Skip to main content

Glassy Dynamics: From Millihertz to Terahertz

  • Chapter
  • First Online:
The Scaling of Relaxation Processes

Part of the book series: Advances in Dielectrics ((ADVDIELECT))

Abstract

In this article, we review broadband dielectric spectroscopy in supercooled liquids, in many cases covering more than 15 decades in frequency and a wide range of temperatures from the low-viscosity liquid to the rigid sub-Tg glass. The access to this extremely broad frequency window allows a detailed study of the complexity of glassy freezing and glassy dynamics in a large variety of materials. Dielectric spectroscopy not only documents the enormous slowing down of the structural relaxation when approaching the glass transition, but also reveals a variety of further relaxation processes, which are important to understand the physics of the transition from a supercooled liquid into a rigid glass. After a short introduction, mainly focusing on long-term experiments on glasses and on the classification of glass formers into strong and fragile, we shortly discuss some basics of relaxation and conductivity contributions when viewed via dielectric spectroscopy. We provide some prototypical examples of dielectric loss spectra covering a large frequency and temperature regime. The glass formers shown can be categorized into two classes, type A and type B. The latter reveal well-defined Johari–Goldstein secondary relaxations, which lead to peaks in the dielectric loss at least at low temperatures. The former exhibit an excess wing, showing only a change of slope of the high-frequency flank of the structural-relaxation loss peaks. Then, we exemplify the phenomenology of glassy dynamics as revealed by these broadband spectra: The structural relaxation, the Johari–Goldstein relaxation, the appearance of a fast process as proposed by the mode-coupling theory, and the boson peak, a well-defined feature in the dielectric loss at THz frequencies, are discussed in detail. In a further chapter, we focus on the importance of sub-Tg experiments: Aging experiments and a possible experimental evidence of the Gardner transition are discussed. Finally, we summarize the experimental dielectric results documenting the universality of glassy freezing, which can be directly derived from these measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parisi G (2000) Phys A 280:115

    Article  CAS  Google Scholar 

  2. Berthier L, Ediger M (2016) Phys Today 69:41

    Article  CAS  Google Scholar 

  3. Reiner M (1964) Phys Today 17:62

    Article  Google Scholar 

  4. Zanotto ED (1998) Am J Phys 66:392

    Article  CAS  Google Scholar 

  5. Zanotto ED, Gupta PK (1999) Am J Phys 67:260

    Article  CAS  Google Scholar 

  6. Pasachoff JM (1998) Am J Phys 66:1021

    Article  Google Scholar 

  7. Edgeworth R, Dalton BJ, Parnell T, Eur J Phys 198 (1984)

    Google Scholar 

  8. Johnston R, Nature News, 18 July 2014. https://doi.org/10.1038/nature.2013.13418

  9. Böhmer R, Ngai KL, Angell CA, Plazek DJ (1993) J Chem Phys 99:4201

    Article  Google Scholar 

  10. Angell CA, Ngai KL, McKenna GB, McMillan PF, Martin SW (2000) J Appl Phys 88:3113

    Article  CAS  Google Scholar 

  11. Böhmer R, Angell CA (2003) In: Kremer F, Schönhals A (eds) Broadband dielectric spectroscopy. Springer, Berlin, p 11

    Google Scholar 

  12. Adam G, Gibbs JH (1965) J Chem Phys 43:139

    Article  CAS  Google Scholar 

  13. Albert S, Bauer Th, Michl M, Biroli G, Bouchaud J-P, Loidl A, Lunkenheimer P, Tourbot R, Wiertel-Gasquet C, Ladieu F (2016) Science 352:1308

    Article  PubMed  CAS  Google Scholar 

  14. Lunkenheimer P, Michl M, Bauer Th, Loidl A (2017) Eur Phys J Special Topics 226:3157

    Article  Google Scholar 

  15. Chandler D, Garrahan JP (2010) Annu Rev Phys Chem 61:191

    Article  PubMed  CAS  Google Scholar 

  16. Dzero M, Schmalian J, Wolynes PG (2012) In: Wolynes PG, Lubchenko V (eds) Structural glasses and supercooled liquids: theory, experiment and applications. Wiley, Hoboken, p 193

