Skip to main content

Drug-Cytokine Interactions

  • Chapter
  • First Online:

Part of the book series: Infectious Disease ((ID))

Abstract

There are many documented examples of altered drug disposition in human conditions that stimulate host cytokine responses. These include viral, bacterial, or parasitic infections, tissue injury, surgery, cancer, and autoimmune conditions. Interferons, interleukins 1 and 6, and tumor necrosis factor are the central mediators. These cytokines have been traditionally viewed with respect to their ability to suppress hepatic cytochrome P450 (CYP)-mediated drug detoxification. The potential result is a temporary conversion from a rapid or normal metabolizer to a poor metabolizer phenotype. Such aberrant drug handling has placed patients at risk for adverse drug responses to low therapeutic index, CYP-metabolized drugs like theophylline. It is now evident that drug-cytokine interactions are broader than once appreciated. They impact CYPs and drug transporter proteins ABCB1 (P-glycoprotein) in the liver, intestine, kidney, blood-brain barrier, placenta, and immune cells. Furthermore, the possibility that anti-cytokine biological therapies may precipitate drug-cytokine interactions is gaining increasing recognition. The consequences of drug-cytokine interactions are altered absorption, elimination, and/or cellular and tissue distribution of drugs. The outcomes can be negative or positive depending on the drug, the anatomical site of the interaction, and the therapeutic objectives. This chapter provides a historical overview of drug-cytokine interactions, discusses recent advances, and examines the clinical scenarios in which infections or inflammation might lead to abnormal drug handling and drug responses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Brooks MH, Malloy JP, Bartelloni PJ, Sheehy TW, Barry KG (1969) Quinine, pyrimethamine, and sulphorthodimethoxine: clinical response, plasma levels, and urinary excretion during the initial attack of naturally acquired falciparum malaria. Clin Pharmacol Ther 10(1):85–91

    Article  CAS  PubMed  Google Scholar 

  2. Place VA, Pyle MM, De la Huerga J (1969) Ethambutol in tuberculous meningitis. Am Rev Respir Dis 99(5):783–785

    CAS  PubMed  Google Scholar 

  3. Sippel JE, Mikhail IA, Girgis NI, Youssef HH (1974) Rifampin concentrations in cerebrospinal fluid of patients with tuberculous meningitis. Am Rev Respir Dis 109(5):579–580

    CAS  PubMed  Google Scholar 

  4. Renton KW, Mannering GJ (1976) Depression of hepatic cytochrome P-450-dependent monooxygenase systems with administered interferon inducing agents. Biochem Biophys Res Commun 73(2):343–348

    Article  CAS  PubMed  Google Scholar 

  5. Renton KW, Mannering GJ (1976) Depression of the hepatic cytochrome P-450 mono-oxygenase system by administered tilorone (2,7-bis(2-(diethylamino)ethoxy)fluoren-9-one dihydrochloride). Drug Metab Dispos 4(3):223–231

    CAS  PubMed  Google Scholar 

  6. Soyka LF, Hunt WG, Knight SE, Foster RS Jr (1976) Decreased liver and lung drug-metabolizing activity in mice treated with Corynebacterium parvum. Cancer Res 36(12):4425–4428

    CAS  PubMed  Google Scholar 

  7. Cressman AM, Petrovic V, Piquette-Miller M (2012) Inflammation-mediated changes in drug transporter expression/activity: implications for therapeutic drug response. Expert Rev Clin Pharmacol 5(1):69–89. https://doi.org/10.1586/ecp.11.66

    Article  CAS  PubMed  Google Scholar 

  8. Petrovic V, Teng S, Piquette-Miller M (2007) Regulation of drug transporters during infection and inflammation. Mol Interv 7(2):99–111

    Article  CAS  PubMed  Google Scholar 

  9. Gonzalez-Gay MA, Gonzalez-Juanatey C, Vazquez-Rodriguez TR, Miranda-Filloy JA, Llorca J (2010) Insulin resistance in rheumatoid arthritis: the impact of the anti-TNF-alpha therapy. Ann N Y Acad Sci 1193(1):153–159. https://doi.org/10.1111/j.1749-6632.2009.05287.x. NYAS5287 [pii]

    Article  CAS  PubMed  Google Scholar 

  10. Sugimoto M, Furuta T, Yamaoka Y (2009) Influence of inflammatory cytokine polymorphisms on eradication rates of Helicobacter pylori. J Gastroenterol Hepatol 24(11):1725–1732. https://doi.org/10.1111/j.1440-1746.2009.06047.x. JGH6047 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Petrovic V, Kojovic D, Cressman A, Piquette-Miller M (2015) Maternal bacterial infections impact expression of drug transporters in human placenta. Int Immunopharmacol 26(2):349–356. https://doi.org/10.1016/j.intimp.2015.04.020

    Article  CAS  PubMed  Google Scholar 

  12. Miller DS (2015) Regulation of ABC transporters blood-brain barrier: the good, the bad, and the ugly. Adv Cancer Res 125:43–70. https://doi.org/10.1016/bs.acr.2014.10.002

    Article  PubMed  Google Scholar 

  13. Roberts DJ, Goralski KB (2008) A critical overview of the influence of inflammation and infection on P-glycoprotein expression and activity in the brain. Expert Opin Drug Metab Toxicol 4(10):1245–1264

    Article  CAS  PubMed  Google Scholar 

  14. Goralski KB, Hartmann G, Piquette-Miller M, Renton KW (2003) Downregulation of mdr1a expression in the brain and liver during CNS inflammation alters the in vivo disposition of digoxin. Br J Pharmacol 139(1):35–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. DX X, Wang JP, Sun MF, Chen YH, Wei W (2006) Lipopolysaccharide downregulates the expressions of intestinal pregnane X receptor and cytochrome P450 3a11. Eur J Pharmacol 536(1–2):162–170. https://doi.org/10.1016/j.ejphar.2006.02.029. S0014-2999(06)00197-X [pii]

    Article  CAS  Google Scholar 

  16. Kalitsky-Szirtes J, Shayeganpour A, Brocks DR, Piquette-Miller M (2004) Suppression of drug-metabolizing enzymes and efflux transporters in the intestine of endotoxin-treated rats. Drug Metab Dispos 32(1):20–27. https://doi.org/10.1124/dmd.32.1.20. 32/1/20 [pii]

    Article  CAS  PubMed  Google Scholar 

  17. Heemskerk S, Peters JG, Louisse J, Sagar S, Russel FG, Masereeuw R (2010) Regulation of P-glycoprotein in renal proximal tubule epithelial cells by LPS and TNF-alpha. J Biomed Biotechnol 2010:525180. https://doi.org/10.1155/2010/525180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Sharma R, Kacevska M, London R, Clarke SJ, Liddle C, Robertson G (2008) Downregulation of drug transport and metabolism in mice bearing extra-hepatic malignancies. Br J Cancer 98(1):91–97. https://doi.org/10.1038/Sj.Bjc.6604101

    Article  CAS  PubMed  Google Scholar 

  19. Long TJ, Cosgrove PA, Dunn RT 2nd, Stolz DB, Hamadeh H, Afshari C, McBride H, Griffith LG (2016) Modeling therapeutic antibody-small molecule drug-drug interactions using a three-dimensional perfusable human liver coculture platform. Drug Metab Dispos 44(12):1940–1948. https://doi.org/10.1124/dmd.116.071456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Harvey RD, Morgan ET (2014) Cancer, inflammation, and therapy: effects on cytochrome p450-mediated drug metabolism and implications for novel immunotherapeutic agents. Clin Pharmacol Ther 96(4):449–457. https://doi.org/10.1038/clpt.2014.143

    Article  CAS  PubMed  Google Scholar 

  21. Morgan ET, Goralski KB, Piquette-Miller M, Renton KW, Robertson GR, Chaluvadi MR, Charles KA, Clarke SJ, Kacevska M, Liddle C, Richardson TA, Sharma R, Sinal CJ (2008) Regulation of drug-metabolizing enzymes and transporters in infection, inflammation, and cancer. Drug Metab Dispos 36(2):205–216

    Article  CAS  PubMed  Google Scholar 

  22. Renton KW (2005) Regulation of drug metabolism and disposition during inflammation and infection. Expert Opin Drug Metab Toxicol 1(4):629–640

    Article  CAS  PubMed  Google Scholar 

  23. Aitken AE, Morgan ET (2007) Gene-specific effects of inflammatory cytokines on cytochrome P450 2C, 2B6 and 3A4 mRNA levels in human hepatocytes. Drug Metab Dispos 35(9):1687–1693. https://doi.org/10.1124/dmd.107.015511. dmd.107.015511 [pii]

    Article  CAS  PubMed  Google Scholar 

  24. Bauer B, Hartz AM, Miller DS (2007) Tumor necrosis factor alpha and endothelin-1 increase P-glycoprotein expression and transport activity at the blood-brain barrier. Mol Pharmacol 71(3):667–675

    Article  CAS  PubMed  Google Scholar 

  25. Donato MT, Guillen MI, Jover R, Castell JV, Gomez-Lechon MJ (1997) Nitric oxide-mediated inhibition of cytochrome P450 by interferon-gamma in human hepatocytes. J Pharmacol Exp Ther 281(1):484–490

    CAS  PubMed  Google Scholar 

  26. Hartz AM, Bauer B, Fricker G, Miller DS (2006) Rapid modulation of P-glycoprotein-mediated transport at the blood-brain barrier by tumor necrosis factor-alpha and lipopolysaccharide. Mol Pharmacol 69(2):462–470

    Article  CAS  PubMed  Google Scholar 

  27. Kim RB (2006) Transporters and drug discovery: why, when, and how. Mol Pharm 3(1):26–32

    Article  CAS  PubMed  Google Scholar 

  28. Petzinger E, Geyer J (2006) Drug transporters in pharmacokinetics. Naunyn Schmiedeberg’s Arch Pharmacol 372(6):465–475

    Article  CAS  Google Scholar 

  29. Anzenbacher P, Anzenbacherova E (2001) Cytochromes P450 and metabolism of xenobiotics. Cell Mol Life Sci 58(5–6):737–747

