Skip to main content

Universality of Density Scaling

  • Chapter
  • First Online:

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

Investigations of the sought after complete and commonly accepted theory of the glass transition and related phenomena have recently gained an essential support from a very promising idea of the density scaling of molecular dynamics in viscous liquids. This idea, often known as the thermodynamic scaling concept, has been initiated by many phenomenological observations, which have shown that dynamic quantities (e.g., viscosity, structural relaxation time, or segmental relaxation time in case of polymers) measured in different thermodynamic conditions (e.g., along different isobars and isotherms) can be scaled onto one master curve well described by a function of the single variable that is a product of the inverse temperature and the density power with the scaling exponent considered as a material constant independent of thermodynamic conditions. However, a crucial advantage of the phenomenological description has become its theoretical grounds relied on an effective short-range intermolecular potential, which has been derived from the well-known Lennard-Jones potential and satisfactorily verified by computer simulations. A relation suggested between the scaling exponent and the exponent of the dominant repulsive part of the effective intermolecular potential gives a tempting opportunity to study the macroscopic properties of materials by using the underlying intermolecular potential and vice versa to determine the intermolecular potential parameters based on measurements of macroscopic quantities. It opens new perspectives for our better understanding of complex physicochemical phenomena occurring near the glass transition . In this chapter, we present the density scaling concept as the idea that bears hallmarks of universality in case of both various materials and different quantities. We show that the density scaling law may concern not only dynamic but also thermodynamic quantities, constituting a convenient tool to explore relationships between molecular dynamics and thermodynamics based on the effective short-range intermolecular potential. We demonstrate predictive capabilities of the density scaling law that implies several rules for activation quantities and fragility parameters defined in different thermodynamic conditions, which enable to discover and verify physically well-defined invariants. We also discuss some nontrivial cases of the thermodynamic scaling for which the power density scaling law with a constant scaling exponent is not sufficient, but we can find density or timescale-dependent counterparts of the exponent. The exceptions to the standard power density scaling law delimit further challenges in making progress toward the development of the density scaling idea and its applicability range.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anderson PW (1995) Science 267:1615

    Article  CAS  PubMed  Google Scholar 

  2. Roland CM, Hensel-Bielowka S, Paluch M, Casalini R (2005) Rep Prog Phys 68:1405

    Article  CAS  Google Scholar 

  3. Floudas G, Paluch M, Grzybowski, Ngai KL (2011) In: Kremer F (ed) Molecular dynamics of glass-forming systems: effects of pressure. Advances in dielectrics, chap. 2, Springer, Berlin

    Google Scholar 

  4. Gnan N, Schrøder TB, Pedersen UR, Bailey NP, Dyre JC (2009) J Chem Phys 131:234504

    Article  CAS  PubMed  Google Scholar 

  5. Wojnarowska Z, Paluch M (2016) High-pressure dielectric spectroscopy for studying the charge transfer in ionic liquids and solids, chap. 4. In: Paluch M (ed) Dielectric properties of ionic liquids. Advances in dielectrics, Kremer F (ed), Springer, Berlin

