Skip to main content

Depolarized Dynamic Light Scattering and Dielectric Spectroscopy: Two Perspectives on Molecular Reorientation in Supercooled Liquids

  • Chapter
  • First Online:
The Scaling of Relaxation Processes

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

Broadband dielectric spectroscopy (BDS) can be considered the standard and most widespread method to experimentally access molecular reorientation in supercooled liquids, as it covers a range of time constants from sub picoseconds corresponding to the highly fluid liquid to several thousand seconds below the glass transition temperature. In a similar fashion, depolarized dynamic light scattering (DLS) is able to probe molecular reorientation. A comparable range of time scales is covered by combining Tandem Fabry Perot Interferometry (TFPI) and Photon Correlation Spectroscopy (PCS) with recent multispeckle techniques allowing to access even the non-ergodic regime below \(T_g\). Thus, DLS represents an alternative route to cover the full range of glassy dynamics. Moreover, due to the fact that both methods couple to different molecular properties, extra information in particular on the motional mechanism behind a certain dynamic process can be obtained by comparing experimental data from both techniques. In the present work we explore this approach for several examples, including ionic liquids and monohydroxy alcohols, and discuss the implications for different relaxation processes. For instance in the case of supercooled ionic liquids, i.e., molten salts, which are liquid at room temperature, the combination of both techniques allows to unambiguously disentangle the contribution of molecular reorientation from other polarization features that often mask reorientation in the dielectric spectra, and a detailed analysis reveals indications for a crossover in the motional mechanism involved in the \(\alpha \)-relaxation. In monohydroxy alcohols we discuss the appearance of the Johari-Goldstein \(\beta \)-process in both techniques and what the observations imply for the underlying motional mechansim. Furthermore, we consider the Debye relaxation, which is frequently observed in the dielectric spectra of monoalcohols and is usually ascribed to transient supramolecular structures. Here, such a comparison of data reveals molecular details about the conditions under which the supramolecular structures are formed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arrese-Igor S, Alegria A, Colmenero J (2017) On the non-exponentiality of the dielectric Debye-like relaxation of monoalcohols. J Chem Phys 146(11):114,502

    Google Scholar 

  2. Barshilia HC, Li G, Shen GQ, Cummins HZ (1999) Depolarized light scattering spectroscopy of Ca\(_{0.4}\)K\(_{0.6}\)(NO\(_3\))\(_{1.4}\): A reexamination of the "knee". Phys Rev E 59:5625

    Article  CAS  Google Scholar 

  3. Bartsch E, Frenz V, Kirsch S, Schärtl W, Sillescu H (1997) Multi-speckle autocorrelation spectroscopy - a new strategy to monitor ultraslow dynamics in dense and nonergodic media. Prog Coll Polym Sci 104:40–48

    CAS  Google Scholar 

  4. Battaglia MR, Cox TI, Madden PA (1979) The orientational correlation parameter for liquid CS\(_2\), C\(_6\)H\(_6\) and C\(_6\)F\(_6\). Mol Phys 37:1413–1427

    Article  CAS  Google Scholar 

  5. Bee M (1988) Quasielastic neutron scattering. Adam Hilger, Bristol

    Google Scholar 

  6. Berne BJ, Pecora R (1976) Dynamic light scattering. Wiley, New York

    Google Scholar 

  7. Blochowicz T, Kudlik A, Benkhof S, Senker J, Rössler E, Hinze G (1999) The spectral density in simple organic glassformers: Comparison of dielectric and spin-lattice relaxation. J Chem Phys 110(24):12,011–12,022

    Article  CAS  Google Scholar 

  8. Blochowicz T, Tschirwitz C, Benkhof S, Rössler EA (2003) Susceptibility functions for slow relaxation processes in supercooled liquids and the search for universal relaxation patterns. J Chem Phys 118(16):7544–7555

    Article  CAS  Google Scholar 

  9. Blochowicz T, Brodin A, Rössler EA (2006) Evolution of the dynamic susceptibility in supercooled liquids and glasses. Adv Chem Phys 133:127–256