    Article  CAS  PubMed  Google Scholar 

  30. Ramirez-Alcantara V, Montrose MH (2014) Acute murine colitis reduces colonic 5-aminosalicylic acid metabolism by regulation of N-acetyltransferase-2. Am J Physiol Gastrointest Liver Physiol 306(11):G1002–G1010. https://doi.org/10.1152/ajpgi.00389.2013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Richardson TA, Sherman M, Kalman D, Morgan ET (2006) Expression of UDP-glucuronosyltransferase isoform mRNAs during inflammation and infection in mouse liver and kidney. Drug Metab Dispos 34(3):351–353. https://doi.org/10.1124/dmd.105.007435

    Article  CAS  PubMed  Google Scholar 

  32. Mimche SM, Nyagode BA, Merrell MD, Lee CM, Prasanphanich NS, Cummings RD, Morgan ET (2014) Hepatic cytochrome P450s, phase II enzymes and nuclear receptors are downregulated in a Th2 environment during Schistosoma mansoni infection. Drug Metab Dispos 42(1):134–140. https://doi.org/10.1124/dmd.113.054957

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Chen C, Han YH, Yang Z, Rodrigues AD (2011) Effect of interferon-alpha2b on the expression of various drug-metabolizing enzymes and transporters in co-cultures of freshly prepared human primary hepatocytes. Xenobiotica 41(6):476–485. https://doi.org/10.3109/00498254.2011.560971

    Article  CAS  PubMed  Google Scholar 

  34. International Transporter C, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L (2010) Membrane transporters in drug development. Nat Rev 9(3):215–236. https://doi.org/10.1038/nrd3028

    Article  CAS  Google Scholar 

  35. He L, Vasiliou K, Nebert DW (2009) Analysis and update of the human solute carrier (SLC) gene superfamily. Hum Genomics 3(2):195–206

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Vasiliou V, Vasiliou K, Nebert DW (2009) Human ATP-binding cassette (ABC) transporter family. Hum Genomics 3(3):281–290

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Dean M, Rzhetsky A, Allikmets R (2001) The human ATP-binding cassette (ABC) transporter superfamily. Genome Res 11(7):1156–1166

    Article  CAS  PubMed  Google Scholar 

  38. Hediger MA, Romero MF, Peng JB, Rolfs A, Takanaga H, Bruford EA (2004) The ABCs of solute carriers: physiological, pathological and therapeutic implications of human membrane transport proteinsIntroduction. Pflugers Arch 447(5):465–468

    Article  CAS  PubMed  Google Scholar 

  39. Stieger B, Hagenbuch B (2014) Organic anion-transporting polypeptides. Curr Top Membr 73:205–232. https://doi.org/10.1016/B978-0-12-800223-0.00005-0

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Koepsell H, Schmitt BM, Gorboulev V (2003) Organic cation transporters. Rev Physiol Biochem Pharmacol 150:36–90

    Article  CAS  PubMed  Google Scholar 

  41. Rizwan AN, Burckhardt G (2007) Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharm Res 24(3):450–470

    Article  CAS  PubMed  Google Scholar 

  42. Tsuji A, Tamai I (1996) Carrier-mediated intestinal transport of drugs. Pharm Res 13(7):963–977

    Article  CAS  PubMed  Google Scholar 

  43. Yang CY, Dantzig AH, Pidgeon C (1999) Intestinal peptide transport systems and oral drug availability. Pharm Res 16(9):1331–1343

    Article  CAS  PubMed  Google Scholar 

  44. Tsuruoka S, Sugimoto KI, Fujimura A, Imai M, Asano Y, Muto S (2001) P-glycoprotein-mediated drug secretion in mouse proximal tubule perfused in vitro. J Am Soc Nephrol 12(1):177–181

    CAS  PubMed  Google Scholar 

  45. van Asperen J, van Tellingen O, Beijnen JH (2000) The role of mdr1a P-glycoprotein in the biliary and intestinal secretion of doxorubicin and vinblastine in mice. Drug Metab Dispos 28(3):264–267

    PubMed  Google Scholar 

  46. Schinkel AH, Smit JJ, van Tellingen O, Beijnen JH, Wagenaar E, van Deemter L, Mol CA, van der Valk MA, Robanus-Maandag EC, te Riele HP et al (1994) Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell 77(4):491–502

    Article  CAS  PubMed  Google Scholar 

  47. Steinke JW, Borish L (2006) 3. Cytokines and chemokines. J Allergy Clin Immunol 117(2 Suppl Mini-Primer):S441–S445

    Article  CAS  PubMed  Google Scholar 

  48. Commins SP, Borish L, Steinke JW (2010) Immunologic messenger molecules: cytokines, interferons, and chemokines. J Allergy Clin Immunol 125(2 Suppl 2):S53–S72. https://doi.org/10.1016/j.jaci.2009.07.008

    Article  PubMed  Google Scholar 

  49. Oppenheim JJ, Feldmann M (2000) Introduction to the role of cytokines in innate host defense and adaptive immunity. In: Oppenheim JJ, Feldmann M, Durum SK, Hirano T, Vilcek J, Nicola NA Cytokine reference: a compendium of cytokines and other mediators of host defense. Ligands., vol 1. 1st edn. Academic Press, San Diego

    Google Scholar 

  50. Medzhitov R (2010) Inflammation 2010: new adventures of an old flame. Cell 140(6):771–776. https://doi.org/10.1016/j.cell.2010.03.006

    Article  CAS  PubMed  Google Scholar 

  51. Medzhitov R (2008) Origin and physiological roles of inflammation. Nature 454(7203):428–435. https://doi.org/10.1038/nature07201. nature07201 [pii]

    Article  CAS  PubMed  Google Scholar 

  52. Barton GM (2008) A calculated response: control of inflammation by the innate immune system. J Clin Invest 118(2):413–420. https://doi.org/10.1172/JCI34431

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Medzhitov R Inflammation (2010) New adventures of an old flame. Cell 140(6):771–776

    Article  CAS  Google Scholar 

  54. Baumann H, Gauldie J (1994) The acute phase response. Immunol Today 15(2):74–80

    Article  CAS  PubMed  Google Scholar 

  55. Gruys E, Toussaint MJ, Niewold TA, Koopmans SJ (2005) Acute phase reaction and acute phase proteins. J Zhejiang Univ Sci B 6(11):1045–1056. https://doi.org/10.1631/jzus.2005.B1045

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Ramadori G, Christ B (1999) Cytokines and the hepatic acute-phase response. Semin Liver Dis 19(2):141–155. https://doi.org/10.1055/s-2007-1007106

    Article  CAS  PubMed  Google Scholar 

  57. Abdel-Razzak Z, Loyer P, Fautrel A, Gautier JC, Corcos L, Turlin B, Beaune P, Guillouzo A (1993) Cytokines down-regulate expression of major cytochrome P-450 enzymes in adult human hepatocytes in primary culture. Mol Pharmacol 44(4):707–715

    CAS  PubMed  Google Scholar 

  58. Le Vee M, Gripon P, Stieger B, Fardel O (2008) Down-regulation of organic anion transporter expression in human hepatocytes exposed to the proinflammatory cytokine interleukin 1beta. Drug Metab Dispos 36(2):217–222. https://doi.org/10.1124/dmd.107.016907. dmd.107.016907 [pii]

    Article  CAS  PubMed  Google Scholar 

  59. Vee ML, Lecureur V, Stieger B, Fardel O (2009) Regulation of drug transporter expression in human hepatocytes exposed to the proinflammatory cytokines tumor necrosis factor-alpha or interleukin-6. Drug Metab Dispos 37(3):685–693. https://doi.org/10.1124/dmd.108.023630. dmd.108.023630 [pii]

    Article  CAS  PubMed  Google Scholar 

  60. Morahan PS, Munson AE, Regelson W, Commerford SL, Hamilton LD (1972) Antiviral activity and side effects of polyriboinosinic-cytidylic acid complexes as affected by molecular size. Proc Natl Acad Sci U S A 69(4):842–846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Nebert DW, Friedman RM (1973) Stimulation of aryl hydrocarbon hydroxylase induction in cell cultures by interferon. J Virol 11(2):193–197

    CAS  PubMed Central  PubMed  Google Scholar 

  62. Farquhar D, Loo TL, Gutterman JU, Hersh EM, Luna MA (1976) Inhibition of drug-metabolizing enzymes in the rat after Bacillus Calmette-Guerin treatment. Biochem Pharmacol 25(13):1529–1535

    Article  CAS  PubMed  Google Scholar 

  63. Castro JE (1974) The effect of Corynebacterium parvum on the structure and function of the lymphoid system in mice. Eur J Cancer 10(2):115–120

    Article  CAS  PubMed  Google Scholar 

  64. Foster RS Jr (1976) The immunostimulant Corynibacterium parvum and hematopoietic toxicity of chemotherapy. Surg Forum 27(62):140–142

    PubMed  Google Scholar 

  65. Soyka LF, Stephens CC, MacPherson BR, Foster RS Jr (1979) Role of mononuclear phagocytes in decreased hepatic drug metabolism following administration of Corynebacterium parvum. Int J Immunopharmacol 1(2):101–112

    Article  CAS  PubMed  Google Scholar 

  66. Aitken AE, Richardson TA, Morgan ET (2006) Regulation of drug-metabolizing enzymes and transporters in inflammation. Annu Rev Pharmacol Toxicol 46:123–149

    Article  CAS  PubMed  Google Scholar 

  67. Chang KC, Bell TD, Lauer BA, Chai H (1978) Altered theophylline pharmacokinetics during acute respiratory viral illness. Lancet 1(8074):1132–1133

    Article  CAS  PubMed  Google Scholar 

  68. Kraemer MJ, Furukawa CT, Koup JR, Shapiro GG, Pierson WE, Bierman CW (1982) Altered theophylline clearance during an influenza B outbreak. Pediatrics 69(4):476–480

    CAS  PubMed  Google Scholar 

  69. Schmitt C, Kuhn B, Zhang X, Kivitz AJ, Grange S (2011) Disease-drug-drug interaction involving tocilizumab and simvastatin in patients with rheumatoid arthritis. Clin Pharmacol Ther 89(5):735–740. https://doi.org/10.1038/clpt.2011.35

    Article  CAS  PubMed  Google Scholar 

  70. Chen YL, Le Vraux V, Leneveu A, Dreyfus F, Stheneur A, Florentin I, De Sousa M, Giroud JP, Flouvat B, Chauvelot-Moachon L (1994) Acute-phase response, interleukin-6, and alteration of cyclosporine pharmacokinetics. Clin Pharmacol Ther 55(6):649–660

