmerah A, Dautry-Varsat A (2001) Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol Cell 7:661–671

    Article  CAS  PubMed  Google Scholar 

  • Lambert GS, Baldwin MR (2016) Evidence for dual receptor-binding sites in Clostridium difficile toxin A. FEBS Lett 590:4550–4563

    Article  CAS  PubMed  Google Scholar 

  • Lemichez E, Aktories K (2013) Hijacking of Rho GTPases during bacterial infection. Exp Cell Res 319:2329–2336

    Article  CAS  PubMed  Google Scholar 

  • Li S, Zhang L, Yao Q, Li L, Dong N, Rong J et al (2013) Pathogen blocks host death receptor signalling by arginine GlcNAcylation of death domains. Nature 501:242–246

    Article  CAS  PubMed  Google Scholar 

  • Linevsky JK, Pothoulakis C, Keates S, Warny M, Keates AC, LaMont JT, Kelly CP (1997) IL-8 release and neutrophil activation by Clostridium difficile toxin-exposed human monocytes. Am J Phys 273:G1333–G1340

    CAS  Google Scholar 

  • Lu A, Wu H (2015) Structural mechanisms of inflammasome assembly. FEBS J 282:435–444

    Article  CAS  PubMed  Google Scholar 

  • Lyerly DM, Krivan HC, Wilkins TD (1988) Clostridium difficile: its disease and toxins. Clin Microbiol Rev 1:1–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyerly DM, Barroso LA, Wilkins TD, Depitre C, Corthier G (1992) Characterization of a toxin A-negative, toxin B-positive strain of Clostridium difficile. Infect Immun 60:4633–4639

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lyras D, O’Connor JR, Howarth PM, Sambol SP, Carter GP, Phumoonna T et al (2009) Toxin B is essential for virulence of Clostridium difficile. Nature 458:1176–1179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mahida YR, Makh S, Hyde S, Gray T, Borriello SP (1996) Effect of Clostridium difficile toxin A on human intestinal epithelial cells: induction of interleukin 8 production and apoptosis after cell detachment. Gut 38:337–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manse JS, Baldwin MR (2015) Binding and entry of Clostridium difficile toxin B is mediated by multiple domains. FEBS Lett 589:3945–3951

    Article  CAS  PubMed  Google Scholar 

  • Margarit SM, Davidson W, Frego L, Stebbins CE (2006) A steric antagonism of actin polymerization by a salmonella virulence protein. Structure 14:1219–1229

    Article  CAS  PubMed  Google Scholar 

  • Masuda S, Oda Y, Sasaki H, Ikenouchi J, Higashi T, Akashi M et al (2011) LSR defines cell corners for tricellular tight junction formation in epithelial cells. J Cell Sci 124:548–555

    Article  CAS  PubMed  Google Scholar 

  • Mesli S, Javorschi S, Berard AM, Landry M, Priddle H, Kivlichan D et al (2004) Distribution of the lipolysis stimulated receptor in adult and embryonic murine tissues and lethality of LSR−/− embryos at 12.5 to 14.5 days of gestation. Eur J Biochem 271:3103–3114

    Article  CAS  PubMed  Google Scholar 

  • Miao EA, Leaf IA, Treuting PM, Mao DP, Dors M, Sarkar A et al (2010) Caspase-1-induced pyroptosis is an innate immune effector mechanism against intracellular bacteria. Nat Immunol 11:1136–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monot M, Eckert C, Lemire A, Hamiot A, Dubois T, Tessier C et al (2015) Clostridium difficile: new insights into the evolution of the pathogenicity locus. Sci Rep 5:15023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostowy S, Cossart P (2012) Septins: the fourth component of the cytoskeleton. Nat Rev Mol Cell Biol 13:183–194

    Article  CAS  PubMed  Google Scholar 

  • Nagahama M, Yamaguchi A, Hagiyama T, Ohkubo N, Kobayashi K, Sakurai J (2004) Binding and internalization of Clostridium perfringens iota-toxin in lipid rafts. Infect Immun 72:3267–3275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagahama M, Ohkubo A, Oda M, Kobayashi K, Amimoto K, Miyamoto K, Sakurai J (2011) Clostridium perfringens TpeL glycosylates the Rac and Ras subfamily proteins. Infect Immun 79:905–910