    CAS  Google Scholar 

  10. Blochowicz T, Gouirand E, Schramm S, Stühn B (2013) Density and confinement effects of glass forming m-toluidine in nanoporous Vycor investigated by depolarized dynamic light scattering. J Chem Phys 138(114):501

    Google Scholar 

  11. Böttcher CJF, Bordewijk P (1978) Theory of electric polarization II: dielectrics in time-dependent fields. Elsevier, Amsterdam, London, New York

    Google Scholar 

  12. Bremer LGB, Deriemaeker L, Finsy R, Gelade E, Joosten JGH (1993) Fiber optic dynamic light scattering, neither homodyne nor heterodyne. Langmuir 9(8):2008–2014

    Article  CAS  Google Scholar 

  13. Brodin A, Rössler EA (2005) Depolarized light scattering study of glycerol. Eur Phys J B 44(1):3–14

    Article  CAS  Google Scholar 

  14. Brodin A, Bergman R, Mattsson J, Rössler EA (2003a) Light scattering and dielectric manifestations of secondary relaxations in molecular glassformers. Eur Phys J B 36:349–357

    Google Scholar 

  15. Brodin A, Bergman R, Mattsson J, Rössler EA (2003b) Light scattering and dielectric manifestations of secondary relaxations in molecular glassformers. Eur Phys J B-Condensed Matter Complex Syst 36(3):349–357

    Google Scholar 

  16. Böhmer R, Gainaru C, Richert R (2014) Structure and dynamics of monohydroxy alcohols - milestones towards their microscopic understanding, 100 years after Debye. Phys Rep 545:125–195

    Article  CAS  Google Scholar 

  17. Callen HB, Welton TA (1951) Irreversibility and generalized noise. Phys Rev 83(1):34–40

    Article  Google Scholar 

  18. Caminiti R, Gontrani L (2014) The structure of ionic liquids, vol 193. Springer

    Google Scholar 

  19. Cole RH (1965) Correlation function theory of dielectric relaxation. J Chem Phys 42:637

    Article  CAS  Google Scholar 

  20. Cummins HZ, Li G, Du W, Pick RM, Dreyfus C (1996) Origin of depolarized light scattering in supercooled liquids: orientational fluctuation versus induced scattering mechanisms. Phys Rev E 53:896–904

    Article  CAS  Google Scholar 

  21. Cummins HZ, Li G, Hwang YH, Shen GQ, Du WM, Hernandez J, Tao NJ (1997) Dynamics of supercooled liquids and glasses: comparison of experiments with theoretical predictions. Z Phys B Condens Mat 103:501–519

    Article  CAS  Google Scholar 

  22. Daguenet C, Dyson PJ, Krossing I, Oleinikova A, Slattery J, Wakai C, Weingärtner H (2006) Dielectric response of imidazolium-based room-temperature ionic liquids. J Phys Chem B 110(25):12,682–12,688

    Article  CAS  Google Scholar 

  23. Dannhauser W (1968) Dielectric study of intermolecular association in isomeric octyl alcohols. J Chem Phys 48:1911

    Article  CAS  Google Scholar 

  24. Debye P (1929) Polar Mol. Chemical Catalog Co., New York

    Google Scholar 

  25. Dyre JC (1988) The random free-energy barrier model for ac conduction in disordered solids. J Appl Phys 64(5):2456–2468

    Article  Google Scholar 

  26. Fatuzzo E, Mason PR (1967) A theory of dielectric relaxation in polar liquids. Proc Phys Soc London 90:741

    Article  CAS  Google Scholar 

  27. Fraser KJ, Izgorodina EI, Forsyth M, Scott JL, MacFarlane DR (2007) Liquids intermediate between “molecular” and “ionic” liquids: Liquid ion pairs? Chem Commun 37:3817–3819