    Google Scholar 

  6. Paluch M, Grzybowska K Grzybowski A (2007) J Phys Condens Matter 19: 205117

    Google Scholar 

  7. Pedersen UR, Bailey NP, Schrøder TB, Dyre JC (2008) Phys Rev Lett 100:015701

    Article  CAS  PubMed  Google Scholar 

  8. Bailey NP, Pedersen UR, Gnan N, Schrøder TB, Dyre JC (2008) J Chem Phys 129:184507

    Article  CAS  PubMed  Google Scholar 

  9. Bailey NP, Pedersen UR, Gnan N, Schrøder TB, Dyre JC (2009) J Chem Phys 130:039902

    Article  CAS  Google Scholar 

  10. Bailey NP, Pedersen UR, Gnan N, Schrøder TB, Dyre JC (2008) J Chem Phys 129:184508

    Article  CAS  PubMed  Google Scholar 

  11. Coslovich D, Roland CM (2008) J Phys Chem B 112:1329

    Article  CAS  PubMed  Google Scholar 

  12. Coslovich D, Roland CM (2009) J Chem Phys 130:014508

    Article  CAS  PubMed  Google Scholar 

  13. Schrøder TB, Pedersen UR, Bailey NP, Toxvaerd S, Dyre JC (2009) Phys Rev E 80:041502

    Article  CAS  Google Scholar 

  14. Pedersen UR, Schrøder TB, Dyre JC (2010) Phys Rev Lett 105:157801

    Article  PubMed  CAS  Google Scholar 

  15. Ngai KL, Casalini R, Capaccioli S, Paluch M, Roland CM (2005) J Phys Chem B 109:17356

    Article  PubMed  CAS  Google Scholar 

  16. Roland CM, Casalini R, Paluch M (2003) Chem Phys Lett 367:259

    Article  CAS  Google Scholar 

  17. Xiao W, Tofteskov J, Christensen TV, Dyre JC, Niss K (2015) J Non-Cryst Solids 407:190

    Article  CAS  Google Scholar 

  18. Froehlich H (1987) Theory of dielectrics, dielectric constant and dielectric loss, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  19. Kremer F, Schonhals A (2003) Broadband dielectric spectroscopy. Springer, Berlin

    Book  Google Scholar 

  20. Grzybowska K, Grzybowski A, Pawlus S, Pionteck J, Paluch M (2015) Phys Rev E 91:062305

    Article  CAS  Google Scholar 

  21. Grzybowski A, Koperwas K, Kolodziejczyk K, Grzybowska K, Paluch M (2013) J Phys Chem Lett 4:4273

    Article  PubMed  CAS  Google Scholar 

  22. Ngai KL, Habasaki J, Prevosto D, Capaccioli S, Paluch M (2012) J Chem Phys 137:034511

    Article  PubMed  CAS  Google Scholar 

  23. Ngai KL, Habasaki J, Prevosto D, Capaccioli S, Paluch M (2014) J Chem Phys 140:019901

    Article  CAS  Google Scholar 

  24. Ngai KL, Paluch M (2017) J Non-Cryst Solids J Non-Cryst Solids 478:1

    Article  CAS  Google Scholar 

  25. Tsang KY, Ngai KL (1996) Phys Rev E 54:R3067

    Article  CAS  Google Scholar 

  26. Ngai KL (2003) J Phys: Condens Matter 15:S1107

    CAS  Google Scholar 

  27. Ngai KL (2011) Relaxation and diffusion in complex systems. Springer, New York

    Book  Google Scholar 

  28. Williams G (1964) Trans Faraday Soc 60:1548

    Article  CAS  Google Scholar 

  29. Floudas G, Paluch M, Grzybowski A, Ngai KL (2011) In: Kremer F (ed) Molecular dynamics of glass-forming systems: effects of pressure. Advances in dielectrics, chap. 1, Springer, Berlin

    Google Scholar 

  30. Ferrer ML et al (1998) J Chem Phys 109:8010

    Article  CAS  Google Scholar 

  31. Casalini R, Roland CM (2003) J Chem Phys 119:4052

    Article  CAS  Google Scholar 

  32. Casalini R, Roland CM (2004) Phys Rev E 69:062501

    Article  CAS  Google Scholar 

  33. Masiewicz E, Grzybowski A, Sokolov AP, Paluch M (2012) J Phys Chem Lett 3:2643

    Article  CAS  PubMed  Google Scholar 

  34. Paluch M, Masiewicz E, Grzybowski A, Pawlus S, Pionteck J, Wojnarowska Z (2014) J Chem Phys 141:134507

    Article  CAS  PubMed  Google Scholar 

  35. Tarjus G, Kivelson D, Mossa S, Alba-Simionesco C (2004) J Chem Phys 120:6135

    Article  PubMed  CAS  Google Scholar 

  36. Casalini R, Roland CM (2005) Phys Rev B 71:014210

    Article  CAS  Google Scholar 

  37. Casalini R, Roland CM (2005) Phys Rev E 72:031503

    Article  CAS  Google Scholar 

  38. Alba-Simionesco C, Tarjus G (2006) J Non-Cryst Solids 352:4888

    Article  CAS  Google Scholar 

  39. Grzybowski A, Grzybowska K, Zioło J, Paluch M (2006) Phys Rev E 74:041503

    Article  CAS  Google Scholar 

  40. Casalini R, Roland CM (2007) Phys Rev E 76:013501

    Article  CAS  Google Scholar 

  41. Grzybowski A, Grzybowska K, Zioło J, Paluch M (2007) Phys Rev E 76:013502

    Article  CAS  Google Scholar 

  42. Angell CA (1995) Science 267:1924

    Article  CAS  PubMed  Google Scholar 

  43. Angell CA (1995) Proc Natl Acad Sci USA 92:6675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Jedrzejowska A, Grzybowski A, Paluch M (2017) Phys Chem Chem Phys 19:18348

