Skip to main content

Graphene-Like Massless Dirac Fermions in Harper Systems

  • Chapter
  • First Online:
Many-body Approaches at Different Scales
  • 831 Accesses

Abstract

It is shown that systems described by Harper’s equation exhibit a Dirac point at the center of the spectrum whenever the field parameter is a fraction of even denominator. The Dirac point is formed by the touching of two subbands at a single point in momentum space, and the physics around such point is characterized by the relative field only, as if the effective field were null at the reference value. Such behavior is consistent with the nesting property conjectured by Hofstadter, and its experimental verification would give support to such hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov, Nature 438, 197 (2005). https://doi.org/10.1038/nature04233

  2. J.W. McClure, Phys. Rev. 104(3), 666 (1956). https://doi.org/10.1103/PhysRev.104.666

  3. G. Li, E.Y. Andrei, Nat. Phys. 3(9), 623 (2007). https://doi.org/10.1038/nphys653

  4. J. Jain, Composite Fermions (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  5. P.G. Harper, Proc. Phys. Soc. A 68(10), 874 (1955). https://doi.org/10.1088/0370-1298/68/10/304

  6. D.J. Thouless, M. Kohmoto, M.P. Nightingale, M. den Nijs, Phys. Rev. Lett. 49, 405 (1982). https://doi.org/10.1103/PhysRevLett.49.405

  7. F. Claro, G. Huber, Phys. Today 57(3), 17 (2004). https://doi.org/10.1063/1.1712487

  8. B. Pannetier, J. Chaussy, R. Rammal, J.C. Villegier, Phys. Rev. Lett. 53, 1845 (1984). https://doi.org/10.1103/PhysRevLett.53.1845

  9. J.B. Sokoloff, Phys. Rep. 126(4), 189 (1985). https://doi.org/10.1016/0370-1573(85)90088-2

  10. R.R. Gerhardts, D. Weiss, U. Wulf, Phys. Rev. B 43, 5192 (1991). https://doi.org/10.1103/PhysRevB.43.5192

  11. M. Aidelsburger, M. Atala, M. Lohse, J.T. Barreiro, B. Paredes, I. Bloch, Phys. Rev. Lett. 111, 185301 (2013). https://doi.org/10.1103/PhysRevLett.111.185301

  12. P. Roushan, Bull. Am. Phys. Soc. 62(4), Y23.00001 (2017), (APS March Meeting 2017)

    Google Scholar 

  13. M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J.T. Barreiro, S. Nascimbene, N.R. Cooper, I. Bloch, N. Goldman, Nat. Phys. 11(2), 162 (2015), Letter. https://doi.org/10.1038/nphys3171

  14. D.R. Hofstadter, Phys. Rev. B 14, 2239 (1976). https://doi.org/10.1103/PhysRevB.14.2239

  15. D. Langbein, Phys. Rev. 180, 633 (1969). https://doi.org/10.1103/PhysRev.180.633

  16. F. Claro, G.H. Wannier, physica status solidi (b) 88(2), K147 (1978). https://doi.org/10.1002/pssb.2220880262

  17. Y. Hasegawa, P. Lederer, T.M. Rice, P.B. Wiegmann, Phys. Rev. Lett. 63, 907 (1989). https://doi.org/10.1103/PhysRevLett.63.907

  18. P. Delplace, G. Montambaux, Phys. Rev. B 82, 035438 (2010). https://doi.org/10.1103/PhysRevB.82.035438

  19. F.H. Claro, G.H. Wannier, Phys. Rev. B 19, 6068 (1979). https://doi.org/10.1103/PhysRevB.19.6068

  20. F. Claro, Physica Status Solidi (b) 97(1), 217 (1980). https://doi.org/10.1002/pssb.2220970124

  21. M. Taut, H. Eschrig, M. Richter, Phys. Rev. B 72, 165304 (2005). https://doi.org/10.1103/PhysRevB.72.165304

  22. G.H. Wannier, Physica Status Solidi (b) 100(1), 163 (1980). https://doi.org/10.1002/pssb.2221000116

  23. G.W. Semenoff, Phys. Rev. Lett. 53(26), 2449 (1984). https://doi.org/10.1103/PhysRevLett.53.2449

  24. I. Affleck, J.B. Marston, Phys. Rev. B 37(7), 3774(R) (1988). https://doi.org/10.1103/PhysRevB.37.3774

  25. G.H. Wannier, Physica Status Solidi (b) 88(2), 757 (1978). https://doi.org/10.1002/pssb.2220880243

  26. P. Streda, J. Phys. C 15(36), L1299 (1982). https://doi.org/10.1088/0022-3719/15/36/006

  27. Y. Zhang, Y. Tan, H.L. Stormer, P. Kim, Nature 438(7065), 201 (2005). https://doi.org/10.1038/nature04235

  28. T. Schlösser, K. Ensslin, J.P. Kotthaus, M. Holland, Europhys. Lett. 33(9), 683 (1996). https://doi.org/10.1209/epl/i1996-00399-6

  29. C. Albrecht, J.H. Smet, K. von Klitzing, D. Weiss, V. Umansky, H. Schweizer, Phys. Rev. Lett. 86, 147 (2001). https://doi.org/10.1103/PhysRevLett.86.147

  30. C.R. Dean, L. Wang, P. Maher, C. Forsythe, F. Ghahari, Y. Gao, J. Katoch, M. Ishigami, P. Moon, M. Koshino, T. Taniguchi, K. Watanabe, K.L. Shepard, J. Hone, P. Kim, Nature 497(7451), 598 (2013), Letter. https://doi.org/10.1038/nature12186

  31. B. Hunt, J.D. Sanchez-Yamagishi, A.F. Young, M. Yankowitz, B.J. LeRoy, K. Watanabe, T. Taniguchi, P. Moon, M. Koshino, P. Jarillo-Herrero, R.C. Ashoori, Science 340(6139), 1427 (2013). https://doi.org/10.1126/science.1237240

  32. F. Claro, Physica Status Solidi (b) 104(1), K31 (1981). https://doi.org/10.1002/pssb.2221040151

Download references

Acknowledgements

When one of us (FC) completed his PhD under Professor Gregory Wannier at the University of Oregon in 1972 and was planning to return to his home country, Chile, a well known physicist—actually, a Nobel Prize winner—remarked to him that if he wanted to build an academic career it was not sensible to try it in a country with no research tradition, nor established groups with appropriate funding and support as was the case of Chile then. Yet, at about the same time, a nuclear physicist of Hungarian origin, Michael Moravcsik, told him about the International Centre of Theoretical Physics (ICTP) in Trieste, Italy, precisely devoted to help young phycisists in developing countries building their scientific careers within their native community. Strongly commited to go back, he then returned to Chile, got in touch with the ICTP and travelled over the years to Italy several times to join the prestigious local Summer Workshop in Condensed Matter Physics. A most influential leader in this event was Professor Norman March, a well known scientist from England who spent every summer at the ICTP supporting the workshop organization and supervising research by attendants from all over the world, with exemplary devotion and commitement. He was widely respected by the community, and his constant availability, valuable counseling and advice helped making those events a remarkable opportunity for meeting first rate scientists, learning and doing quality research, to all attendants. It is then time to say, thank you Professor March.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Claro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Claro, F., Robles, P. (2018). Graphene-Like Massless Dirac Fermions in Harper Systems. In: Angilella, G., Amovilli, C. (eds) Many-body Approaches at Different Scales. Springer, Cham. https://doi.org/10.1007/978-3-319-72374-7_4

Download citation

Publish with us

Policies and ethics