    Article  CAS  Google Scholar 

  28. Fröhlich H (1958) Theory of dielectrics. Clarendon Press, Oxford

    Google Scholar 

  29. Fytas G (1989) Relaxation processes in amorphous poly(cyclohexyl methacrylate) in the rubbery and glassy state studied by photon correlation spectroscopy. Macromolecules 22:211–215

    Article  CAS  Google Scholar 

  30. Gabriel J, Blochowicz T, Stühn B (2015) Compressed exponential decays in correlation experiments: the influence of temperature gradients and convection. J Chem Phys 142(10):104,902

    Article  CAS  Google Scholar 

  31. Gabriel J, Pabst F, Blochowicz T (2017) Debye-process and \(\beta \)-relaxation in 1-propanol probed by dielectric spectroscopy and dynamic light scattering. J Phys Chem B 121:8847–8853

    Article  CAS  Google Scholar 

  32. Gabriel J, Pabst F, Helbling A, Böhmer T, Blochowicz T (2018) On the nature of the Debye-process in monohydroxy alcohols: 5-methyl-2-hexanol investigated by depolarized light scattering and dielectric spectroscopy. arXiv:1805.04664

  33. Gainaru C, Meier R, Schildmann S, Lederle C, Hiller W, Rössler EA, Böhmer R (2010) Nuclear-magnetic-resonance measurements reveal the origin of the Debye process in monohydroxy alcohols. Phys Rev Lett 105(258):303

    Google Scholar 

  34. Gainaru C, Figuli R, Hecksher T, Jakobsen B, Dyre JC, Wilhelm M, Böhmer R (2014) Shear-modulus investigations of monohydroxy alcohols: evidence for a short-chain-polymer rheological response. Phys Rev Lett 112(098):301

    Google Scholar 

  35. Gainaru C, Stacy EW, Bocharova V, Gobet M, Holt AP, Saito T, Greenbaum S, Sokolov AP (2016) Mechanism of conductivity relaxation in liquid and polymeric electrolytes: direct link between conductivity and diffusivity. J Phys Chem B 120(42):11,074–11,083

    Article  CAS  Google Scholar 

  36. Gapinski J, Steffen W, Patkowski A, Sokolov AP, Kisliuk A, Buchenau U, Russina M, Mezei F, Schober H (1999) Spectrum of fast dynamics in glass forming liquids: Does the “knee” exist? J Chem Phys 110:2312

    Article  CAS  Google Scholar 

  37. Glarum SH (1960) Dielectric relaxation of polar liquids. J Chem Phys 33:1371

    Article  CAS  Google Scholar 

  38. Goldstein M (1969) Viscous liquids and the glass transition: a potential energy barrier picture. J Chem Phys 51(9):3728–3739

    Article  CAS  Google Scholar 

  39. Griffin P, Agapov AL, Kisliuk A, Sun XG, Dai S, Novikov VN, Sokolov AP (2011) Decoupling charge transport from the structural dynamics in room temperature ionic liquids. J Chem Phys 135(11):114,509

    Article  CAS  Google Scholar 

  40. Griffin PJ, Agapov AL, Sokolov AP (2012) Translation-rotation decoupling and nonexponentiality in room temperature ionic liquids. Phys Rev E 86(2):21,508

    Article  CAS  Google Scholar 

  41. Griffin PJ, Holt AP, Wang Y, Novikov VN, Sangoro JR, Kremer F, Sokolov AP (2014) Interplay between hydrophobic aggregation and charge transport in the ionic liquid methyltrioctylammonium bis (trifluoromethylsulfonyl) imide. J Phys Chem B 118(3):783–790

    Article  CAS  PubMed  Google Scholar 

  42. Hansen C, Stickel F, Berger T, Richert R, Fischer EW (1997) Dynamics of glass-forming liquids. iii. comparing the dielectric alpha- and beta-relaxation of 1-propanol and o-terphenyl. J Chem Phys 107(4):1086–1093