    Article  CAS  PubMed  Google Scholar 

  45. Ingram MD, Imrie CT, Stoeva Z, Pas SJ, Funke K, Chandler HW (2005) J Phys Chem B 109:16567

    Article  CAS  PubMed  Google Scholar 

  46. Ingram MD, Imrie CT, Ledru J, Hutchinson J (2008) J Phys Chem B 112:859

    Article  CAS  PubMed  Google Scholar 

  47. Ingram MD, Imrie CT (2011) Solid State Ionics 196:9

    Article  CAS  Google Scholar 

  48. Koperwas K, Grzybowski A, Grzybowska K, Wojnarowska Z, Pionteck J, Sokolov AP, Paluch M (2012) Phys Rev E 86:041502

    Article  CAS  Google Scholar 

  49. Koperwas K, Grzybowski A, Tripathy SN, Masiewicz E, Paluch M (2015) Sci Rep 5:17782

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Thoms E, Grzybowski A, Pawlus S, Paluch M (2018) J Phys Chem Lett 9:1783

    Google Scholar 

  51. Casalini R, Bair S (2008) J Chem Phys 128:084511

    Article  PubMed  CAS  Google Scholar 

  52. Mauro JC, Yue YZ, Ellison AJ, Gupta PK, Allan DC (2009) Proc Natl Acad Sci USA 106:19780

    Article  PubMed  PubMed Central  Google Scholar 

  53. Adam G, Gibbs JH (1965) J Chem Phys 43:139

    Article  CAS  Google Scholar 

  54. Gupta PK, Mauro JC (2009) J Chem Phys 130:094503

    Article  PubMed  CAS  Google Scholar 

  55. Naumis GG (2006) J Non-Cryst Solids 352:4865

    Article  CAS  Google Scholar 

  56. Grzybowski A, Urban S, Mroz S, Paluch M (2017) Sci Rep 7:42174

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Masiewicz E, Grzybowski A, Grzybowska K, Pawlus S, Pionteck J, Paluch M (2015) Sci Rep 5:13998

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Johari GP (2003) J Chem Phys 119:635

    Article  CAS  Google Scholar 

  59. Casalini R, Roland CM (2007) Phil Mag 87:459

    Article  CAS  Google Scholar 

  60. Casalini R, Roland CM (2007) J Phys: Condens Matter 19:205118

    Google Scholar 

  61. Casalini R, Roland CM (2014) Phys Rev Lett 113:085701

    Article  PubMed  Google Scholar 

  62. Xia X, Wolynes PG (2000) Proc Natl Acad Sci USA 97:2990

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Xia X, Wolynes PG (2001) Phys Rev Lett 86:5526