    Google Scholar 

  17. Böhmer R, Maglione M, Lunkenheimer P, Loidl A (1989) J Appl Phys 65:901

    Article  Google Scholar 

  18. Schneider U, Lunkenheimer P, Pimenov A, Brand R, Loidl A (2001) Ferroelectrics 249:89

    Article  CAS  Google Scholar 

  19. Lunkenheimer P, Schneider U, Brand R, Loidl A (2000) Contemp Phys 41:15

    Article  CAS  Google Scholar 

  20. Lunkenheimer P, Loidl A (2002) Chem Phys 284:205

    Article  CAS  Google Scholar 

  21. Lunkenheimer P, Köhler M, Kastner S, Loidl A (2012) In: Wolynes PG, Lubchenko V (eds) Structural glasses and supercooled liquids: theory, experiment and applications. Wiley, Hoboken, p 115

    Google Scholar 

  22. Richert R (2015) Adv Chem Phys 156:101

    CAS  Google Scholar 

  23. Kremer F, Schönhals A (eds) (2003) Broadband dielectric spectroscopy. Springer, Berlin

    Google Scholar 

  24. Schiener B, Böhmer R, Loidl A, Chamberlin RV (1996) Science 274:752

    Article  CAS  Google Scholar 

  25. Lunkenheimer P, Wehn R, Schneider U, Loidl A (2005) Phys Rev Lett 95:055702

    Article  PubMed  CAS  Google Scholar 

  26. Geirhos K, Lunkenheimer P, Loidl A (2018) Phys Rev Lett 120:085705

    Google Scholar 

  27. Crauste-Thibierge C, Brun C, Ladieu F, L’Hote D, Biroli G, Bouchaud J-P (2010) Phys Rev Lett 104:165703

    Article  CAS  PubMed  Google Scholar 

  28. Bauer Th, Lunkenheimer P, Loidl A (2013) Phys Rev Lett 111:225702

    Article  CAS  PubMed  Google Scholar 

  29. Debye P (1912) Ann Phys 39:789

    Article  CAS  Google Scholar 

  30. Cole KS, Cole RH (1941) J Chem Phys 9:341

    Article  CAS  Google Scholar 

  31. Davidson DW, Cole RH (1950) J Chem Phys 18:1417

    Article  CAS  Google Scholar 

  32. Kohlrausch R (1854) Ann Phys 167:56

    Article  Google Scholar 

  33. Williams G, Watts DC (1970) Trans Faraday Soc 66:80

    Article  CAS  Google Scholar 

  34. Sillescu H (1999) J Non-Cryst Solids 243:81

    Article  CAS  Google Scholar 

  35. Ediger MD (2000) Annu Rev Phys Chem 51:99

    Article  PubMed  CAS  Google Scholar 

  36. Richert R (2002) J Phys Condens Matter 14:R703

    Article  CAS  Google Scholar 

  37. Böhmer R (1989) J Chem Phys 91:3111

    Article  Google Scholar 

  38. Jonscher AK (1977) Nature (London) 267:673

    Article  CAS  Google Scholar 

  39. Lunkenheimer P, Loidl A (2003) Phys Rev Lett 91:207601

    Article  PubMed  CAS  Google Scholar 

  40. Dyre JC (1988) J Appl Phys 64:2456

    Article  Google Scholar 

  41. Macedo PB, Moynihan CT, Bose R (1972) Phys Chem Glasses 13:171

    CAS  Google Scholar 

  42. Elliott SR (1994) J Non-Cryst Solids 170:97

    Article  CAS  Google Scholar 

  43. Roling B (1999) J Non-Cryst Solids 244:34

    Article  CAS  Google Scholar 

  44. Sidebottom DL, Roling B, Funke K (2001) Phys Rev B 63:024301

    Article  Google Scholar 

  45. Hodge IM, Ngai KL, Moynihan CT (2005) J Non-Cryst Solids 351:104

    Article  CAS  Google Scholar 

  46. Böhmer R, Gainaru C, Richert R (2014) Phys Rep 545:125

    Article  CAS  Google Scholar 

  47. Vogel H (1921) Phys Z 22:645

    CAS  Google Scholar 

  48. Fulcher GS (1925) J Am Ceram Soc 8:339

    Article  CAS  Google Scholar 

  49. Tammann G, Hesse W, Anorg Z (1926) Allg Chem 156:245

    Article  Google Scholar 

  50. Angell CA (1985) In: Ngai KL, Wright GB (eds) Relaxations in complex systems. Naval Research Laboratory, Washington, DC, p 3