    Article  CAS  PubMed  Google Scholar 

  71. Gidal BE, Reiss WG, Liao JS, Pitterle ME (1996) Changes in interleukin-6 concentrations following epilepsy surgery: potential influence on carbamazepine pharmacokinetics. Ann Pharmacother 30(5):545–546

    Article  CAS  PubMed  Google Scholar 

  72. Shelly MP, Mendel L, Park GR (1987) Failure of critically ill patients to metabolise midazolam. Anaesthesia 42(6):619–626

    Article  CAS  PubMed  Google Scholar 

  73. O’Neil WM, Gilfix BM, Markoglou N, Di Girolamo A, Tsoukas CM, Wainer IW (2000) Genotype and phenotype of cytochrome P450 2D6 in human immunodeficiency virus-positive patients and patients with acquired immunodeficiency syndrome. Eur J Clin Pharmacol 56(3):231–240

    Article  PubMed  Google Scholar 

  74. Frye RF, Schneider VM, Frye CS, Feldman AM (2002) Plasma levels of TNF-alpha and IL-6 are inversely related to cytochrome P450-dependent drug metabolism in patients with congestive heart failure. J Card Fail 8(5):315–319. doi:S1071916402004232 [pii]

    Article  CAS  PubMed  Google Scholar 

  75. Renton KW, Gray JD, Hall RI (1980) Decreased elimination of theophylline after influenza vaccination. Can Med Assoc J 123(4):288–290

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Rivory LP, Slaviero KA, Clarke SJ (2002) Hepatic cytochrome P450 3A drug metabolism is reduced in cancer patients who have an acute-phase response. Br J Cancer 87(3):277–280. https://doi.org/10.1038/sj.bjc.6600448

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Williams ML, Bhargava P, Cherrouk I, Marshall JL, Flockhart DA, Wainer IW (2000) A discordance of the cytochrome P450 2C19 genotype and phenotype in patients with advanced cancer. Br J Clin Pharmacol 49(5):485–488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  78. Rubin K, Janefeldt A, Andersson L, Berke Z, Grime K, Andersson TB (2015) HepaRG cells as human-relevant in vitro model to study the effects of inflammatory stimuli on cytochrome P450 isoenzymes. Drug Metab Dispos 43(1):119–125. https://doi.org/10.1124/dmd.114.059246

    Article  CAS  PubMed  Google Scholar 

  79. Aitken AE, Lee CM, Morgan ET (2008) Roles of nitric oxide in inflammatory downregulation of human cytochromes P450. Free Radic Biol Med 44(6):1161–1168. https://doi.org/10.1016/j.freeradbiomed.2007.12.010. S0891-5849(07)00812-X [pii]

    Article  CAS  PubMed  Google Scholar 

  80. Lagadic-Gossmann D, Lerche C, Rissel M, Joannard F, Galisteo M, Guillouzo A, Corcos L (2000) The induction of the human hepatic CYP2E1 gene by interleukin 4 is transcriptional and regulated by protein kinase C. Cell Biol Toxicol 16(4):221–233

    Article  CAS  PubMed  Google Scholar 

  81. Muntane-Relat J, Ourlin JC, Domergue J, Maurel P (1995) Differential effects of cytokines on the inducible expression of CYP1A1, CYP1A2, and CYP3A4 in human hepatocytes in primary culture. Hepatology 22(4 Pt 1):1143–1153. doi:S0270913995003569 [pii]

    Article  CAS  PubMed  Google Scholar 

  82. Sunman JA, Hawke RL, LeCluyse EL, Kashuba AD (2004) Kupffer cell-mediated IL-2 suppression of CYP3A activity in human hepatocytes. Drug Metab Dispos 32(3):359–363. https://doi.org/10.1124/dmd.32.3.359. 32/3/359 [pii]

    Article  CAS  PubMed  Google Scholar 

  83. Yang J, Hao C, Yang D, Shi D, Song X, Luan X, Hu G, Yan B (2010) Pregnane X receptor is required for interleukin-6 mediated down-regulation of cytochrome P450 3A4 in human hepatocytes. Toxicol Lett. https://doi.org/10.1016/j.toxlet.2010.06.003. S0378-4274(10)01542-0 [pii]

  84. Czerwinski M, Kazmi F, Parkinson A, Buckley DB (2015) Anti-CD28 monoclonal antibody-stimulated cytokines released from blood suppress CYP1A2, CYP2B6, and CYP3A4 in human hepatocytes in vitro. Drug Metab Dispos 43(1):42–52. https://doi.org/10.1124/dmd.114.060186

    Article  CAS  PubMed  Google Scholar 

  85. Morcos PN, Moreira SA, Brennan BJ, Blotner S, Shulman NS, Smith PF (2013) Influence of chronic hepatitis C infection on cytochrome P450 3A4 activity using midazolam as an in vivo probe substrate. Eur J Clin Pharmacol 69(10):1777–1784. https://doi.org/10.1007/s00228-013-1525-5

    Article  CAS  PubMed  Google Scholar 

  86. Hartmann G, Vassileva V, Piquette-Miller M (2005) Impact of endotoxin-induced changes in P-glycoprotein expression on disposition of doxorubicin in mice. Drug Metab Dispos 33(6):820–828. https://doi.org/10.1124/dmd.104.002568. dmd.104.002568 [pii]

    Article  CAS  PubMed  Google Scholar 

  87. Piquette-Miller M, Pak A, Kim H, Anari R, Shahzamani A (1998) Decreased expression and activity of P-glycoprotein in rat liver during acute inflammation. Pharm Res 15(5):706–711

    Article  CAS  PubMed  Google Scholar 

  88. Sukhai M, Yong A, Kalitsky J, Piquette-Miller M (2000) Inflammation and interleukin-6 mediate reductions in the hepatic expression and transcription of the mdr1a and mdr1b Genes. Mol Cell Biol Res Commun 4(4):248–256. https://doi.org/10.1006/mcbr.2001.0288. S1522472401902880 [pii]

    Article  CAS  PubMed  Google Scholar 

  89. Ando H, Nishio Y, Ito K, Nakao A, Wang L, Zhao YL, Kitaichi K, Takagi K, Hasegawa T (2001) Effect of endotoxin on P-glycoprotein-mediated biliary and renal excretion of rhodamine-123 in rats. Antimicrob Agents Chemother 45(12):3462–3467. https://doi.org/10.1128/AAC.45.12.3462-3467.2001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Wang JH, Scollard DA, Teng S, Reilly RM, Piquette-Miller M (2005) Detection of P-glycoprotein activity in endotoxemic rats by 99mTc-sestamibi imaging. J Nucl Med 46(9):1537–1545. doi:46/9/1537 [pii]

    CAS  PubMed  Google Scholar 

  91. Cherrington NJ, Slitt AL, Li N, Klaassen CD (2004) Lipopolysaccharide-mediated regulation of hepatic transporter mRNA levels in rats. Drug Metab Dispos: Biol Fate Chem 32(i):734–741. doi:32/7/734 [pii]

    Article  CAS  Google Scholar 

  92. Geier A, Dietrich CG, Voigt S, Kim SK, Gerloff T, Kullak-Ublick GA, Lorenzen J, Matern S, Gartung C (2003) Effects of proinflammatory cytokines on rat organic anion transporters during toxic liver injury and cholestasis. Hepatology 38(2):345–354. https://doi.org/10.1053/jhep.2003.50317. S0270913903005330 [pii]

    Article  CAS  PubMed  Google Scholar 

  93. Hartmann G, Cheung AK, Piquette-Miller M (2002) Inflammatory cytokines, but not bile acids, regulate expression of murine hepatic anion transporters in endotoxemia. J Pharmacol Exp Ther 303(1):273–281. https://doi.org/10.1124/jpet.102.039404

    Article  CAS  PubMed  Google Scholar 

  94. Sukhai M, Yong A, Pak A, Piquette-Miller M (2001) Decreased expression of P-glycoprotein in interleukin-1beta and interleukin-6 treated rat hepatocytes. Inflamm Res 50(7):362–370

    Article  CAS  PubMed  Google Scholar 

  95. Teng S, Piquette-Miller M (2005) The involvement of the pregnane X receptor in hepatic gene regulation during inflammation in mice. J Pharmacol Exp Ther 312(2):841–848. https://doi.org/10.1124/jpet.104.076141. jpet.104.076141 [pii]

    Article  CAS  PubMed  Google Scholar 

  96. Siewert E, Dietrich CG, Lammert F, Heinrich PC, Matern S, Gartung C, Geier A (2004) Interleukin-6 regulates hepatic transporters during acute-phase response. Biochem Biophys Res Commun 322(1):232–238. https://doi.org/10.1016/j.bbrc.2004.07.102. S0006-291X(04)01616-X [pii]

    Article  CAS  PubMed  Google Scholar 

  97. Elferink MG, Olinga P, Draaisma AL, Merema MT, Faber KN, Slooff MJ, Meijer DK, Groothuis GM (2004) LPS-induced downregulation of MRP2 and BSEP in human liver is due to a posttranscriptional process. Am J Physiol Gastrointest Liver Physiol 287(5):G1008–G1016. https://doi.org/10.1152/ajpgi.00071.2004. 00071.2004 [pii]

    Article  CAS  PubMed  Google Scholar 

  98. Fardel O, Le Vee M (2009) Regulation of human hepatic drug transporter expression by pro-inflammatory cytokines. Expert Opin Drug Metab Toxicol 5(12):1469–1481. https://doi.org/10.1517/17425250903304056

    Article  CAS  PubMed  Google Scholar 

  99. Buyse M, Radeva G, Bado A, Farinotti R (2005) Intestinal inflammation induces adaptation of P-glycoprotein expression and activity. Biochem Pharmacol 69(12):1745–1754. https://doi.org/10.1016/j.bcp.2005.03.025. S0006-2952(05)00199-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  100. Iizasa H, Genda N, Kitano T, Tomita M, Nishihara K, Hayashi M, Nakamura K, Kobayashi S, Nakashima E (2003) Altered expression and function of P-glycoprotein in dextran sodium sulfate-induced colitis in mice. J Pharm Sci 92(3):569–576. https://doi.org/10.1002/jps.10326