    Article  PubMed  CAS  Google Scholar 

  64. Hall RW, Wolynes PG (2008) J Phys Chem B 112:301

    Article  PubMed  CAS  Google Scholar 

  65. Sengupta S, Schrøder TB, Sastry S (2013) Eur Phys J E 36:141

    Article  PubMed  CAS  Google Scholar 

  66. Johari GPJ (2000) Chem Phys 112:7518

    CAS  Google Scholar 

  67. Avramov I, Milchev A (1988) J Non-Cryst Solids 104:253

    Article  CAS  Google Scholar 

  68. Avramov I (1991) J Chem Phys 95:4439

    Article  CAS  Google Scholar 

  69. Avramov I (1996) Therm Acta 280/281:363

    Google Scholar 

  70. Avramov I (1997) J Mater Sci Lett 13:1367

    Article  Google Scholar 

  71. Avramov I (1998) J Non-Cryst Solids 238:6

    Article  CAS  Google Scholar 

  72. Avramov I (2000) J Non-Cryst Solids 262:258

    Article  CAS  Google Scholar 

  73. Avramov I, Grzybowski A, Paluch M (2009) J Non-Cryst Solids 355:733

    Article  CAS  Google Scholar 

  74. Casalini R, Mohanty U, Roland CM (2006) J Chem Phys 125:014505

    Article  PubMed  CAS  Google Scholar 

  75. Grzybowski A, Paluch M, Grzybowska K, Haracz S (2010) J Chem Phys 133:161101

    Article  PubMed  CAS  Google Scholar 

  76. Paluch M, Haracz S, Grzybowski A, Mierzwa M, Pionteck J, Rivera-Calzada A, Leon C (2010) J Phys Chem Lett 1:987

    Article  CAS  Google Scholar 

  77. Grzybowski A, Haracz S, Paluch M, Grzybowska K (2010) J Phys Chem B 114:11544

    Article  PubMed  CAS  Google Scholar 

  78. Paluch M, Wojnarowska Z, Goodrich P, Jacquemin J, Pionteck J, Hensel-Bielowka S (2015) Soft Matter 11:6520

    Article  PubMed  CAS  Google Scholar 

  79. Tait PG (1888) Physics and chemistry of the voyage of H. M. S. challenger, vol 2, Part 4. HMSO, London

    Google Scholar 

  80. Grzybowski A, Paluch M, Grzybowska K (2009) J Phys Chem B 113:7419

    Article  PubMed  CAS  Google Scholar 

  81. Bardik VY, Shakun KS (2005) Ukr J Phys (Paris) 50:404

    CAS  Google Scholar 

  82. Papathanassiou AN (2009) Phys Rev E 79:032501

    Article  CAS  Google Scholar 

  83. Stickel F, Fischer EW, Richert R (1995) J Chem Phys 102:6251

    Article  CAS  Google Scholar 

  84. Grzybowski A, Grzybowska K, Paluch M, Swiety A, Koperwas K (2011) Phys Rev E 83:041505

    Article  CAS  Google Scholar 

  85. Grzybowski A, Koperwas K, Paluch M (2012) Phys Rev E 86:031501

    Article  CAS  Google Scholar 

  86. Garai J, Laugier AJ (2007) Appl Phys 101:023514

    Article  CAS  Google Scholar 

  87. Grzybowski A, Paluch M, Grzybowska K (2010) Phys Rev E 82:013501

    Article  CAS  Google Scholar 

  88. Chorążewski M, Grzybowski A, Paluch M (2014) Phys Chem Chem Phys 16:19900

    Article  CAS  PubMed  Google Scholar 

  89. Grzybowski A, Koperwas K, Swiety-Pospiech A, Grzybowska K, Paluch M (2013) Phys Rev B 87:054105

    Article  CAS  Google Scholar 

  90. Kob W, Andersen HC (1994) Phys Rev Lett 73:1376

    Article  PubMed  CAS  Google Scholar 

  91. Koperwas K, Grzybowski A, Grzybowska K, Wojnarowska Z, Paluch M (2015) J Non-Cryst Solids 407:196

    Article  CAS  Google Scholar 

  92. Berthier L, Biroli G, Bouchaud JP, Cipelletti L, El Masri D, L’Hôte D, Ladieu F, Pierno M (2005) Science 310:1797

    Article  PubMed  CAS  Google Scholar 

  93. Tracht U, Wilhelm M, Heuer A, Feng H, Schmidt-Rohr K, Spiess HW (1998) Phys Rev Lett 81:2727

    Article  CAS  Google Scholar 

  94. Qiu XH, Ediger MD (2003) J Phys Chem B 107:459

    Article  CAS  Google Scholar 

  95. Crauste-Thibierge C, Brun C, Ladieu F, L’Hôte D, Biroli G, Bouchaud JP (2010) Phys Rev Lett 104:165703

    Article  CAS  PubMed  Google Scholar 

  96. Bauer T, Lunkenheimer P, Loidl A (2013) Phys Rev Lett 111:225702

    Article  CAS  PubMed  Google Scholar 

  97. Casalini R, Fragiadakis D, Roland CM (2015) J Chem Phys 142:064504

    Article  CAS  PubMed  Google Scholar 

  98. Samanta S, Richert R (2014) J Chem Phys 140:054503

    Article  CAS  PubMed  Google Scholar 

  99. Dalle-Ferrier C, Thibierge C, Alba-Simionesco C, Berthier L, Biroli G, Bouchaud JP, Ladieu F, L’Hôte D, Tarjus G (2007) Phys Rev E 76:041510