    Google Scholar 

  51. Plazek DJ, Ngai KL (1991) Macromolecules 24:1222

    Article  CAS  Google Scholar 

  52. Böhmer R, Angell CA (1992) Phys Rev B 45:10091

    Article  Google Scholar 

  53. Böhmer R (1994) J Non-Cryst Solids 172–174:628

    Article  Google Scholar 

  54. Vilgis TA (1993) Phys Rev B 47:2882

    Article  CAS  Google Scholar 

  55. Johari GP, Goldstein M (1970) J Chem Phys 53:2372

    Article  CAS  Google Scholar 

  56. Stillinger FH (1995) Science 267:1935

    Article  PubMed  CAS  Google Scholar 

  57. Harmon JS, Demetriou MD, Johnson WL, Samwer K (2007) Phys Rev Lett 99:135502

    Article  PubMed  CAS  Google Scholar 

  58. Gainaru C, Lips O, Troshagina A, Kaghlau R, Brodin A, Fujara F, Rössler E (2008) J Chem Phys 128:173505

    Article  CAS  Google Scholar 

  59. Kudlik A, Benkhof S, Blochowicz T, Rössler E (1999) J Mol Structure 479:201

    Article  CAS  Google Scholar 

  60. Köhler M, Lunkenheimer P, Goncharov Y, Wehn R, Loidl A (2010) J Non-Cryst Solids 356:529

    Article  CAS  Google Scholar 

  61. Köhler M (2010) Relaxation, rattling, and decoupling. dynamic processes in glassy matter. Mensch und Buch, Berlin

    Google Scholar 

  62. Kastner S, Köhler M, Goncharov Y, Lunkenheimer P, Loidl A (2011) J Non-Cryst Solids 357:510

    Article  CAS  Google Scholar 

  63. Havriliak S, Negami S (1966) J Polym Sci C 14:99

    Article  Google Scholar 

  64. Ngai KL (2003) J Phys Condens Matter 15:S1107

    Article  CAS  Google Scholar 

  65. Lunkenheimer P, Emmert S, Gulich R, Köhler M, Wolf M, Schwab M, Loidl A (2017) Phys Rev E 96:062607

    Article  PubMed  CAS  Google Scholar 

  66. Bartoš J, Iskrová M, Köhler M, Wehn R, Šauša O, Lunkenheimer P, Krištiak J, Loidl A (2011) Eur Phys J E 34:104

    Article  PubMed  CAS  Google Scholar 

  67. Brand R, Lunkenheimer P, Schneider U, Loidl A (1999) Phys Rev Lett 82:1951

    Article  CAS  Google Scholar 

  68. Schneider U, Brand R, Lunkenheimer P, Loidl A (2000) Phys Rev Lett 84:5560

    Article  PubMed  CAS  Google Scholar 

  69. Lunkenheimer P, Wehn R, Riegger Th, Loidl A (2002) J Non-Cryst Solids 307–310:336

    Article  Google Scholar 

  70. Döß A, Paluch M, Sillescu H, Hinze G (2002) Phys Rev Lett 88:095701

    Article  PubMed  CAS  Google Scholar 

  71. Hensel-Bielowka S, Pawlus S, Roland CM, Zioło J, Paluch M (2004) Phys Rev E 69:050501(R)

    Article  CAS  Google Scholar 

  72. Mattson J, Bergman R, Jacobsson P, Börjesson L (2003) Phys Rev Lett 90:075702

    Article  CAS  Google Scholar 

  73. Blochowicz T, Rössler EA (2004) Phys Rev Lett 92:225701

    Article  PubMed  CAS  Google Scholar 

  74. Schneider U (2000) Breitbandige dielektrische Studien der Dynamik struktureller Glasbildner. Books on Demand, Norderstedt. ISBN 3-8311-0921-4