    Article  CAS  PubMed  Google Scholar 

  • Ng J, Hirota SA, Gross O, Li Y, Ulke-Lemee A, Potentier MS et al (2010) Clostridium difficile toxin-induced inflammation and intestinal injury are mediated by the inflammasome. Gastroenterology 139:542–552

    Article  CAS  Google Scholar 

  • Nobes C, Hall A (1994) Regulation and function of the Rho subfamily of small GTPases. Curr Opin Genet Dev 4:77–81

    Article  CAS  PubMed  Google Scholar 

  • Nolke T, Schwan C, Lehmann F, Ostevold K, Pertz O, Aktories K (2016) Septins guide microtubule protrusions induced by actin-depolymerizing toxins like Clostridium difficile transferase (CDT). Proc Natl Acad Sci U S A 113:7870–7875

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nusrat A, Giry M, Turner JR, Colgan SP, Parkos CA, Carnes D et al (1995) Rho protein regulates tight junctions and perijunctional actin organization in polarized epithelia. Proc Natl Acad Sci U S A 92:10629–10633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nusrat A, Von Eichel-Streiber C, Turner JR, Verkade P, Madara JL, Parkos CA (2001) Clostridium difficile toxins disrupt epithelial barrier function by altering membrane microdomain localization of tight junction proteins. Infect Immun 69:1329–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olling A, Goy S, Hoffmann F, Tatge H, Just I, Gerhard R (2011) The repetitive oligopeptide sequences modulate cytopathic potency but are not crucial for cellular uptake of Clostridium difficile toxin A. PLoS One 6:e17623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orth P, Xiao L, Hernandez LD, Reichert P, Sheth PR, Beaumont M et al (2014) Mechanism of action and epitopes of Clostridium difficile toxin B-neutralizing antibody bezlotoxumab revealed by X-ray crystallography. J Biol Chem 289:18008–18021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ottlinger ME, Lin S (1988) Clostridium difficile toxin B induces reorganization of actin, vinculin, and talin in cultures cells. Exp Cell Res 174:215–229

    Article  CAS  PubMed  Google Scholar 

  • Papatheodorou P, Aktories K (2016) Receptor-binding and uptake of binary actin-ADP-ribosylating toxins. Curr Top Microbiol Immunol. Nov 6. [Epub ahead of print]

    Google Scholar 

  • Papatheodorou P, Zamboglou C, Genisyuerek S, Guttenberg G, Aktories K (2010) Clostridial glucosylating toxins enter cells via clathrin-mediated endocytosis. PLoS One 5:e10673

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Papatheodorou P, Carette JE, Bell GW, Schwan C, Guttenberg G, Brummelkamp TR, Aktories K (2011) Lipolysis-stimulated lipoprotein receptor (LSR) is the host receptor for the binary toxin Clostridium difficile transferase (CDT). Proc Natl Acad Sci U S A 108:16422–16427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papatheodorou P, Wilczek C, Nolke T, Guttenberg G, Hornuss D, Schwan C, Aktories K (2012) Identification of the cellular receptor of Clostridium spiroforme toxin. Infect Immun 80:1418–1423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papatheodorou P, Hornuss D, Nolke T, Hemmasi S, Castonguay J, Picchianti M, Aktories K (2013) Clostridium difficile binary toxin CDT induces clustering of the lipolysis-stimulated lipoprotein receptor into lipid rafts. MBio 4:e00244–e00213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park YH, Wood G, Kastner DL, Chae JJ (2016) Pyrin inflammasome activation and RhoA signaling in the autoinflammatory diseases FMF and HIDS. Nat Immunol 17:914–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perelle S, Gibert M, Bourlioux P, Corthier G, Popoff MR (1997) Production of a complete binary toxin (actin-specific ADP-ribosyltransferase) by Clostridium difficile CD196. Infect Immun 65:1402–1407