    Article  CAS  PubMed  Google Scholar 

  101. Masubuchi Y, Enoki K, Horie T (2008) Down-regulation of hepatic cytochrome P450 enzymes in rats with trinitrobenzene sulfonic acid-induced colitis. Drug Metab Dispos 36(3):597–603. https://doi.org/10.1124/dmd.107.018754. dmd.107.018754 [pii]

    Article  CAS  PubMed  Google Scholar 

  102. Naud J, Michaud J, Boisvert C, Desbiens K, Leblond FA, Mitchell A, Jones C, Bonnardeaux A, Pichette V (2007) Down-regulation of intestinal drug transporters in chronic renal failure in rats. J Pharmacol Exp Ther 320(3):978–985. https://doi.org/10.1124/jpet.106.112631. jpet.106.112631 [pii]

    Article  CAS  PubMed  Google Scholar 

  103. Veau C, Faivre L, Tardivel S, Soursac M, Banide H, Lacour B, Farinotti R (2002) Effect of interleukin-2 on intestinal P-glycoprotein expression and functionality in mice. J Pharmacol Exp Ther 302(2):742–750

    Article  CAS  PubMed  Google Scholar 

  104. Niessner M, Volk BA (1995) Altered Th1/Th2 cytokine profiles in the intestinal mucosa of patients with inflammatory bowel disease as assessed by quantitative reversed transcribed polymerase chain reaction (RT-PCR). Clin Exp Immunol 101(3):428–435

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Sawa Y, Oshitani N, Adachi K, Higuchi K, Matsumoto T, Arakawa T (2003) Comprehensive analysis of intestinal cytokine messenger RNA profile by real-time quantitative polymerase chain reaction in patients with inflammatory bowel disease. Int J Mol Med 11(2):175–179

    CAS  PubMed  Google Scholar 

  106. Gutmann H, Hruz P, Zimmermann C, Straumann A, Terracciano L, Hammann F, Lehmann F, Beglinger C, Drewe J (2008) Breast cancer resistance protein and P-glycoprotein expression in patients with newly diagnosed and therapy-refractory ulcerative colitis compared with healthy controls. Digestion 78(2–3):154–162. https://doi.org/10.1159/000179361. 000179361 [pii]

    Article  CAS  PubMed  Google Scholar 

  107. Englund G, Jacobson A, Rorsman F, Artursson P, Kindmark A, Ronnblom A (2007) Efflux transporters in ulcerative colitis: decreased expression of BCRP (ABCG2) and Pgp (ABCB1). Inflamm Bowel Dis 13(3):291–297. https://doi.org/10.1002/ibd.20030

    Article  PubMed  Google Scholar 

  108. Ufer M, Hasler R, Jacobs G, Haenisch S, Lachelt S, Faltraco F, Sina C, Rosenstiel P, Nikolaus S, Schreiber S, Cascorbi I (2009) Decreased sigmoidal ABCB1 (P-glycoprotein) expression in ulcerative colitis is associated with disease activity. Pharmacogenomics 10(12):1941–1953. https://doi.org/10.2217/pgs.09.128

    Article  CAS  PubMed  Google Scholar 

  109. Blokzijl H, Vander Borght S, Bok LI, Libbrecht L, Geuken M, van den Heuvel FA, Dijkstra G, Roskams TA, Moshage H, Jansen PL, Faber KN (2007) Decreased P-glycoprotein (P-gp/MDR1) expression in inflamed human intestinal epithelium is independent of PXR protein levels. Inflamm Bowel Dis 13(6):710–720. https://doi.org/10.1002/ibd.20088

    Article  PubMed  Google Scholar 

  110. Langmann T, Moehle C, Mauerer R, Scharl M, Liebisch G, Zahn A, Stremmel W, Schmitz G (2004) Loss of detoxification in inflammatory bowel disease: dysregulation of pregnane X receptor target genes. Gastroenterology 127(1):26–40. doi:S0016508504007140 [pii]

    Article  CAS  PubMed  Google Scholar 

  111. Kawauchi S, Nakamura T, Miki I, Inoue J, Hamaguchi T, Tanahashi T, Mizuno S (2014) Downregulation of CYP3A and P-glycoprotein in the secondary inflammatory response of mice with dextran sulfate sodium-induced colitis and its contribution to cyclosporine A blood concentrations. J Pharmacol Sci 124(2):180–191

    Article  CAS  PubMed  Google Scholar 

  112. Kusunoki Y, Ikarashi N, Hayakawa Y, Ishii M, Kon R, Ochiai W, Machida Y, Sugiyama K (2014) Hepatic early inflammation induces downregulation of hepatic cytochrome P450 expression and metabolic activity in the dextran sulfate sodium-induced murine colitis. Eur J Pharm Sci 54:17–27. https://doi.org/10.1016/j.ejps.2013.12.019

    Article  CAS  PubMed  Google Scholar 

  113. Kusunoki Y, Ikarashi N, Matsuda S, Matsukawa Y, Kitaoka S, Kon R, Tajima M, Wakui N, Ochiai W, Machida Y, Sugiyama K (2015) Expression of hepatic cytochrome P450 in a mouse model of ulcerative colitis changes with pathological conditions. J Gastroenterol Hepatol 30(11):1618–1626. https://doi.org/10.1111/jgh.12966

    Article  CAS  PubMed  Google Scholar 

  114. Liu J, Zhou F, Chen Q, Kang A, Lu M, Liu W, Zang X, Wang G, Zhang J (2015) Chronic inflammation up-regulates P-gp in peripheral mononuclear blood cells via the STAT3/Nf-kappab pathway in 2,4,6-trinitrobenzene sulfonic acid-induced colitis mice. Sci Rep 5:13558. https://doi.org/10.1038/srep13558

    Article  PubMed Central  PubMed  Google Scholar 

  115. Nyagode BA, Jahangardi R, Merrell MD, Tansey MG, Morgan ET (2014) Selective effects of a therapeutic protein targeting tumor necrosis factor-alpha on cytochrome P450 regulation during infectious colitis: implications for disease-dependent drug-drug interactions. Pharmacol Res Perspect 2(1):e00027. https://doi.org/10.1002/prp2.27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Nyagode BA, Lee CM, Morgan ET (2010) Modulation of hepatic cytochrome P450s by Citrobacter rodentium infection in interleukin-6- and interferon-{gamma}-null mice. J Pharmacol Exp Ther 335(2):480–488. https://doi.org/10.1124/jpet.110.171488

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Sugimoto M, Furuta T, Shirai N, Ikuma M, Hishida A, Ishizaki T (2006) Influences of proinflammatory and anti-inflammatory cytokine polymorphisms on eradication rates of clarithromycin-sensitive strains of Helicobacter pylori by triple therapy. Clin Pharmacol Ther 80(1):41–50. https://doi.org/10.1016/j.clpt.2006.03.007. S0009-9236(06)00120-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  118. Miftahussurur M, Yamaoka Y (2015) Helicobacter pylori virulence genes and host genetic polymorphisms as risk factors for peptic ulcer disease. Expert Rev Gastroenterol Hepatol 9(12):1535–1547. https://doi.org/10.1586/17474124.2015.1095089

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  119. Zambon CF, Fasolo M, Basso D, D’Odorico A, Stranges A, Navaglia F, Fogar P, Greco E, Schiavon S, Padoan A, Fadi E, Sturniolo GC, Plebani M, Pedrazzoli S (2007) Clarithromycin resistance, tumor necrosis factor alpha gene polymorphism and mucosal inflammation affect H. pylori eradication success. J Gastrointest Surg 11(11):1506–1514.; discussion 1514. https://doi.org/10.1007/s11605-007-0246-4

    Article  PubMed  Google Scholar 

  120. Furuta T, Shirai N, Takashima M, Xiao F, Sugimura H (2002) Effect of genotypic differences in interleukin-1 beta on gastric acid secretion in Japanese patients infected with Helicobacter pylori. Am J Med 112(2):141–143. doi:S0002934301010361 [pii]

    Article  CAS  PubMed  Google Scholar 

  121. Furuta T, Shirai N, Xiao F, El-Omar EM, Rabkin CS, Sugimura H, Ishizaki T, Ohashi K (2004) Polymorphism of interleukin-1beta affects the eradication rates of Helicobacter pylori by triple therapy. Clin Gastroenterol Hepatol 2(1):22–30. doi:S154235650300288X [pii]

    Article  CAS  PubMed  Google Scholar 

  122. Schmidt C, Hocherl K, Bucher M (2007) Cytokine-mediated regulation of urea transporters during experimental endotoxemia. Am J Physiol Renal Physiol 292(5):F1479–F1489. https://doi.org/10.1152/ajprenal.00460.2006. 00460.2006 [pii]

    Article  CAS  PubMed  Google Scholar 

  123. Schmidt C, Hocherl K, Bucher M (2007) Regulation of renal glucose transporters during severe inflammation. Am J Physiol Renal Physiol 292(2):F804–F811. https://doi.org/10.1152/ajprenal.00258.2006. 00258.2006 [pii]

    Article  CAS  PubMed  Google Scholar 

  124. Schmidt C, Hocherl K, Schweda F, Kurtz A, Bucher M (2007) Regulation of renal sodium transporters during severe inflammation. J Am Soc Nephrol 18(4):1072–1083. https://doi.org/10.1681/ASN.2006050454. ASN.2006050454 [pii]

    Article  CAS  PubMed  Google Scholar 

  125. Heemskerk S, Wouterse AC, Russel FG, Masereeuw R (2008) Nitric oxide down-regulates the expression of organic cation transporters (OCT) 1 and 2 in rat kidney during endotoxemia. Eur J Pharmacol 584(2–3):390–397. https://doi.org/10.1016/j.ejphar.2008.02.006. S0014-2999(08)00153-2 [pii]

    Article  CAS  PubMed  Google Scholar 

  126. Heemskerk S, van Koppen A, van den Broek L, Poelen GJ, Wouterse AC, Dijkman HB, Russel FG, Masereeuw R (2007) Nitric oxide differentially regulates renal ATP-binding cassette transporters during endotoxemia. Pflugers Arch 454(2):321–334. https://doi.org/10.1007/s00424-007-0210-x