    Google Scholar 

  75. Lunkenheimer P, Kastner S, Köhler M, Loidl A (2010) Phys Rev E 81:051504

    Article  CAS  Google Scholar 

  76. Jeong YH (1987) Phys Rev A 36:766

    Article  CAS  Google Scholar 

  77. Jeong YH, Nagel SR, Bhattacharya S (1986) Phys Rev A 34:602

    Article  CAS  Google Scholar 

  78. Larsson KE (1968) Phys Rev 167:171

    Article  CAS  Google Scholar 

  79. Gupta S, Arend N, Lunkenheimer P, Loidl A, Stingaciu L, Jalarvo N, Mamontov E, Ohl M (2015) Eur Phys J E 38:1

    Article  PubMed  CAS  Google Scholar 

  80. Posch HA, Dardy HD, Litovitz TAS (1977) Ber Bunsenges Physik Chemie 88:744

    Article  Google Scholar 

  81. Ewell RH (1938) J Appl Phys 9:252

    Article  CAS  Google Scholar 

  82. Segur JB, Oberstar HE (1951) Ind Eng Chem 43:2117

    Article  CAS  Google Scholar 

  83. Piccirelli R, Litovic TA (1957) J Acoust Soc Am 29:1009

    Article  Google Scholar 

  84. Börjesson L, Elmroth M, Torell LM (1990) Chem Phys 149:209

    Article  Google Scholar 

  85. Du WM, Li G, Cummins HZ, Fuchs M, Toulouse J, Knauss LA (1994) Phys Rev E 49:2192

    Article  CAS  Google Scholar 

  86. Bondeau A, Huck J (1985) J Phys (France) 46:1717

    Article  CAS  Google Scholar 

  87. Chen Z, Angell CA, Richert R (2012) Eur Phys J E 35:65

    Article  PubMed  CAS  Google Scholar 

  88. Mauro JC, Yue Y, Ellison AJ, Gupta PK, Allan DC (2009) Proc Natl Acad Sci USA 106, 19780

    Google Scholar 

  89. Angell CA, Sichina W (1976) Ann NY Acad Sci 279:53

    Article  CAS  Google Scholar 

  90. Wang L-M, Angell CA, Richert R (2006) J Chem Phys 125:074505

    Article  PubMed  CAS  Google Scholar 

  91. Ngai KL, Lunkenheimer P, León C, Schneider U, Brand R, Loidl A (2001) J Chem Phys 115:1405

    Article  CAS  Google Scholar 

  92. Hensel-Bielowka S, Paluch M (2002) Phys Rev Lett 89:025704

    Article  PubMed  CAS  Google Scholar 

  93. Dyre JC, Olsen NB (2003) Phys Rev Lett 91:155703

    Article  PubMed  CAS  Google Scholar 

  94. Paluch M, Roland CM, Pawlus S, Zioło J, Ngai KL (2003) Phys Rev Lett 91:115701

    Article  PubMed  CAS  Google Scholar 

  95. Ngai KL, Grzybowska K, Grzybowski A, Kaminska E, Kaminski K, Paluch M, Capaccioli S (2008) J Non-Cryst Solids 354:5085

