Skip to main content

Direct Methods

  • Chapter
  • First Online:
  • 2345 Accesses

Part of the book series: Statistics and Computing ((SCO))

Abstract

In this chapter we look into a collection of direct methods for random sampling. The term direct is used here to indicate that i.i.d. random draws with exactly the desired probability distribution are produced by applying a transformation that maps one (or many) realizations from the available random source into a realization from the target random variable. Most often, this transformation can be described as a deterministic map. However, we also include here techniques that rely on either discrete or continuous mixtures of densities and which can be interpreted as (pseudo)stochastic transformations of the random source.

Furthermore, many of the techniques proposed in the literature are found to be closely related when studied in sufficient detail. We pay here specific attention to some of these links, as they can be later exploited for the design of more efficient samplers, or simply to attain a better understanding of the field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Note that \(\frac {\pi ^{m/2}}{\frac {m}{2}\Gamma \left (\frac {m}{2}\right )}\) is the volume of the unit sphere.

  2. 2.

    Note that g(y) is always a proper normalized pdf. This can be easily proved integrating by parts twice.

References

  1. F.S. Acton, Numerical Methods That Work (The Mathematical Association of America, Washington, DC, 1990)

    MATH  Google Scholar 

  2. J.H. Ahrens, U. Dieter, Computer methods for sampling from the exponential and normal distributions. Commun. ACM 15, 873–882 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  3. J.H. Ahrens, U. Dieter, Computer methods for sampling from gamma, beta, Poisson and binomial distributions. Computing 12, 223–246 (1974)

    MATH  Google Scholar 

  4. G.E.P. Box, M.E. Muller, A note on the generation of random normal deviates. Ann. Math. Stat. 29, 610–611 (1958)

    Article  MATH  Google Scholar 

  5. R.L. Burden, J.D. Faires, Numerical Analysis (Brooks Cole, Belmont, 2000)

    MATH  Google Scholar 

  6. J. Dagpunar, Principles of Random Variate Generation (Clarendon Press, Oxford/New York, 1988)

    MATH  Google Scholar 

  7. J. Dagpunar, Simulation and Monte Carlo: With Applications in Finance and MCMC (Wiley, Chichester, 2007)

    Book  MATH  Google Scholar 

  8. M.H. DeGroot, M.J. Schervish, Probability and Statistics, 3rd edn. (Addison-Wesley, New York, 2002)

    Google Scholar 

  9. L. Devroye, Random variate generation for unimodal and monotone densities. Computing 32, 43–68 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  10. L. Devroye, Non-uniform Random Variate Generation (Springer, New York, 1986)

    Book  MATH  Google Scholar 

  11. K.T. Fang, Z.H. Yang, S. Kotz, Generation of multivariate distributions by vertical density representation. Statistics 35(3), 281–293 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. J.E. Gentle, Random Number Generation and Monte Carlo Methods (Springer, New York, 2004)

    MATH  Google Scholar 

  13. W.R. Gilks, Derivative-free adaptive rejection sampling for Gibbs sampling. Bayesian Stat. 4, 641–649 (1992)

    MATH  Google Scholar 

  14. W.R. Gilks, P. Wild, Adaptive rejection sampling for Gibbs sampling. Appl. Stat. 41(2), 337–348 (1992)

    Article  MATH  Google Scholar 

  15. W. Hörmann, J. Leydold, G. Derflinger, Automatic Nonuniform Random Variate Generation (Springer, New York, 2003)

    MATH  Google Scholar 

  16. M.C. Jones, On Khintchine’s theorem and its place in random variate generation. Am. Stat. 56(4), 304–307 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. A.Y. Khintchine, On unimodal distributions. Izvestiya NauchnoIssledovatel’skogo Instituta Matematiki i Mekhaniki 2, 1–7 (1938)

    Google Scholar 

  18. A.J. Kinderman, J.G. Ramage, Computer generation of normal random variables. J. Am. Stat. Assoc. 71(356), 893–898 (1976)

    Article  MATH  Google Scholar 

  19. S. Kotz, M.D. Troutt, On vertical density representation and ordering of distributions. Statistics 28, 241–247 (1996)s

    Google Scholar 

  20. T.J. Kozubowski, On the vertical density of the multivariate exponential power distribution. Statistics 36, 219–221 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. G. Marsaglia, The exact-approximation method for generating random variables in a computer. Am. Stat. Assoc. 79(385), 218–221 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. J.R. Michael, W.R. Schucany, R.W. Haas, Generating random variates using transformations with multiple roots. Am. Stat. 30(2), 88–90 (1976)

    MATH  Google Scholar 

  23. J.G. Proakis, Digital Communications, 4th edn. (McGraw-Hill, Singapore, 2000)

    MATH  Google Scholar 

  24. C.P. Robert, G. Casella, Monte Carlo Statistical Methods (Springer, New York, 2004)

    Book  MATH  Google Scholar 

  25. E. Stadlober, H. Zechner, The patchwork rejection technique for sampling from unimodal distributions. ACM Trans. Model. Comput. Simul. 9(1), 59–80 (1999)

    Article  Google Scholar 

  26. M.D. Troutt, A theorem on the density ordinate and an alternative interpretation of the Box-Muller method. Statistics 22, 463–466 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. M.D. Troutt, Vertical density representation and a further remark on the Box-Muller method. Statistics 24, 81–83 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  28. M.D. Troutt, W.K. Pang, S.H. Hou, Vertical Density Representation and Its Applications (World Scientific, Singapore, 2004)

    Book  MATH  Google Scholar 

  29. A.W. Van Kemp, Patchwork rejection algorithms. J. Comput. Appl. Math. 31(1), 127–131 (1990)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Martino, L., Luengo, D., Míguez, J. (2018). Direct Methods. In: Independent Random Sampling Methods. Statistics and Computing. Springer, Cham. https://doi.org/10.1007/978-3-319-72634-2_2

Download citation

Publish with us

Policies and ethics