    Article  CAS  Google Scholar 

  100. Grzybowski A, Kolodziejczyk K, Koperwas K, Grzybowska K, Paluch M (2012) Phys Rev B 85:220201

    Article  CAS  Google Scholar 

  101. Koperwas K, Grzybowski A, Grzybowska K, Wojnarowska Z, Sokolov AP, Paluch M (2013) Phys Rev Lett 111:125701

    Article  PubMed  CAS  Google Scholar 

  102. Berthier L (2011) Physics 4:42

    Article  Google Scholar 

  103. Schrøder TB, Dyre JC (2014) J Chem Phys 141:204502

    Article  PubMed  CAS  Google Scholar 

  104. Ingebrigtsen TS, Bøhling L, Schrøder TB, Dyre JC (2012) J Chem Phys 136:061102

    Article  PubMed  CAS  Google Scholar 

  105. Born M, Huang K (1954) Dynamical theory of crystal lattices. Oxford University Press, Oxford

    Google Scholar 

  106. Ross M, Young DA (1993) Ann Rev Phys Chem 44:61

    Article  CAS  Google Scholar 

  107. Burakovsky L, Preston DL (2004) J Phys Chem Solids 65:1581

    Article  CAS  Google Scholar 

  108. Bøhling L, Ingebrigtsen TS, Grzybowski A, Paluch M, Dyre JC, Schrøder TB (2012) New J Phys 14:113035

    Article  Google Scholar 

  109. Casalini R, Roland CM (2016) J Chem Phys 144:024502

    Article  PubMed  CAS  Google Scholar 

  110. Grzybowski A, Koperwas K, Paluch M (2014) J Chem Phys 140:044502

    Article  CAS  PubMed  Google Scholar 

  111. Kondrin MV, Gromnitskaya EL, Pronin AA, Lyapin AG, Brazhkin VV, Volkov AA (2012) J Chem Phys 137:084502

    Article  PubMed  CAS  Google Scholar 

  112. Chorążewski M, Grzybowski A, Paluch M (2015) Ind Eng Chem Res 54:6400

    Article  CAS  Google Scholar 

  113. López ER, Fandiño O, Cabaleiro D, Lugo L, Fernández J (2018) Phys Chem Chem Phys 20:3531

    Google Scholar 

  114. Randzio SL, Deiters UK (1995) Ber Bunsenges Phys Chem 99:1179

    Article  CAS  Google Scholar 

  115. Deiters UK, Randzio SL (1995) Fluid Phase Equilib 103:199

    Article  CAS  Google Scholar 

  116. Dreyfus C, Le Grand A, Gapinski J, Steffen W, Patkowski A (2004) Eur Phys J B 42:309

    Article  CAS  Google Scholar 

  117. Win KZ Menon N (2006) Phys Rev E 73:040501(R)

    Google Scholar 

  118. Pronin AA, Kondrin MV, Lyapin AG, Brazhkin VV, Volkov AA, Lunkenheimer P, Loidl A (2010) JETP Lett 92:479

    Article  CAS  Google Scholar 

  119. Romanini M, Barrio M, Macovez R, Ruiz-Martin MD, Capaccioli S, Tamarit JL (2017) Sci Rep 7:1346

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  120. Wojnarowska Z, Jarosz G, Grzybowski A, Pionteck J, Jacquemin J, Paluch M (2014) Phys Chem Chem Phys 16:20444

    Article  PubMed  CAS  Google Scholar 

  121. Pawlus S, Paluch M, Grzybowski A (2011) J Chem Phys 134:041103

    Article  PubMed  CAS  Google Scholar 

  122. Grzybowska K, Paluch M, Grzybowski A, Pawlus S, Ancherbak S, Prevosto D, Capaccioli S (2010) J Phys Chem Lett 1:1170

    Article  CAS  Google Scholar 

  123. Grzybowska K, Pawlus S, Mierzwa M, Paluch M, Ngai KL (2006) J Chem Phys 125:144507

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are deeply thankful for receiving the research project within the program MAESTRO 2 financed by the Polish National Science Center, based on Decision No. DEC-2012/04/A/ST3/00337.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marian Paluch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grzybowski, A., Paluch, M. (2018). Universality of Density Scaling. In: Kremer, F., Loidl, A. (eds) The Scaling of Relaxation Processes. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-72706-6_4

Download citation

Publish with us

Policies and ethics