    Article  CAS  Google Scholar 

  96. Brand R, Lunkenheimer P, Schneider U, Loidl A (2000) Phys Rev B 62:8878

    Article  CAS  Google Scholar 

  97. Bengtzelius U, Götze W, Sjölander A (1984) J Phys C 17:5915

    Article  CAS  Google Scholar 

  98. Leutheusser E (1984) Phys Rev A 29:2765

    Article  CAS  Google Scholar 

  99. Götze W, Sjögren L (1992) Rep Progr Phys 55:241

    Article  Google Scholar 

  100. Götze W (1999) J Phys Condens Matter 11:A1

    Article  Google Scholar 

  101. Knaak W, Mezei F, Farago B (1988) Europhys Lett 7:529

    Article  CAS  Google Scholar 

  102. Tao NJ, Li G, Cummins HZ (1991) Phys Rev Lett 66:1334

    Article  PubMed  CAS  Google Scholar 

  103. Li G, Du WM, Chen XK, Cummins HZ, Tao NJ (1992) Phys Rev A 45:3867

    Article  PubMed  CAS  Google Scholar 

  104. Li G, Du WM, Sakai A, Cummins HZ (1992) Phys Rev A 46:3343

    Article  PubMed  CAS  Google Scholar 

  105. Wuttke J, Hernandez J, Li G, Coddens G, Cummins HZ, Fujara F, Petry W, Sillescu H (1993) Phys Rev Lett 72:3052

    Article  Google Scholar 

  106. Sokolov AP, Steffen W, Rössler E (1995) Phys Rev E 52:5105

    Article  CAS  Google Scholar 

  107. Dixon PK, Menon N, Nagel SR (1994) Phys Rev E 50:1717

    Article  CAS  Google Scholar 

  108. Lunkenheimer P, Pimenov A, Dressel M, Goncharov YuG, Böhmer R, Loidl A (1996) Phys Rev Lett 77:318

    Article  PubMed  CAS  Google Scholar 

  109. Lunkenheimer P, Pimenov A, Loidl A (1997) Phys Rev Lett 78:2995

    Article  CAS  Google Scholar 

  110. Lunkenheimer P, Loidl A (2003) In: Kremer F, Schönhals A (eds) Broadband dielectric spectroscopy. Springer, Berlin, p 131

    Google Scholar 

  111. Lunkenheimer P, Pimenov A, Dressel M, Gorshunov B, Schneider U, Schiener B, Loidl A (1997) Am Chem Soc Symp Ser 676:168

    CAS  Google Scholar 

  112. Götze W, Singh AP, Voigtmann Th (2000) Phys Rev E 61:6934

    Article  Google Scholar 

  113. Franosch T, Fuchs M, Götze W, Mayr MR, Singh AP (1997) Phys Rev E 56:5659

    Article  CAS  Google Scholar 

  114. Schilling R, Scheidsteger T (1997) Phys Rev E 56:2932

    Article  CAS  Google Scholar 

  115. Wuttke J, Ohl M, Goldammer M, Roth S, Schneider U, Lunkenheimer P, Kahn R, Rufflé B, Lechner R, Berg MA (2000) Phys Rev E 61:2730