    Article  CAS  Google Scholar 

  43. Hansen JP, McDonald IR (1976) Theory of simple liquids. Academic Press, London, New York

    Google Scholar 

  44. Hansen JS, Kisliuk A, Sokolov AP, Gainaru C (2016) Identification of structural relaxation in the dielectric response of water. Phys Rev Lett 116(23):237601

    Google Scholar 

  45. Hensel-Bielowka S, Wojnarowska Z, Dzida M, Zorebski E, Zorebski M, Geppert-Rybczyska M, Peppel T, Grzybowska K, Wang Y, Sokolov AP, Paluch M (2015) Heterogeneous nature of relaxation dynamics of room-temperature ionic liquids (EMIm)\(_2\)[Co(NCS)\(_4\)] and (BMIm)\(_2\)[Co(NCS)\(_4\)]. J Phys Chem C 119(35):20,363–20,368

    Article  CAS  Google Scholar 

  46. www.chemaxon.com, copyright (2017) Marvinsketch 17.8.0

  47. Johari G (2002) Localized molecular motions of \(\beta \)-relaxation and its energy landscape. J Non-Cryst Solids 307–310:317–325

    Article  Google Scholar 

  48. Johari GP (1976) Glass transition and secondary relaxations in molecular liquids and crystals. Annals of the N Y Acad Sci 279:117–140

    Article  CAS  Google Scholar 

  49. Johari GP, Dannhauser W (1968) Dielectric study of intermolecular association in sterically hindered octanol isomers. J Phys Chem 72(9):3273–3276

    Article  CAS  Google Scholar 

  50. Johari GP, Dannhauser W (1972) Effect of pressure on dielectric polarization of 1-phenyl-1-propanol. High Temp-High Press 4(2):199–206

    Google Scholar 

  51. Johari GP, Goldstein M (1970) Viscous liquids and the glass transition II: secondary relaxations in glasses of rigid molecules. J Chem Phys 53(6):2372–2388

    Article  CAS  Google Scholar 

  52. Johari GP, Kalinovskaya OE, Vij JK (2001) Effects of induced steric hindrance on the dielectric behavior and h bonding in the supercooled liquid and vitreous alcohol. J Chem Phys 114(10):4634–4642

    Article  CAS  Google Scholar 

  53. Kirkwood JG (1939) The dielectric polarization of polar liquids. J Chem Phys 7:911

    Article  CAS  Google Scholar 

  54. Kudlik A, Tschirwitz C, Benkhof S, Blochowicz T, Rössler E (1997) Slow secondary relaxation processes in supercooled liquids. Europhys Lett 40(6):649–654

    Article  CAS  Google Scholar 

  55. Kudlik A, Benkhof S, Blochowicz T, Tschirwitz C, Rössler E (1999) The dielectric response of simple organic glass formers. J Mol Struct 479:201–218

    Article  CAS  Google Scholar 

  56. Köhler M, Lunkenheimer P, Goncharov Y, Wehn R, Loidl A (2010) Glassy dynamics in mono-, di- and tri-propylene glycol: from the \(\alpha \)- to the fast \(\beta \)-relaxation. J Non-Cryst Solids 356:529–534

    Article  Google Scholar 

  57. Lebon MJ, Dreyfus C, Guissani Y, Pick RM, Cummins HZ (1997) Light scattering and dielectric susceptibility spectra of glassforming liquids. Z Phys B 103(3–4):433–439

    Article  CAS  Google Scholar 

  58. Lindsay SM, Anderson MW, Sandercock JR (1981) Construction and alignment of a high performance multipass vernier tandem fabry-perot interferometer. Rev Sci Instruments 52:1478

    Article  CAS  Google Scholar 

  59. Lunkenheimer P, Schneider U, Brand R, Loidl A (2000) Glassy dynamics. Contemporary Phys 41(1):15–36

    Article  CAS  Google Scholar 

  60. Madden P, Kivelson D (1984) A consistent molecular treatment of dielectric phenomena. Adv Chem Phys 56:467

    CAS  Google Scholar 

  61. Malo de Molina P, Alvarez F, Frick B, Wildes A, Arbe A, Colmenero J (2017) Investigation of the dynamics of aqueous proline solutions using neutron scattering and molecular dynamics simulations. Phys Chem Chem Phys 19(27):739