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perieteanu AA, Visschedyk DD, Merrill AR, Dawson JF (2010) ADP-ribosylation of cross-linked actin generates barbed-end polymerization-deficient F-actin oligomers. Biochemistry 49:8944–8954

    Article  CAS  PubMed  Google Scholar 

  • Petosa C, Collier RJ, Klimpel KR, Leppla SH, Liddingtom RC (1997) Crystal structure of the anthrax toxin protective antigen. Nature 385:833–838

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer G, Schirmer J, Leemhuis J, Busch C, Meyer DK, Aktories K, Barth H (2003) Cellular uptake of Clostridium difficile toxin B: translocation of the N-terminal catalytic domain into the cytosol of eukaryotic cells. J Biol Chem 278:44535–44541

    Article  CAS  PubMed  Google Scholar 

  • Popoff MR, Boquet P (1988) Clostridium spiroforme toxin is a binary toxin which ADP- ribosylates cellular actin. Biochem Biophys Res Commun 152:1361–1368

    Article  CAS  PubMed  Google Scholar 

  • Pruitt RN, Chagot B, Cover M, Chazin WJ, Spiller B, Lacy DB (2009) Structure-function analysis of inositol hexakisphosphate-induced autoprocessing in Clostridium difficile toxin A. J Biol Chem 284:21934–21940

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruitt RN, Chambers MG, Ng KK, Ohi MD, Lacy DB (2010) Structural organization of the functional domains of Clostridium difficile toxins A and B. Proc Natl Acad Sci U S A 107:13467–13472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pruitt RN, Chumbler NM, Rutherford SA, Farrow MA, Friedman DB, Spiller B, Lacy DB (2012) Structural determinants of Clostridium difficile toxin A glucosyltransferase activity. J Biol Chem 287:8013–8020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Puri AW, Lupardus PJ, Deu E, Albrow VE, Garcia KC, Bogyo M, Shen A (2010) Rational design of inhibitors and activity-based probes targeting Clostridium difficile virulence factor TcdB. Chem Biol 17:1201–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qa’Dan M, Spyres LM, Ballard JD (2000) pH-induced conformational changes in Clostridium difficile toxin B. Infect Immun 68:2470–2474

    Article  PubMed  PubMed Central  Google Scholar 

  • Qa’Dan M, Spyres LM, Ballard JD (2001) pH-enhanced cytopathic effects of Clostridium sordellii lethal toxin. Infect Immun 69:5487–5493

    Article  PubMed  PubMed Central  Google Scholar 

  • Qa’Dan M, Christensen KA, Zhang L, Roberts TM, Collier RJ (2005) Membrane insertion by anthrax protective antigen in cultured cells. Mol Cell Biol 25:5492–5498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qiu B, Pothoulakis C, Castagliuolo I, Nikulasson S, La Mont JT (1999) Participation of reactive oxygen metabolites in Clostridium difficile toxin A-induced enteritis in rats. Am J Phys 276:G485–G490

    CAS  Google Scholar 

  • Reineke J, Tenzer S, Rupnik M, Koschinski A, Hasselmayer O, Schrattenholz A et al (2007) Autocatalytic cleavage of Clostridium difficile toxin B. Nature 446:415–419

    Article  CAS  PubMed  Google Scholar 

  • Reinert DJ, Jank T, Aktories K, Schulz GE (2005) Structural basis for the function of Clostridium difficile toxin B. J Mol Biol 351:973–981

    Article  CAS  PubMed  Google Scholar 

  • Roeder M, Nestorovich EM, Karginov VA, Schwan C, Aktories K, Barth H (2014) Tailored cyclodextrin pore blocker protects mammalian cells from Clostridium difficile binary toxin CDT. Toxins (Basel) 6:2097–2114