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  127. Huls M, van den Heuvel JJ, Dijkman HB, Russel FG, Masereeuw R (2006) ABC transporter expression profiling after ischemic reperfusion injury in mouse kidney. Kidney Int 69(12):2186–2193. https://doi.org/10.1038/sj.ki.5000407. 5000407 [pii]

    Article  CAS  PubMed  Google Scholar 

  128. Masereeuw R, Moons MM, Russel FG (1997) Rhodamine 123 accumulates extensively in the isolated perfused rat kidney and is secreted by the organic cation system. Eur J Pharmacol 321(3):315–323. doi:S0014-2999(96)00957-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  129. Graff CL, Pollack GM (2004) Drug transport at the blood-brain barrier and the choroid plexus. Curr Drug Metab 5(1):95–108

    Article  CAS  PubMed  Google Scholar 

  130. Kusuhara H, Sugiyama Y (2005) Active efflux across the blood-brain barrier: role of the solute carrier family. NeuroRx 2(1):73–85

    Article  PubMed Central  PubMed  Google Scholar 

  131. de Vries HE, Kuiper J, de Boer AG, Van Berkel TJ, Breimer DD (1997) The blood-brain barrier in neuroinflammatory diseases. Pharmacol Rev 49(2):143–155

    PubMed  Google Scholar 

  132. Eikelenboom P, Bate C, Van Gool WA, Hoozemans JJ, Rozemuller JM, Veerhuis R, Williams A (2002) Neuroinflammation in Alzheimer’s disease and prion disease. Glia 40(2):232–239

    Article  CAS  PubMed  Google Scholar 

  133. Ghafouri M, Amini S, Khalili K, Sawaya BE (2006) HIV-1 associated dementia: symptoms and causes. Retrovirology 3:28

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  134. Whitton PS (2007) Inflammation as a causative factor in the aetiology of Parkinson’s disease. Br J Pharmacol 150(8):963–976

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. Bauer B, Hartz AM, Pekcec A, Toellner K, Miller DS, Potschka H (2008) Seizure-induced up-regulation of P-glycoprotein at the blood-brain barrier through glutamate and cyclooxygenase-2 signaling. Mol Pharmacol 73(5):1444–1453

    Article  CAS  PubMed  Google Scholar 

  136. Kortekaas R, Leenders KL, van Oostrom JC, Vaalburg W, Bart J, Willemsen AT, Hendrikse NH (2005) Blood-brain barrier dysfunction in parkinsonian midbrain in vivo. Ann Neurol 57(2):176–179

    Article  CAS  PubMed  Google Scholar 

  137. Langford D, Grigorian A, Hurford R, Adame A, Ellis RJ, Hansen L, Masliah E (2004) Altered P-glycoprotein expression in AIDS patients with HIV encephalitis. J Neuropathol Exp Neurol 63(10):1038–1047

    Article  CAS  PubMed  Google Scholar 

  138. Loscher W, Potschka H (2005) Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci 6(8):591–602

    Article  PubMed  CAS  Google Scholar 

  139. Roberts DJ, Goralski KB, Renton KW, Julien LC, Webber AM, Sleno L, Volmer DA, Hall RI (2009) Effect of acute inflammatory brain injury on accumulation of morphine and morphine 3- and 6-glucuronide in the human brain. Crit Care Med 37(10):2767–2774. https://doi.org/10.1097/CCM.0b013e3181b755d5. 00003246-200910000-00014 [pii]

    Article  CAS  PubMed  Google Scholar 

  140. Vogelgesang S, Warzok RW, Cascorbi I, Kunert-Keil C, Schroeder E, Kroemer HK, Siegmund W, Walker LC, Pahnke J (2004) The role of P-glycoprotein in cerebral amyloid angiopathy; implications for the early pathogenesis of Alzheimer’s disease. Curr Alzheimer Res 1(2):121–125

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Beaulieu E, Demeule M, Ghitescu L, Beliveau R (1997) P-glycoprotein is strongly expressed in the luminal membranes of the endothelium of blood vessels in the brain. Biochem J 326(Pt 2):539–544

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  142. Virgintino D, Robertson D, Errede M, Benagiano V, Girolamo F, Maiorano E, Roncali L, Bertossi M (2002) Expression of P-glycoprotein in human cerebral cortex microvessels. J Histochem Cytochem 50(12):1671–1676

    Article  CAS  PubMed  Google Scholar 

  143. Choo EF, Leake B, Wandel C, Imamura H, Wood AJ, Wilkinson GR, Kim RB (2000) Pharmacological inhibition of P-glycoprotein transport enhances the distribution of HIV-1 protease inhibitors into brain and testes. Drug Metab Dispos 28(6):655–660

    CAS  PubMed  Google Scholar 

  144. King M, Su W, Chang A, Zuckerman A, Pasternak GW (2001) Transport of opioids from the brain to the periphery by P-glycoprotein: peripheral actions of central drugs. Nat Neurosci 4(3):268–274

    Article  CAS  PubMed  Google Scholar 

  145. Lankas GR, Cartwright ME, Umbenhauer D (1997) P-glycoprotein deficiency in a subpopulation of CF-1 mice enhances avermectin-induced neurotoxicity. Toxicol Appl Pharmacol 143(2):357–365

    Article  CAS  PubMed  Google Scholar 

  146. Luurtsema G, Molthoff CF, Windhorst AD, Smit JW, Keizer H, Boellaard R, Lammertsma AA, Franssen EJ (2003) (R)- and (S)-[11C]verapamil as PET-tracers for measuring P-glycoprotein function: in vitro and in vivo evaluation. Nucl Med Biol 30(7):747–751

    Article  CAS  PubMed  Google Scholar 

  147. Thuerauf N, Fromm MF (2006) The role of the transporter P-glycoprotein for disposition and effects of centrally acting drugs and for the pathogenesis of CNS diseases. Eur Arch Psychiatry Clin Neurosci 256(5):281–286

    Article  PubMed  Google Scholar 

  148. Uhr M, Tontsch A, Namendorf C, Ripke S, Lucae S, Ising M, Dose T, Ebinger M, Rosenhagen M, Kohli M, Kloiber S, Salyakina D, Bettecken T, Specht M, Putz B, Binder EB, Muller-Myhsok B, Holsboer F (2008) Polymorphisms in the drug transporter gene ABCB1 predict antidepressant treatment response in depression. Neuron 57(2):203–209

    Article  CAS  PubMed  Google Scholar 

  149. Greenberg ML, Fisher PG, Freeman C, Korones DN, Bernstein M, Friedman H, Blaney S, Hershon L, Zhou T, Chen Z, Kretschmar C (2005) Etoposide, vincristine, and cyclosporin A with standard-dose radiation therapy in newly diagnosed diffuse intrinsic brainstem gliomas: a pediatric oncology group phase I study. Pediatr Blood Cancer 45(5):644–648

    Article  PubMed  Google Scholar 

  150. Sadeque AJ, Wandel C, He H, Shah S, Wood AJ (2000) Increased drug delivery to the brain by P-glycoprotein inhibition. Clin Pharmacol Ther 68(3):231–237

    Article  CAS  PubMed  Google Scholar 

  151. Chen X, Zhou ZW, Xue CC, Li XX, Zhou SF (2007) Role of P-glycoprotein in restricting the brain penetration of tanshinone IIA, a major active constituent from the root of Salvia miltiorrhiza Bunge, across the blood-brain barrier. Xenobiotica 37(6):635–678

    Article  CAS  PubMed  Google Scholar 

  152. Imbert F, Jardin M, Fernandez C, Gantier JC, Dromer F, Baron G, Mentre F, Van Beijsterveldt L, Singlas E, Gimenez F (2003) Effect of efflux inhibition on brain uptake of itraconazole in mice infected with Cryptococcus neoformans. Drug Metab Dispos 31(3):319–325

    Article  CAS  PubMed  Google Scholar 

  153. XY Y, Lin SG, Chen X, Zhou ZW, Liang J, Duan W, Chowbay B, Wen JY, Chan E, Cao J, Li CG, Zhou SF (2007) Transport of cryptotanshinone, a major active triterpenoid in Salvia miltiorrhiza Bunge widely used in the treatment of stroke and Alzheimer’s disease, across the blood-brain barrier. Curr Drug Metab 8(4):365–378

    Article  Google Scholar 

  154. Zhao YL, Du J, Kanazawa H, Cen XB, Takagi K, Kitaichi K, Tatsumi Y, Takagi K, Ohta M, Hasegawa T (2002) Shiga-like toxin II modifies brain distribution of a P-glycoprotein substrate, doxorubicin, and P-glycoprotein expression in mice. Brain Res 956(2):246–253

    Article  CAS  PubMed  Google Scholar 

  155. Zhao YL, Du J, Kanazawa H, Sugawara A, Takagi K, Kitaichi K, Tatsumi Y, Takagi K, Hasegawa T (2002) Effect of endotoxin on doxorubicin transport across blood-brain barrier and P-glycoprotein function in mice. Eur J Pharmacol 445(1–2):115–123

    Article  CAS  PubMed  Google Scholar 

  156. Hartz AM, Bauer B, Block ML, Hong JS, Miller DS (2008) Diesel exhaust particles induce oxidative stress, proinflammatory signaling, and P-glycoprotein up-regulation at the blood-brain barrier. FASEB J 22(8):2723–2733

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Seelbach MJ, Brooks TA, Egleton RD, Davis TP (2007) Peripheral inflammatory hyperalgesia modulates morphine delivery to the brain: a role for P-glycoprotein. J Neurochem 102(5):1677–1690

    Article  CAS  PubMed  Google Scholar 

  158. McCaffrey G, Staatz WD, Sanchez-Covarrubias L, Finch JD, Demarco K, Laracuente ML, Ronaldson PT, Davis TP (2012) P-glycoprotein trafficking at the blood-brain barrier altered by peripheral inflammatory hyperalgesia. J Neurochem 122(5):962–975. https://doi.org/10.1111/j.1471-4159.2012.07831.x

    Article  CAS  PubMed  Google Scholar 

  159. Bauer B, Hartz AM, Fricker G, Miller DS (2005) Modulation of p-glycoprotein transport function at the blood-brain barrier. Exp Biol Med (Maywood, NJ) 230(2):118–127

    Article  CAS  Google Scholar 

  160. Hartz AM, Bauer B, Fricker G, Miller DS (2004) Rapid regulation of P-glycoprotein at the blood-brain barrier by endothelin-1. Mol Pharmacol 66(3):387–394