    Google Scholar 

  62. Mopsik FI (1984) Precision time-domain dielectric spectrometer. Rev Sci Instrum 55:79

    Article  Google Scholar 

  63. Pabst F, Gabriel J, Weigl P, Blochowicz T (2017) Molecular dynamics of supercooled ionic liquids studied by light scattering and dielectric spectroscopy. Chem Phys 494:103–110

    Article  CAS  Google Scholar 

  64. Pardo LC, Lunkenheimer P, Loidl A (2007) Dielectric spectroscopy in benzophenone: the \(\beta \)-relaxation and its relation to the mode-coupling Cole-Cole peak. Phys Rev E 76(030):502(R)

    Google Scholar 

  65. Patkowski A, Steffen W, Nilgens H, Fischer EW, Pecora R (1997) Depolarized dynamic light scattering from three low molecular weight glass forming liquids: a test of the scattering mechanism. J Chem Phys 106:8401

    Article  CAS  Google Scholar 

  66. Pecora R (ed) (1985) Dynamic light scattering - applications of photon correlation spectroscopy. Plenum, New York

    Google Scholar 

  67. Petzold N, Rössler EA (2010) Light scattering study on the glass former o-terphenyl. J Chem Phys 133(124):512

    Google Scholar 

  68. Petzold N, Schmidtke B, Kahlau R, Bock D, Meier R, Micko B, Kruk D, Rössler EA (2013) Evolution of the dynamic susceptibility in molecular glass formers: results from light scattering, dielectric spectroscopy, and NMR. J Chem Phys 138:12A510

    Article  CAS  PubMed  Google Scholar 

  69. Pott T, Méléard P (2009) New insight into the nanostructure of ionic liquids: a small angle X-ray scattering (SAXS) study on liquid tri-alkyl-methyl-ammonium bis (trifluoromethanesulfonyl) amides and their mixtures. Phys Chem Chem Phys 11(26):5469–5475

    Article  CAS  PubMed  Google Scholar 

  70. Power G, Johari GP, Vij JK (2003) Relaxation strength of localized motions in d-sorbitol and mimicry of glass-softening thermodynamics. J Chem Phys 119(1):435–442

    Article  CAS  Google Scholar 

  71. Power G, Vij JK, Johari GP (2006) Orientation polarization from faster motions in the ultraviscous and glassy diethyl phthalate and its entropy. J Chem Phys 124(4):044,513

    Google Scholar 

  72. Rivera A, Blochowicz T, Gainaru C, Rössler EA (2004) Spectral response from modulus time domain data of disordered materials. J Appl Phys 96(10):5607–5612

    Article  CAS  Google Scholar 

  73. Rivera A, Brodin A, Pugachev A, Rössler EA (2007) Orientational and translational dynamics in room temperature ionic liquids. J Chem Phys 126(11):114,503

    Google Scholar 

  74. Samet M, Levchenko V, Boiteux G, Seytre G, Kallel A, Serghei A (2015) Electrode polarization versus Maxwell-Wagner-Sillars interfacial polarization in dielectric spectra of materials: characteristic frequencies and scaling laws. J Chem Phys 142(194):703

    Google Scholar 

  75. Sangoro J, Iacob C, Serghei A, Friedrich C, Kremer F (2009) Universal scaling of charge transport in glass-forming ionic liquids. Phys Chem Chem Phys 11(6):913–916

    Article  CAS  PubMed  Google Scholar 

  76. Sangoro JR, Kremer F (2011) Charge transport and glassy dynamics in ionic liquids. Acc Chem Res 45(4):525–532

    Article  CAS  PubMed  Google Scholar 

  77. Sangoro JR, Serghei A, Naumov S, Galvosas P, Kärger J, Wespe C, Bordusa F, Kremer F (2008) Charge transport and mass transport in imidazolium-based ionic liquids. Phys Rev E 77(5):51,202