    Article  CAS  Google Scholar 

  • Roth BM, Godoy-Ruiz R, Varney KM, Rustandi RR, Weber DJ (2016a) 1H, 13C, and 15N resonance assignments of an enzymatically active domain from the catalytic component (CDTa, residues 216-420) of a binary toxin from Clostridium difficile. Biomol NMR Assign 10:213–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth BM, Varney KM, Rustandi RR, Weber DJ (2016b) (1)H(N), (13)C, and (15)N resonance assignments of the CDTb-interacting domain (CDTaBID) from the Clostridium difficile binary toxin catalytic component (CDTa, residues 1–221). Biomol NMR Assign 10:335–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rupnik M, Janezic S (2016) An update on Clostridium difficile toxinotyping. J Clin Microbiol 54:13–18

    Article  CAS  PubMed  Google Scholar 

  • Rupnik M, Avesani V, Janc M, Von Eichel-Streiber C, Delmée M (1998) A novel toxinotyping scheme and correlation of toxinotypes with serogroups of Clostridium difficile isolates. J Clin Microbiol 36:2240–2247

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rupnik M, Pabst S, Rupnik M, Von Eichel-Streiber C, Urlaub H, Soling HD (2005) Characterization of the cleavage site and function of resulting cleavage fragments after limited proteolysis of Clostridium difficile toxin B (TcdB) by host cells. Microbiology 151:199–208

    Article  CAS  PubMed  Google Scholar 

  • Russo HM, Rathkey J, Boyd-Tressler A, Katsnelson MA, Abbott DW, Dubyak GR (2016) Active caspase-1 induces plasma membrane pores that precede pyroptotic lysis and are blocked by lanthanides. J Immunol 197:1353–1367

    Article  CAS  PubMed  Google Scholar 

  • Sauerborn M, Leukel P, Von Eichel-Streiber C (1997) The C-terminal ligand-binding domain of Clostridium difficile toxin A (TcdA) abrogates TcdA-specific binding to cells and prevents mouse lethality. FEMS Microbiol Lett 155:45–54

    Article  CAS  PubMed  Google Scholar 

  • Schering B, Bärmann M, Chhatwal GS, Geipel U, Aktories K (1988) ADP-ribosylation of skeletal muscle and non- muscle actin by Clostridium perfringens iota toxin. Eur J Biochem 171:225–229

    Article  CAS  PubMed  Google Scholar 

  • Schleberger C, Hochmann H, Barth H, Aktories K, Schulz GE (2006) Structure and action of the binary C2 toxin from Clostridium botulinum. J Mol Biol 364:705–715

    Article  CAS  PubMed  Google Scholar 

  • Schorch B, Song S, van Diemen FR, Bock HH, May P, Herz J et al (2014) LRP1 is a receptor for Clostridium perfringens TpeL toxin indicating a two-receptor model of clostridial glycosylating toxins. Proc Natl Acad Sci U S A 111:6431–6436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwan C, Stecher B, Tzivelekidis T, Van HM, Rohde M, Hardt WD et al (2009) Clostridium difficile toxin CDT induces formation of microtubule-based protrusions and increases adherence of bacteria. PLoS Pathog 5:e1000626

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schwan C, Kruppke AS, Nolke T, Schumacher L, Koch-Nolte F, Kudryashev M et al (2014) Clostridium difficile toxin CDT hijacks microtubule organization and reroutes vesicle traffic to increase pathogen adherence. Proc Natl Acad Sci U S A 111:2313–2318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sehr P, Joseph G, Genth H, Just I, Pick E, Aktories K (1998) Glucosylation and ADP-ribosylation of Rho proteins – effects on nucleotide binding, GTPase activity, and effector-coupling. Biochemistry 37:5296–5304

    Article  CAS  PubMed  Google Scholar 

  • Selzer J, Hofmann F, Rex G, Wilm M, Mann M, Just I, Aktories K (1996) Clostridium novyi alpha-toxin-catalyzed incorporation of GlcNAc into Rho subfamily proteins. J Biol Chem 271:25173–25177