    Article  CAS  PubMed  Google Scholar 

  161. Poller B, Drewe J, Krahenbuhl S, Huwyler J, Gutmann H (2010) Regulation of BCRP (ABCG2) and P-glycoprotein (ABCB1) by cytokines in a model of the human blood-brain barrier. Cell Mol Neurobiol 30(1):63–70. https://doi.org/10.1007/s10571-009-9431-1

    Article  CAS  PubMed  Google Scholar 

  162. Ronaldson PT, Ashraf T, Bendayan R (2010) Regulation of multidrug resistance protein 1 by tumor necrosis factor alpha in cultured glial cells: involvement of nuclear factor-kappaB and c-Jun N-terminal kinase signaling pathways. Mol Pharmacol 77(4):644–659. https://doi.org/10.1124/mol.109.059410. mol.109.059410 [pii]

    Article  CAS  PubMed  Google Scholar 

  163. Ronaldson PT, Bendayan R (2006) HIV-1 viral envelope glycoprotein gp120 triggers an inflammatory response in cultured rat astrocytes and regulates the functional expression of P-glycoprotein. Mol Pharmacol 70(3):1087–1098

    Article  CAS  PubMed  Google Scholar 

  164. Lazarowski A, Czornyj L, Lubienieki F, Girardi E, Vazquez S, D’Giano C (2007) ABC transporters during epilepsy and mechanisms underlying multidrug resistance in refractory epilepsy. Epilepsia 48(Suppl 5):140–149

    Article  CAS  PubMed  Google Scholar 

  165. Spudich A, Kilic E, Xing H, Kilic U, Rentsch KM, Wunderli-Allenspach H, Bassetti CL, Hermann DM (2006) Inhibition of multidrug resistance transporter-1 facilitates neuroprotective therapies after focal cerebral ischemia. Nat Neurosci 9(4):487–488

    Article  CAS  PubMed  Google Scholar 

  166. Jin L, Li J, Nation RL, Nicolazzo JA (2011) Impact of p-glycoprotein inhibition and lipopolysaccharide administration on blood-brain barrier transport of colistin in mice. Antimicrob Agents Chemother 55(2):502–507. https://doi.org/10.1128/AAC.01273-10

    Article  CAS  PubMed  Google Scholar 

  167. Daniels BP, Holman DW, Cruz-Orengo L, Jujjavarapu H, Durrant DM, Klein RS (2014) Viral pathogen-associated molecular patterns regulate blood-brain barrier integrity via competing innate cytokine signals. MBio 5(5):e01476–e01414. https://doi.org/10.1128/mBio.01476-14

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  168. Wong D, Dorovini-Zis K, Vincent SR (2004) Cytokines, nitric oxide, and cGMP modulate the permeability of an in vitro model of the human blood-brain barrier. Exp Neurol 190(2):446–455. https://doi.org/10.1016/j.expneurol.2004.08.008

    Article  CAS  PubMed  Google Scholar 

  169. Tsao N, Hsu HP, CM W, Liu CC, Lei HY (2001) Tumour necrosis factor-alpha causes an increase in blood-brain barrier permeability during sepsis. J Med Microbiol 50(9):812–821. https://doi.org/10.1099/0022-1317-50-9-812

    Article  CAS  PubMed  Google Scholar 

  170. Vahakangas K, Myllynen P (2009) Drug transporters in the human blood-placental barrier. Br J Pharmacol 158(3):665–678. https://doi.org/10.1111/j.1476-5381.2009.00336.x. BPH336 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  171. Evseenko DA, Paxton JW, Keelan JA (2006) ABC drug transporter expression and functional activity in trophoblast-like cell lines and differentiating primary trophoblast. Am J Physiol Regul Integr Comp Physiol 290(5):R1357–R1365. https://doi.org/10.1152/ajpregu.00630.2005. 00630.2005 [pii]

    Article  CAS  PubMed  Google Scholar 

  172. Jonker JW, Smit JW, Brinkhuis RF, Maliepaard M, Beijnen JH, Schellens JH, Schinkel AH (2000) Role of breast cancer resistance protein in the bioavailability and fetal penetration of topotecan. J Natl Cancer Inst 92(20):1651–1656

    Article  CAS  PubMed  Google Scholar 

  173. Lankas GR, Wise LD, Cartwright ME, Pippert T, Umbenhauer DR (1998) Placental P-glycoprotein deficiency enhances susceptibility to chemically induced birth defects in mice. Reprod Toxicol 12(4):457–463. doi:S0890623898000276 [pii]

    Article  CAS  PubMed  Google Scholar 

  174. Evseenko DA, Paxton JW, Keelan JA (2007) Independent regulation of apical and basolateral drug transporter expression and function in placental trophoblasts by cytokines, steroids, and growth factors. Drug Metab Dispos 35(4):595–601. https://doi.org/10.1124/dmd.106.011478. dmd.106.011478 [pii]

    Article  CAS  PubMed  Google Scholar 

  175. Smit JW, Huisman MT, van Tellingen O, Wiltshire HR, Schinkel AH (1999) Absence or pharmacological blocking of placental P-glycoprotein profoundly increases fetal drug exposure. J Clin Invest 104(10):1441–1447. https://doi.org/10.1172/JCI7963

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  176. Zhou L, Naraharisetti SB, Wang H, Unadkat JD, Hebert MF, Mao Q (2008) The breast cancer resistance protein (Bcrp1/Abcg2) limits fetal distribution of glyburide in the pregnant mouse: an Obstetric-Fetal Pharmacology Research Unit Network and University of Washington Specialized Center of Research Study. Mol Pharmacol 73(3):949–959. https://doi.org/10.1124/mol.107.041616. mol.107.041616 [pii]

    Article  CAS  PubMed  Google Scholar 

  177. Molsa M, Heikkinen T, Hakkola J, Hakala K, Wallerman O, Wadelius M, Wadelius C, Laine K (2005) Functional role of P-glycoprotein in the human blood-placental barrier. Clin Pharmacol Ther 78(2):123–131. https://doi.org/10.1016/j.clpt.2005.04.014. S0009-9236(05)00188-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  178. Sudhakaran S, Rayner CR, Li J, Kong DC, Gude NM, Nation RL (2008) Inhibition of placental P-glycoprotein: impact on indinavir transfer to the foetus. Br J Clin Pharmacol 65(5):667–673. https://doi.org/10.1111/j.1365-2125.2007.03067.x. BCP3067 [pii]

    Article  CAS  PubMed  Google Scholar 

  179. Hemauer SJ, Patrikeeva SL, Nanovskaya TN, Hankins GD, Ahmed MS (2010) Role of human placental apical membrane transporters in the efflux of glyburide, rosiglitazone, and metformin. Am J Obstet Gynecol 202(4):383 e381–383 e387. https://doi.org/10.1016/j.ajog.2010.01.035. S0002-9378(10)00065-7 [pii]

    Article  CAS  Google Scholar 

  180. Pollex E, Lubetsky A, Koren G (2008) The role of placental breast cancer resistance protein in the efflux of glyburide across the human placenta. Placenta 29(8):743–747. https://doi.org/10.1016/j.placenta.2008.05.001. S0143-4004(08)00148-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  181. Lye P, Bloise E, Javam M, Gibb W, Lye SJ, Matthews SG (2015) Impact of bacterial and viral challenge on multidrug resistance in first- and third-trimester human placenta. Am J Pathol 185(6):1666–1675. https://doi.org/10.1016/j.ajpath.2015.02.013

    Article  CAS  PubMed  Google Scholar 

  182. Hamai Y, Fujii T, Yamashita T, Nishina H, Kozuma S, Mikami Y, Taketani Y (1997) Evidence for an elevation in serum interleukin-2 and tumor necrosis factor-alpha levels before the clinical manifestations of preeclampsia. Am J Reprod Immunol 38(2):89–93

    Article  CAS  PubMed  Google Scholar 

  183. Saji F, Samejima Y, Kamiura S, Sawai K, Shimoya K, Kimura T (2000) Cytokine production in chorioamnionitis. J Reprod Immunol 47(2):185–196. doi:S0165-0378(00)00064-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  184. Steinborn A, Niederhut A, Solbach C, Hildenbrand R, Sohn C, Kaufmann M (1999) Cytokine release from placental endothelial cells, a process associated with preterm labour in the absence of intrauterine infection. Cytokine 11(1):66–73. https://doi.org/10.1006/cyto.1998.0399. S1043-4666(98)90399-4 [pii]

    Article  CAS  PubMed  Google Scholar 

  185. Chen YH, Wang JP, Wang H, Sun MF, Wei LZ, Wei W, DX X (2005) Lipopolysaccharide treatment downregulates the expression of the pregnane X receptor, cyp3a11 and mdr1a genes in mouse placenta. Toxicology 211(3):242–252. https://doi.org/10.1016/j.tox.2005.03.011. S0300-483X(05)00168-X [pii]

    Article  CAS  PubMed  Google Scholar 

  186. Petrovic V, Wang JH, Piquette-Miller M (2008) Effect of endotoxin on the expression of placental drug transporters and glyburide disposition in pregnant rats. Drug Metab Dispos 36(9):1944–1950. https://doi.org/10.1124/dmd.107.019851. dmd.107.019851 [pii]

    Article  CAS  PubMed  Google Scholar 

  187. Gedeon C, Behravan J, Koren G, Piquette-Miller M (2006) Transport of glyburide by placental ABC transporters: implications in fetal drug exposure. Placenta 27(11–12):1096–1102. https://doi.org/10.1016/j.placenta.2005.11.012. S0143-4004(05)00312-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  188. Mason CW, Buhimschi IA, Buhimschi CS, Dong Y, Weiner CP, Swaan PW (2011) ATP-binding cassette transporter expression in human placenta as a function of pregnancy condition. Drug Metab Dispos 39(6):1000–1007. https://doi.org/10.1124/dmd.111.038166

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  189. Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454(7203):436–444. https://doi.org/10.1038/nature07205. nature07205 [pii]

    Article  CAS  PubMed  Google Scholar 

  190. Conze D, Weiss L, Regen PS, Bhushan A, Weaver D, Johnson P, Rincon M (2001) Autocrine production of interleukin 6 causes multidrug resistance in breast cancer cells. Cancer Res 61(24):8851–8858