    Article  CAS  Google Scholar 

  78. Sangoro JR, Iacob C, Serghei A, Friedrich C, Kremer F (2009) Universal scaling of charge transport in glass-forming ionic liquids. Phys Chem Chem Phys 11(6):913–916

    Article  CAS  PubMed  Google Scholar 

  79. Sangoro JR, Iacob C, Naumov S, Valiullin R, Rexhausen H, Hunger J, Buchner R, Strehmel V, Kärger J, Kremer F (2011) Diffusion in ionic liquids: the interplay between molecular structure and dynamics. Soft Matter 7(5):1678–1681

    Article  CAS  Google Scholar 

  80. Sato T, Masuda G, Takagi K (2004) Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim Acta 49(21):3603–3611

    Article  CAS  Google Scholar 

  81. Schmidtke B, Petzold N, Kahlau R, Rössler EA (2013) Reorientational dynamics in molecular liquids as revealed by dynamic light scattering: from boiling point to glass transition temperature. J Chem Phys 139(084):504

    Google Scholar 

  82. Schröder C, Rudas T, Steinhauser O (2006) Simulation studies of ionic liquids: orientational correlations and static dielectric properties. J Chem Phys 125(24):244,506

    Article  CAS  Google Scholar 

  83. Schröder C, Hunger J, Stoppa A, Buchner R, Steinhauser O (2008) On the collective network of ionic liquid/water mixtures. ii. decomposition and interpretation of dielectric spectra. J Chem Phys 129(184):501

    Google Scholar 

  84. Serghei A, Tress M, Sangoro JR, Kremer F (2009) Electrode polarization and charge transport at solid interfaces. Phys Rev B 80(184):301

    Google Scholar 

  85. Siegert AJF (1943) On the fluctuations in signals returned by many independently moving scatterers. MIT Rad Lab Rep 465:1–14

    Google Scholar 

  86. Sillren P, Bielecki J, Mattsson J, Borjesson L, Matic A (2012) A statistical model of hydrogen bond networks in liquid alcohols. J Chem Phys 136(9):094514

    Google Scholar 

  87. Sillren P, Swenson J, Mattsson J, Bowron D, Matic A (2013) The temperature dependent structure of liquid 1-propanol as studied by neutron diffraction and EPSR simulations. J Chem Phys 138(21):214501

    Google Scholar 

  88. Singh LP, Richert R (2012) Watching hydrogen-bonded structures in an alcohol convert from rings to chains. Phys Rev Lett 109(16):167802

    Google Scholar 

  89. Song D, Chen J (2014) Density and viscosity data for mixtures of ionic liquids with a common anion. J Chem Eng Data 59(2):257–262

    Article  CAS  Google Scholar 

  90. Surovtsev NV, Wiedersich JAH, Novikov VN, Rössler E, Sokolov AP (1998) Light-scattering spectra of fast relaxation in glasses. Phys Rev B 58(14):888

    Google Scholar 

  91. Takekiyo T, Imai Y, Abe H, Yoshimura Y (2012) Conformational analysis of quaternary ammonium-type ionic liquid cation, N, N-diethyl-N-methyl-N-(2-methoxyethyl) ammonium cation. Adv Phys Chem 2012:829523

    Google Scholar 

  92. Tariq M, Forte PAS, Gomes MFC, Lopes JNC, Rebelo LPN (2009) Densities and refractive indices of imidazolium- and phosphonium-based ionic liquids: effect of temperature, alkyl chain length, and anion. J Chem Thermodyn 41(6):790–798

    Article  CAS  Google Scholar 

  93. Vercher E, Orchillés AV, Miguel PJ, Martínez-Andreu A (2007) Volumetric and ultrasonic studies of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid with methanol, ethanol, 1-propanol, and water at several temperatures. J Chem Eng Data 52(4):1468–1482