    Article  CAS  Google Scholar 

  116. Götze W, Voigtmann T (2000) Phys Rev E 61:4133

    Article  Google Scholar 

  117. Lunkenheimer P, Wehn R, Köhler M, Loidl A (2018) J Non-Cryst Solids 492:63

    Google Scholar 

  118. Martin AJ, Brenig W (1974) Phys Status Solidi B 64:163

    Article  CAS  Google Scholar 

  119. Malinovsky VK, Sokolov AP (1986) Sol Stat Commun 57:757

    Article  Google Scholar 

  120. Malinovsky VK, Novikov VN, Parshin PP, Sokolov AP, Zemlyanov MG (1990) Europhys Lett 11:43

    Article  Google Scholar 

  121. Buchenau U, Nücker N, Dianoux AJ (1984) Phys Rev Lett 53:2316

    Article  CAS  Google Scholar 

  122. Buchenau U, Galperin YuM, Gurevich VL, Schober HR (1991) Phys Rev B 43:5039

    Article  CAS  Google Scholar 

  123. Orbach R (1986) Science 231:814

    Article  CAS  PubMed  Google Scholar 

  124. Elliott SR (1992) Europhys Lett 19:201

    Article  CAS  Google Scholar 

  125. Schirmacher W, Diezemann G, Ganter C (1998) Phys Rev Lett 81:136

    Article  CAS  Google Scholar 

  126. Schirmacher W, Ruocco G, Scopigno (2007) Phys Rev Lett 98:025501

    Article  PubMed  CAS  Google Scholar 

  127. Shintani LH, Tanaka H (2008) Nat Mater 7:870

    Article  PubMed  CAS  Google Scholar 

  128. Grigera TS, Martin-Mayor V, Parisi G, Verrocchio P (2003) Nature 422:289

    Article  CAS  PubMed  Google Scholar 

  129. Lunkenheimer P, Loidl A (2001) Adv Solid State Phys 41:405

    Article  CAS  Google Scholar 

  130. Lunkenheimer P, Loidl A (2006) J Non-Cryst Solids 352:4556

    Article  CAS  Google Scholar 

  131. Brand R, Lunkenheimer P, Loidl A (2002) J Chem Phys 116:10386

    Article  CAS  Google Scholar 

  132. Wehn R, Lunkenheimer P, Loidl A (2007) J Non-Cryst Solids 353:3862

    Article  CAS  Google Scholar 

  133. Tool AQ (1946) J Am Ceram Soc 29:240

    Article  CAS  Google Scholar 

  134. Narayanaswamy OS (1971) J Am Ceram Soc 54:240

    Article  Google Scholar 

  135. Scherer GW (1986) Relaxation in glass and composites. Wiley, New York

    Google Scholar 

  136. Hodge IM (1994) J Non-Cryst Solids 169:211

    Article  CAS  Google Scholar 

  137. Leheny RL, Nagel SR (1998) Phys Rev B 57:5154

    Article  CAS  Google Scholar 

  138. Yue YZ, Jensen SL, Christiansen JC (2002) Appl Phys Lett 81:2983

    Article  CAS  Google Scholar 

  139. Yardimci H, Leheny RL (2006) J Chem Phys 124:214503

    Article  PubMed  CAS  Google Scholar 

  140. Moynihan CT, Macedo PB, Montrose CJ, Gupta PK, DeBolt MA, Dill JF, Dom BE, Drake PW, Easteal AJ, Elterman PB, Moeller RP, Sasabe H, Wilder JA (1976) Ann NY Acad Sci 279:15

    Article  CAS  Google Scholar 

  141. Lunkenheimer P, Wehn R, Loidl A (2006) J Non-Cryst Solids 352:4941

    Article  CAS  Google Scholar 

  142. Richert R, Lunkenheimer P, Kastner S, Loidl A (2013) J Phys Chem B 117:12689

    Article  PubMed  CAS  Google Scholar 

  143. Gardner E (1985) Nucl Phys B 257:747

    Article  Google Scholar 

  144. Gross DJ, Kanter I, Sompolinsky H (1985) Phys Rev Lett 55:304

    Article  PubMed  Google Scholar 

  145. Charbonneau P, Kurchan J, Parisi G, Urbani P, Zamponi F (2014) Nat Commun 5:3725

    Article  PubMed  CAS  Google Scholar 

  146. Biroli G, Urbani P (2016) Nat Phys 12:1130

    Article  CAS  Google Scholar 

  147. Kurchan J, Parisi G, Urbani P, Zamponi F (2013) J Phys Chem B 117:12979

    Article  PubMed  CAS  Google Scholar 

  148. Berthier L, Charbonneau P, Jin Y, Parisi G, Seoane B, Zamponi F (2016) Proc Natl Acad Sci USA 113:8397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Jin Y, Yoshino H (2017) Nat Commun 8:14935

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  150. Charbonneau P, Jin Y, Parisi G, Rainone C, Seoane B, Zamponi F (2015) Phys Rev E 92:012316

    Article  CAS  Google Scholar 

  151. Scalliet C, Berthier L, Zamponi F (2017) Phys Rev Lett 119:205501

    Article  PubMed  Google Scholar 

  152. Hicks CL, Wheatley MJ, Godfrey MJ, Moore MA (2018) Phys Rev Lett (in press)

    Google Scholar 

  153. Kirkpatrick TR, Wolynes PG (1987) Phys Rev B 36:8552

    Article  CAS  Google Scholar 

  154. Sperl M (2006) Phys Rev E 74:011503

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alois Loidl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lunkenheimer, P., Loidl, A. (2018). Glassy Dynamics: From Millihertz to Terahertz. In: Kremer, F., Loidl, A. (eds) The Scaling of Relaxation Processes. Advances in Dielectrics. Springer, Cham. https://doi.org/10.1007/978-3-319-72706-6_2

Download citation

Publish with us

Policies and ethics