    Google Scholar 

  • Shen A, Lupardus PJ, Gersch MM, Puri AW, Albrow VE, Garcia KC, Bogyo M (2011) Defining an allosteric circuit in the cysteine protease domain of Clostridium difficile toxins. Nat Struct Mol Biol 18:364–371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohet F, Lin C, Munji RN, Lee SY, Ruderisch N, Soung A et al (2015) LSR/angulin-1 is a tricellular tight junction protein involved in blood-brain barrier formation. J Cell Biol 208:703–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steiner TS, Flores CA, Pizarro TT, Guerrant RL (1997) Fecal lactoferrin, interleukin-1beta, and interleukin-8 are elevated in patients with severe Clostridium difficile colitis. Clin Diagn Lab Immunol 4:719–722

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stiles BG, Hale ML, Marvaud J-C, Popoff M (2000) Clostridium perfringens iota toxin: binding studies and characterization of cell surface receptor by fluorescence-activated cytometry. Infect Immun 68:3475–3484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tao L, Zhang J, Meraner P, Tovaglieri A, Wu X, Gerhard R et al (2016) Frizzled proteins are colonic epithelial receptors for C. difficile toxin B. Nature 538:350–355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tcherkezian J, Lamarche-Vane N (2007) Current knowledge of the large RhoGAP family of proteins. Biol Cell 99:67–86

    Article  CAS  PubMed  Google Scholar 

  • Tsuge H, Nagahama M, Oda M, Iwamoto S, Utsunomiya H, Marquez VE et al (2008) Structural basis of actin recognition and arginine ADP-ribosylation by Clostridium perfringens iota-toxin. Proc Natl Acad Sci U S A 105:7399–7404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsurumura T, Tsumori Y, Qiu H, Oda M, Sakurai J, Nagahama M, Tsuge H (2013) Arginine ADP-ribosylation mechanism based on structural snapshots of iota-toxin and actin complex. Proc Natl Acad Sci U S A 110:4267–4272

    Article  CAS  PubMed  Google Scholar 

  • Tucker KD, Wilkins TD (1991) Toxin A of Clostridium difficile binds to the human carbohydrate antigens I, X, and Y. Infect Immun 59:73–78

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K (1987) Clostridium perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. FEBS Lett 225:48–52

    Article  CAS  PubMed  Google Scholar 

  • Vandekerckhove J, Schering B, Bärmann M, Aktories K (1988) Botulinum C2 toxin ADP-ribosylates cytoplasmic b/g-actin in arginine 177. J Biol Chem 263:696–700

    CAS  PubMed  Google Scholar 

  • Vetter IR, Hofmann F, Wohlgemuth S, Herrmann C, Just I (2000) Structural consequences of mono-glucosylation of Ha-Ras by Clostridium sordellii lethal toxin. J Mol Biol 301:1091–1095

    Article  CAS  PubMed  Google Scholar 

  • Von Eichel-Streiber C, Sauerborn M (1990) Clostridium difficile toxin A carries a C-terminal repetitive structure homologous to the carbohydrate binding region of streptococcal glycosyltransferases. Gene 96:107–113

    Article  CAS  PubMed  Google Scholar 

  • Von Eichel-Streiber C, Laufenberg-Feldmann R, Sartingen S, Schulze J, Sauerborn M (1992a) Comparative sequence analysis of the Clostridium difficile toxins A and B. Mol Gen Genet 233:260–268

    Article  Google Scholar 

  • Von Eichel-Streiber C, Sauerborn M, Kuramitsu HK (1992b) Evidence for a modular structure of the homologous repetitive C-terminal carbohydrate-binding sites of Clostridium difficile toxins and Streptococcus mutans glucosyltransferases. J Bacteriol 174:6707–6710

    Article  Google Scholar 

  • Voth DE, Ballard JD (2005) Clostridium difficile toxins: mechanism of action and role in disease. Clin Microbiol Rev 18:247–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warny M, Keates AC, Keates S, Castagliuolo I, Zacks JK, Aboudola S et al (2000) p38 MAP kinase activation by Clostridium difficile toxin A mediates monocyte necrosis, IL-8 production, and enteritis. J Clin Invest 105:1147–1156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wegner A, Aktories K (1988) ADP-ribosylated actin caps the barbed ends of actin filaments. J Biol Chem 263:13739–13742