    Article  CAS  Google Scholar 

  94. Vogel M, Rössler E (2000) Effects of various types of molecular dynamics on 1D and 2D \(^2\!\)H NMR studied by random walk simulations. J Mag Res 147(1):43–58

    Article  CAS  Google Scholar 

  95. Vogel M, Rössler E (2000) On the nature of slow \(\beta \)-process in simple glass formers: A \(^2\!\)H NMR study. J Phys Chem B 104:4285–4287

    Article  CAS  Google Scholar 

  96. Vogel M, Tschirwitz C, Schneider G, Koplin C, Medick P, Rössler E (2002) A 2h nmr and dielelectric spectroscopy study of the slow beta-process in organic glass formers. J Non-Cryst Solids 307–310:326–335

    Article  Google Scholar 

  97. Wakai C, Oleinikova A, Ott M, Weingärtner H (2005) How polar are ionic liquids? Determination of the static dielectric constant of an imidazolium-based ionic liquid by microwave dielectric spectroscopy. J Phys Chem B 109(36):17,028–17,030

    Article  CAS  Google Scholar 

  98. Wang Y, Sun CN, Fan F, Sangoro JR, Berman MB, Greenbaum SG, Zawodzinski TA, Sokolov AP (2013) Examination of methods to determine free-ion diffusivity and number density from analysis of electrode polarization. Phys Rev E 87(4):42,308

    Article  CAS  Google Scholar 

  99. Wang Y, Griffin PJ, Holt A, Fan F, Sokolov AP (2014) Observation of the slow, Debye-like relaxation in hydrogen-bonded liquids by dynamic light scattering. J Chem Phys 140(10):104,510

    Article  CAS  Google Scholar 

  100. Weingärtner H, Nadolny H, Oleinikova A, Ludwig R (2004) Collective contributions to the dielectric relaxation of hydrogen-bonded liquids. J Chem Phys 120(11):692

    Google Scholar 

  101. Williams G (1972) Use of the dipole correlation function in dielectric relaxation. Chem Rev 72:55–69

    Article  CAS  Google Scholar 

  102. Williams G, Watts DC (1971) Analysis of molecular motion in the glassy state. Trans Farad Soc 67:1971–1989

    Article  CAS  Google Scholar 

  103. Williams G, Cook M, Hains PJ (1972) Molecular motion in amorphous polymers. J Chem Soc: Farad Trans II 68:1045–1050

    CAS  Google Scholar 

  104. Wübbenhorst M, van Turnhout J (2002) Analysis of complex dielectric spectra. I. One-dimensional derivative techniques and three-dimensional modelling. J Non Cryst Solids 305(1–3):40–49

    Article  Google Scholar 

  105. Wulf A, Ludwig R, Sasisanker P, Weingärtner H (2007) Molecular reorientation in ionic liquids: a comparative dielectric and magnetic relaxation study. Chem Phys Lett 439(4):323–326

    Article  CAS  Google Scholar 

  106. Young-Gonzales AR, Richert R (2016) Field induced changes in the ring/chain equilibrium of hydrogen bonded structures: 5-methyl-3-heptanol. J Chem Phys 145(7):

    Google Scholar 

Download references

Acknowledgements

We cordially thank Ernst Rößler, Bayreuth, for providing the data on 1-propanol from Refs. [54, 55] and for making the dielectric time domain setup and the Tandem Fabry-Perot interferometer available to us. We are grateful to Catalin Gainaru, Dortmund, for stimulating discussions about alcohols and ionic liquids. Financial support by the Deutsche Forschungsgemeinschaft under Grant No. BL 923/1 and within FOR 1583 under Grant No. BL 1192/1 is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Blochowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gabriel, J., Pabst, F., Helbling, A., Böhmer, T., Blochowicz, T. (2018). Depolarized Dynamic Light Scattering and Dielectric Spectroscopy: Two Perspectives on Molecular Reorientation in Supercooled Liquids. In: Kremer, F., Loidl, A. (eds) The Scaling of Relaxation Processes. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-72706-6_7

Download citation

Publish with us

Policies and ethics