    CAS  PubMed  Google Scholar 

  191. Wang Y, Niu XL, Qu Y, Wu J, Zhu YQ, Sun WJ, Li LZ (2010) Autocrine production of interleukin-6 confers cisplatin and paclitaxel resistance in ovarian cancer cells. Cancer Lett 295(1):110–123. https://doi.org/10.1016/j.canlet.2010.02.019. S0304-3835(10)00120-5 [pii]

    Article  CAS  PubMed  Google Scholar 

  192. Kacevska M, Robertson GR, Clarke SJ, Liddle C (2008) Inflammation and CYP3A4-mediated drug metabolism in advanced cancer: impact and implications for chemotherapeutic drug dosing. Expert Opin Drug Metab Toxicol 4(2):137–149. https://doi.org/10.1517/17425255.4.2.137

    Article  CAS  PubMed  Google Scholar 

  193. Gottesman MM, Fojo T, Bates SE (2002) Multidrug resistance in cancer: role of ATP-dependent transporters. Nat Rev Cancer 2(1):48–58

    Article  CAS  PubMed  Google Scholar 

  194. Chen Z, Shi T, Zhang L, Zhu P, Deng M, Huang C, Hu T, Jiang L, Li J (2016) Mammalian drug efflux transporters of the ATP binding cassette (ABC) family in multidrug resistance: a review of the past decade. Cancer Lett 370(1):153–164. https://doi.org/10.1016/j.canlet.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  195. Longley DB, Johnston PG (2005) Molecular mechanisms of drug resistance. J Pathol 205(2):275–292

    Article  CAS  PubMed  Google Scholar 

  196. Szakacs G, Paterson JK, Ludwig JA, Booth-Genthe C, Gottesman MM (2006) Targeting multidrug resistance in cancer. Nat Rev 5(3):219–234

    CAS  Google Scholar 

  197. Duan Z, Lamendola DE, Penson RT, Kronish KM, Seiden MV (2002) Overexpression of IL-6 but not IL-8 increases paclitaxel resistance of U-2OS human osteosarcoma cells. Cytokine 17(5):234–242. https://doi.org/10.1006/cyto.2001.1008. S1043466601910087 [pii]

    Article  CAS  PubMed  Google Scholar 

  198. Mosaffa F, Lage H, Afshari JT, Behravan J (2009) Interleukin-1 beta and tumor necrosis factor-alpha increase ABCG2 expression in MCF-7 breast carcinoma cell line and its mitoxantrone-resistant derivative, MCF-7/MX. Inflamm Res 58(10):669–676. https://doi.org/10.1007/s00011-009-0034-6

    Article  CAS  PubMed  Google Scholar 

  199. Mosaffa F, Kalalinia F, Lage H, Afshari JT, Behravan J (2012) Pro-inflammatory cytokines interleukin-1 beta, interleukin 6, and tumor necrosis factor-alpha alter the expression and function of ABCG2 in cervix and gastric cancer cells. Mol Cell Biochem 363(1–2):385–393. https://doi.org/10.1007/s11010-011-1191-9

    Article  CAS  PubMed  Google Scholar 

  200. Charles KA, Rivory LP, Brown SL, Liddle C, Clarke SJ, Robertson GR (2006) Transcriptional repression of hepatic cytochrome P450 3A4 gene in the presence of cancer. Clin Cancer Res 12(24):7492–7497. https://doi.org/10.1158/1078-0432.CCR-06-0023. 12/24/7492 [pii]

    Article  CAS  PubMed  Google Scholar 

  201. Helsby NA, Lo WY, Sharples K, Riley G, Murray M, Spells K, Dzhelai M, Simpson A, Findlay M (2008) CYP2C19 pharmacogenetics in advanced cancer: compromised function independent of genotype. Br J Cancer 99(8):1251–1255. https://doi.org/10.1038/sj.bjc.6604699. 6604699 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  202. Okuno H, Kitao Y, Takasu M, Kano H, Kunieda K, Seki T, Shiozaki Y, Sameshima Y (1990) Depression of drug metabolizing activity in the human liver by interferon-alpha. Eur J Clin Pharmacol 39(4):365–367

    Article  CAS  PubMed  Google Scholar 

  203. Williams SJ, Farrell GC (1986) Inhibition of antipyrine metabolism by interferon. Br J Clin Pharmacol 22(5):610–612

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  204. Pageaux GP, le Bricquir Y, Berthou F, Bressot N, Picot MC, Blanc F, Michel H, Larrey D (1998) Effects of interferon-alpha on cytochrome P-450 isoforms 1A2 and 3A activities in patients with chronic hepatitis C. Eur J Gastroenterol Hepatol 10(6):491–495

    Article  CAS  PubMed  Google Scholar 

  205. Becquemont L, Chazouilleres O, Serfaty L, Poirier JM, Broly F, Jaillon P, Poupon R, Funck-Brentano C (2002) Effect of interferon alpha-ribavirin bitherapy on cytochrome P450 1A2 and 2D6 and N-acetyltransferase-2 activities in patients with chronic active hepatitis C. Clin Pharmacol Ther 71(6):488–495. https://doi.org/10.1067/mcp.2002.124468. S0009923602000097 [pii]

    Article  CAS  PubMed  Google Scholar 

  206. Islam M, Frye RF, Richards TJ, Sbeitan I, Donnelly SS, Glue P, Agarwala SS, Kirkwood JM (2002) Differential effect of IFNalpha-2b on the cytochrome P450 enzyme system: a potential basis of IFN toxicity and its modulation by other drugs. Clin Cancer Res 8(8):2480–2487

    CAS  PubMed  Google Scholar 

  207. Ghany MG, Strader DB, Thomas DL, Seeff LB, American Association for the Study of Liver D (2009) Diagnosis, management, and treatment of hepatitis C: an update. Hepatology 49(4):1335–1374. https://doi.org/10.1002/hep.22759

    Article  CAS  PubMed  Google Scholar 

  208. Brennan BJ, ZX X, Grippo JF (2013) Effect of peginterferon alfa-2a (40KD) on cytochrome P450 isoenzyme activity. Br J Clin Pharmacol 75(2):497–506. https://doi.org/10.1111/j.1365-2125.2012.04373.x

    Article  CAS  PubMed  Google Scholar 

  209. Gupta SK, Kolz K, Cutler DL (2011) Effects of multiple-dose pegylated interferon alfa-2b on the activity of drug-metabolizing enzymes in persons with chronic hepatitis C. Eur J Clin Pharmacol 67(6):591–599. https://doi.org/10.1007/s00228-010-0972-5

    Article  CAS  PubMed  Google Scholar 

  210. Scavone C, Sportiello L, Rafaniello C, Mascolo A, Sessa M, Rossi F, Capuano A (2016) New era in treatment options of chronic hepatitis C: focus on safety of new direct-acting antivirals (DAAs). Expert Opin Drug Saf 15(sup2):85–100. https://doi.org/10.1080/14740338.2016.1221396

    Article  CAS  PubMed  Google Scholar 

  211. AASLD-IDSA (2017) Recommendations for testing, managing and treating hepatitis C. http://www.hcvguidelines.org. Accessed 2 Feb 2017

  212. Myers RP, Shah H, Burak KW, Cooper C, Feld JJ (2015) An update on the management of chronic hepatitis C: 2015 Consensus guidelines from the Canadian Association for the Study of the Liver. Can J Gastroenterol Hepatol 29(1):19–34

    Article  PubMed Central  PubMed  Google Scholar 

  213. Burgess S, Partovi N, Yoshida EM, Erb SR, Azalgara VM, Hussaini T (2015) Drug interactions with direct-acting antivirals for hepatitis C: implications for HIV and transplant patients. Ann Pharmacother 49(6):674–687. https://doi.org/10.1177/1060028015576180

    Article  CAS  PubMed  Google Scholar 

  214. Micromedex® 2.0 (electronic version). Truven Health Analytics, Greenwood Village. http://www.micromedexsolutions.com/. Accessed 2 Feb 2017

  215. Reesink HW, Fanning GC, Farha KA, Weegink C, Van Vliet A, Van ‘t Klooster G, Lenz O, Aharchi F, Marien K, Van Remoortere P, de Kock H, Broeckaert F, Meyvisch P, Van Beirendonck E, Simmen K, Verloes R (2010) Rapid HCV-RNA decline with once daily TMC435: a phase I study in healthy volunteers and hepatitis C patients. Gastroenterology 138(3):913–921. https://doi.org/10.1053/j.gastro.2009.10.033

    Article  CAS  PubMed  Google Scholar 

  216. Kumar D (2010) Emerging viruses in transplantation. Curr Opin Infect Dis 23(4):374–378. https://doi.org/10.1097/QCO.0b013e32833bc19d. 00001432-201008000-00013 [pii]

    Article  PubMed  Google Scholar 

  217. Sayegh MH, Carpenter CB (2004) Transplantation 50 years later--progress, challenges, and promises. N Engl J Med 351(26):2761–2766. https://doi.org/10.1056/NEJMon043418. 351/26/2761 [pii]

    Article  CAS  PubMed  Google Scholar 

  218. Dharnidharka VR, Stablein DM, Harmon WE (2004) Post-transplant infections now exceed acute rejection as cause for hospitalization: a report of the NAPRTCS. Am J Transplant 4(3):384–389

    Article  PubMed  Google Scholar 

  219. Monforte V, Bullich S, Pou L, Bravo C, Lopez R, Gavalda J, Roman A (2003) Blood cyclosporine C0 and C2 concentrations and cytomegalovirus infections following lung transplantation. Transplant Proc 35(5):1992–1993. doi:S0041134503006894 [pii]

    Article  CAS  PubMed  Google Scholar 

  220. Kuypers DR, Claes K, Evenepoel P, Maes B, Vanrenterghem Y (2004) Clinical efficacy and toxicity profile of tacrolimus and mycophenolic acid in relation to combined long-term pharmacokinetics in de novo renal allograft recipients. Clin Pharmacol Ther 75(5):434–447. https://doi.org/10.1016/j.clpt.2003.12.009. S0009923603007707 [pii]