    CAS  PubMed  Google Scholar 

  • Weigt C, Just I, Wegner A, Aktories K (1989) Nonmuscle actin ADP-ribosylated by botulinum C2 toxin caps actin filaments. FEBS Lett 246:181–184

    Article  CAS  PubMed  Google Scholar 

  • Wiegers W, Just I, Müller H, Hellwig A, Traub P, Aktories K (1991) Alteration of the cytoskeleton of mammalian cells cultured in vitro by Clostridium botulinum C2 toxin and C3 ADP-ribosyltransferase. Eur J Cell Biol 54:237–245

    CAS  PubMed  Google Scholar 

  • Wigelsworth DJ, Ruthel G, Schnell L, Herrlich P, Blonder J, Veenstra TD et al (2012) CD44 promotes intoxication by the clostridial iota-family toxins. PLoS One 7:e51356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wille M, Just I, Wegner A, Aktories K (1992) ADP-ribosylation of the gelsolin-actin complex by clostridial toxins. J Biol Chem 267:50–55

    CAS  PubMed  Google Scholar 

  • Wohlan K, Goy S, Olling A, Srivaratharajan S, Tatge H, Genth H, Gerhard R (2014) Pyknotic cell death induced by Clostridium difficile TcdB: chromatin condensation and nuclear blister are induced independently of the glucosyltransferase activity. Cell Microbiol 16:1678–1692

    Article  CAS  PubMed  Google Scholar 

  • Wren BW (1991) A family of clostridial and streptococcal ligand-binding proteins with conserved C-terminal repeat sequences. Mol Microbiol 5:797–803

    Article  CAS  PubMed  Google Scholar 

  • Xu H, Yang J, Gao W, Li L, Li P, Zhang L et al (2014) Innate immune sensing of bacterial modifications of Rho GTPases by the pyrin inflammasome. Nature 513:237–241

    Article  CAS  PubMed  Google Scholar 

  • Yen FT, Mann CJ, Guermani LM, Hannouche NF, Hubert N, Hornick CA et al (1994) Identification of a lipolysis-stimulated receptor that is distinct from the LDL receptor and the LDL receptor-related protein. Biochemistry 33:1172–1180

    Article  CAS  PubMed  Google Scholar 

  • Yen FT, Masson M, Clossais-Besnard N, Andre P, Grosset JM, Bougueleret L et al (1999) Molecular cloning of a lipolysis-stimulated remnant receptor expressed in the liver. J Biol Chem 274:13390–13398

    Article  CAS  PubMed  Google Scholar 

  • Young JA, Collier RJ (2007) Anthrax toxin: receptor-binding, internalization, pore formation, and translocation. Annu Rev Biochem 76:243–265

    Article  CAS  PubMed  Google Scholar 

  • Yuan PF, Zhang HM, Cai CZ, Zhu SY, Zhou YX, Yang XZ et al (2015) Chondroitin sulfate proteoglycan 4 functions as the cellular receptor for Clostridium difficile toxin B. Cell Res 25:157–168

    Article  CAS  PubMed  Google Scholar 

  • Zeiser J, Gerhard R, Just I, Pich A (2013) Substrate specificity of clostridial glucosylating toxins and their function on colonocytes analyzed by proteomics techniques. J Proteome Res 12:1604–1618

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Park M, Tam J, Auger A, Beilhartz GL, Lacy DB, Melnyk RA (2014) Translocation domain mutations affecting cellular toxicity identify the Clostridium difficile toxin B pore. Proc Natl Acad Sci U S A 111:3721–3726

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panagiotis Papatheodorou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Papatheodorou, P., Barth, H., Minton, N., Aktories, K. (2018). Cellular Uptake and Mode-of-Action of Clostridium difficile Toxins. In: Mastrantonio, P., Rupnik, M. (eds) Updates on Clostridium difficile in Europe. Advances in Experimental Medicine and Biology(), vol 1050. Springer, Cham. https://doi.org/10.1007/978-3-319-72799-8_6

Download citation

Publish with us

Policies and ethics