    Article  CAS  PubMed  Google Scholar 

  221. Latorre A, Morales E, Gonzalez E, Herrero JC, Ortiz M, Sierra P, Dominguez-Gil B, Torres A, Munoz MA, Andres A, Manzanares C, Morales JM (2002) Clinical management of renal transplant patients with hepatitis C virus infection treated with cyclosporine or tacrolimus. Transplant Proc 34(1):63–64. doi:S0041134501026781 [pii]

    Article  CAS  PubMed  Google Scholar 

  222. Mignogna MD, Fedele S, Lo Russo L, Bonadies G, Nappa S, Lo Muzio L (2005) Acute cyclosporine nephrotoxicity in a patient with oral pemphigus vulgaris and HIV infection on antiretroviral therapy. J Am Acad Dermatol 53(6):1089–1090. https://doi.org/10.1016/j.jaad.2005.07.054. S0190-9622(05)02326-1 [pii]

    Article  PubMed  Google Scholar 

  223. Vercauteren SB, Bosmans JL, Elseviers MM, Verpooten GA, De Broe ME (1998) A meta-analysis and morphological review of cyclosporine-induced nephrotoxicity in auto-immune diseases. Kidney Int 54(2):536–545. https://doi.org/10.1046/j.1523-1755.1998.00017.x

    Article  CAS  PubMed  Google Scholar 

  224. Strehlau J, Pape L, Offner G, Nashan B, Ehrich JH (2000) Interleukin-2 receptor antibody-induced alterations of ciclosporin dose requirements in paediatric transplant recipients. Lancet 356(9238):1327–1328

    Article  CAS  PubMed  Google Scholar 

  225. Elkahwaji J, Robin MA, Berson A, Tinel M, Letteron P, Labbe G, Beaune P, Elias D, Rougier P, Escudier B, Duvillard P, Pessayre D (1999) Decrease in hepatic cytochrome P450 after interleukin-2 immunotherapy. Biochem Pharmacol 57(8):951–954

    Article  CAS  PubMed  Google Scholar 

  226. Kuek A, Hazleman BL, Ostor AJ (2007) Immune-mediated inflammatory diseases (IMIDs) and biologic therapy: a medical revolution. Postgrad Med J 83(978):251–260. https://doi.org/10.1136/pgmj.2006.052688. 83/978/251 [pii]

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  227. Keizer RJ, Huitema AD, Schellens JH, Beijnen JH (2010) Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 49(8):493–507. https://doi.org/10.2165/11531280-000000000-00000

    Article  CAS  PubMed  Google Scholar 

  228. Reichert JM (2016) Antibodies to watch in 2016. MAbs 8(2):197–204. https://doi.org/10.1080/19420862.2015.1125583

    Article  CAS  PubMed  Google Scholar 

  229. Morgan ET (2009) Impact of infectious and inflammatory disease on cytochrome P450-mediated drug metabolism and pharmacokinetics. Clin Pharmacol Ther 85(4):434–438. https://doi.org/10.1038/clpt.2008.302. clpt2008302 [pii]

    Article  CAS  PubMed  Google Scholar 

  230. Gupta R, JJ W, Levin E, Koo JY, Liao W (2013) Possible drug-drug interaction between adalimumab and duloxetine and/or pregabalin in a psoriasis patient. J Drugs Dermatol 12(10):1089

    PubMed  Google Scholar 

  231. Zhou H, Parks V, Patat A, Le Coz F, Simcoe D, Korth-Bradley J (2004) Absence of a clinically relevant interaction between etanercept and digoxin. J Clin Pharmacol 44(11):1244–1251. https://doi.org/10.1177/0091270004268050. 44/11/1244 [pii]

    Article  CAS  PubMed  Google Scholar 

  232. Zhou H, Patat A, Parks V, Buckwalter M, Metzger D, Korth-Bradley J (2004) Absence of a pharmacokinetic interaction between etanercept and warfarin. J Clin Pharmacol 44(5):543–550. https://doi.org/10.1177/0091270004264164. 44/5/543 [pii]

    Article  CAS  PubMed  Google Scholar 

  233. Lee EB, Daskalakis N, Xu C, Paccaly A, Miller B, Fleischmann R, Bodrug I, Kivitz A (2016) Disease-drug interaction of sarilumab and simvastatin in patients with rheumatoid arthritis. Clin Pharmacokinet. https://doi.org/10.1007/s40262-016-0462-8

  234. Zhuang Y, de Vries DE, Xu Z, Marciniak SJ Jr, Chen D, Leon F, Davis HM, Zhou H (2015) Evaluation of disease-mediated therapeutic protein-drug interactions between an anti-interleukin-6 monoclonal antibody (sirukumab) and cytochrome P450 activities in a phase 1 study in patients with rheumatoid arthritis using a cocktail approach. J Clin Pharmacol 55(12):1386–1394. https://doi.org/10.1002/jcph.561

    Article  CAS  PubMed  Google Scholar 

  235. Tran JQ, Othman AA, Wolstencroft P, Elkins J (2016) Therapeutic protein-drug interaction assessment for daclizumab high-yield process in patients with multiple sclerosis using a cocktail approach. Br J Clin Pharmacol 82(1):160–167. https://doi.org/10.1111/bcp.12936

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  236. Enioutina EY, Bareyan D, Daynes RA (2009) TLR-induced local metabolism of vitamin D3 plays an important role in the diversification of adaptive immune responses. J Immunol 182(7):4296–4305

    Article  CAS  PubMed  Google Scholar 

  237. Pellegrino P, Perrotta C, Clementi E, Radice S (2015) Vaccine-drug interactions: cytokines, cytochromes, and molecular mechanisms. Drug Saf 38(9):781–787. https://doi.org/10.1007/s40264-015-0330-8

    Article  CAS  PubMed  Google Scholar 

  238. Kuo AM, Brown JN, Clinard V (2012) Effect of influenza vaccination on international normalized ratio during chronic warfarin therapy. J Clin Pharm Ther 37(5):505–509. https://doi.org/10.1111/j.1365-2710.2012.01341.x

    Article  CAS  PubMed  Google Scholar 

  239. Raaska K, Neuvonen PJ (2014) Infections and possible vaccine-drug interactions. Eur J Clin Pharmacol 70(7):889–890. https://doi.org/10.1007/s00228-014-1688-8

    Article  PubMed  Google Scholar 

  240. Scavone JM, Blyden GT, Greenblatt DJ (1989) Lack of effect of influenza vaccine on the pharmacokinetics of antipyrine, alprazolam, paracetamol (acetaminophen) and lorazepam. Clin Pharmacokinet 16(3):180–185. https://doi.org/10.2165/00003088-198916030-00004

    Article  CAS  PubMed  Google Scholar 

  241. Pasanen M, Rannala Z, Tooming A, Sotaniemi EA, Pelkonen O, Rautio A (1997) Hepatitis A impairs the function of human hepatic CYP2A6 in vivo. Toxicology 123(3):177–184. doi:S0300483X97001194 [pii]

    Article  CAS  PubMed  Google Scholar 

  242. Anolik R, Kolski GB, Schaible DH, Ratner J (1982) Transient alteration of theophylline half-life: possible association with Herpes simplex infection. Ann Allergy 49(2):109–111

    CAS  PubMed  Google Scholar 

  243. Trenholme GM, Williams RL, Rieckmann KH, Frischer H, Carson PE (1976) Quinine disposition during malaria and during induced fever. Clin Pharmacol Ther 19(4):459–467

    Article  CAS  PubMed  Google Scholar 

  244. Masimirembwa CM, Beke M, Hasler JA, Tang BK, Kalow W (1995) Low CYP1A2 activity in rural Shona children of Zimbabwe. Clin Pharmacol Ther 57(1):25–31. https://doi.org/10.1016/0009-9236(95)90262-7. 0009-9236(95)90262-7 [pii]

    Article  CAS  PubMed  Google Scholar 

  245. Satarug S, Lang MA, Yongvanit P, Sithithaworn P, Mairiang E, Mairiang P, Pelkonen P, Bartsch H, Haswell-Elkins MR (1996) Induction of cytochrome P450 2A6 expression in humans by the carcinogenic parasite infection, opisthorchiasis viverrini. Cancer Epidemiol Biomark Prev 5(10):795–800

    CAS  Google Scholar 

  246. Shedlofsky SI, Israel BC, McClain CJ, Hill DB, Blouin RA (1994) Endotoxin administration to humans inhibits hepatic cytochrome P450-mediated drug metabolism. J Clin Invest 94(6):2209–2214. https://doi.org/10.1172/JCI117582

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  247. Shedlofsky SI, Israel BC, Tosheva R, Blouin RA (1997) Endotoxin depresses hepatic cytochrome P450-mediated drug metabolism in women. Br J Clin Pharmacol 43(6):627–632

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  248. Haas CE, Kaufman DC, Jones CE, Burstein AH, Reiss W (2003) Cytochrome P450 3A4 activity after surgical stress. Crit Care Med 31(5):1338–1346. https://doi.org/10.1097/01.CCM.0000063040.24541.49

    Article  CAS  PubMed  Google Scholar 

  249. Carcillo JA, Doughty L, Kofos D, Frye RF, Kaplan SS, Sasser H, Burckart GJ (2003) Cytochrome P450 mediated-drug metabolism is reduced in children with sepsis-induced multiple organ failure. Intensive Care Med 29(6):980–984. https://doi.org/10.1007/s00134-003-1758-3

    Article  PubMed  Google Scholar 

  250. Novotny AR, Emmanuel K, Maier S, Westerholt A, Weighardt H, Stadler J, Bartels H, Schwaiger M, Siewert JR, Holzmann B, Heidecke CD (2007) Cytochrome P450 activity mirrors nitric oxide levels in postoperative sepsis: predictive indicators of lethal outcome. Surgery 141(3):376–384. https://doi.org/10.1016/j.surg.2006.08.011. S0039-6060(06)00568-X [pii]

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerry B. Goralski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Goralski, K.B., Ladda, M.A., McNeil, J.O. (2018). Drug-Cytokine Interactions. In: Pai, M., Kiser, J., Gubbins, P., Rodvold, K. (eds) Drug Interactions in Infectious Diseases: Mechanisms and Models of Drug Interactions. Infectious Disease. Humana Press, Cham. https://doi.org/10.1007/978-3-319-72422-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72422-5_5

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-72421-8

  • Online ISBN: 978-3-319-72422-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics