Skip to main content

Disorders of Thyroid Hormone Transporters and Receptors

  • Chapter
  • First Online:
The Thyroid and Its Diseases

Abstract

Thyroid hormone transporters and receptors are crucial factors that determine the biological effects of thyroid hormone. This chapter deals with disorders that result from abnormal function of the thyroid hormone transporter MCT8 and of either the thyroid hormone receptor isoforms (resistance to thyroid hormone, RTH). The clinical and biochemical phenotypes, imaging modalities, underlying mechanisms, and treatment options are discussed for MCT8 deficiency, RTH-alpha, and RTH-beta.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grüters A, Krude H. Detection and treatment of congenital hypothyroidism. Nat Rev Endocrinol. 2012;8:104–13.

    Article  Google Scholar 

  2. Koulouri O, Moran C, Halsall D, et al. Pitfalls in the measurement and interpretation of thyroid function tests. Best Pract Res Clin Endocrinol Metab. 2013;27:745–62.

    Article  CAS  Google Scholar 

  3. Hennemann G, Docter R, Friesema EC, et al. Plasma membrane transport of thyroid hormones and its role in thyroid hormone metabolism and bioavailability. Endocr Rev. 2001;22:451–76.

    Article  CAS  Google Scholar 

  4. Visser WE, Friesema EC, Visser TJ. Minireview: thyroid hormone transporters: the knowns and the unknowns. Mol Endocrinol. 2011;25:1–14.

    Article  CAS  Google Scholar 

  5. Friesema EC, Ganguly S, Abdalla A, et al. Identification of monocarboxylate transporter 8 as a specific thyroid hormone transporter. J Biol Chem. 2003;278:40128–35.

    Article  CAS  Google Scholar 

  6. Friesema EC, Jansen J, Jachtenberg JW, et al. Effective cellular uptake and efflux of thyroid hormone by human monocarboxylate transporter 10. Mol Endocrinol. 2008;22:1357–69.

    Article  CAS  Google Scholar 

  7. Sugiyama D, Kusuhara H, Taniguchi H, et al. Functional characterization of rat brain-specific organic anion transporter (Oatp14) at the blood- brain barrier: high affinity transporter for thyroxine. J Biol Chem. 2003;278:43489–95.

    Article  CAS  Google Scholar 

  8. Gereben B, Zavacki AM, Ribich S, et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev. 2008;29:898–938.

    Article  CAS  Google Scholar 

  9. St Germain DL, Galton VA, Hernandez A. Minireview: defining the roles of the iodothyronine deiodinases: current concepts and challenges. Endocrinology. 2009;150:1097–107.

    Article  CAS  Google Scholar 

  10. Huang SA, Tu HM, Harney JW, et al. Severe hypothyroidism caused by type 3 iodothyronine deiodinase in infantile hemangiomas. N Engl J Med. 2000;343:185–9.

    Article  CAS  Google Scholar 

  11. Maynard MA, Marino-Enriquez A, Fletcher JA, et al. Thyroid hormone inactivation in gastrointestinal stromal tumors. N Engl J Med. 2014;370:1327–34.

    Article  CAS  Google Scholar 

  12. Cheng SY, Leonard JL, Davis PJ. Molecular aspects of thyroid hormones actions. Endocr Rev. 2010;31:139–70.

    Article  CAS  Google Scholar 

  13. Friesema EC, Grueters A, Biebermann H, et al. Association between mutations in a thyroid hormone transporter and severe X-linked psychomotor retardation. Lancet. 2004;364:1435–7.

    Article  CAS  Google Scholar 

  14. Dumitrescu AM, Liao XH, Best TB, et al. A novel syndrome combining thyroid and neurological abnormalities is associated with mutations in a monocarboxylate transporter gene. Am J Hum Genet. 2004;74:168–75.

    Article  CAS  Google Scholar 

  15. Visser WE, Vrijmoeth P, Visser FE, et al. Identification, functional analysis, prevalence and treatment of monocarboxylate transporter 8 (MCT8) mutations in a cohort of adult patients with mental retardation. Clin Endocrinol. 2013;78:310–5.

    Article  CAS  Google Scholar 

  16. Fu J, Dumitrescu AM. Inherited defects in thyroid hormone cell-membrane transport and metabolism. Best Pract Res Clin Endocrinol Metab. 2014;28:189–201.

    Article  CAS  Google Scholar 

  17. Matheus MG, Lehman RK, Bonilha L, et al. Redefining the pediatric phenotype of X-linked monocarboxylate transporter 8 (MCT8) deficiency: implications for diagnosis and therapies. J Child Neurol. 2015;30:1664–8.

    Article  Google Scholar 

  18. Schwartz CE, Stevenson RE. The MCT8 thyroid hormone transporter and Allan-Herndon-Dudley syndrome. Best Pract Res Clin Endocrinol Metab. 2007;21:307–21.

    Article  CAS  Google Scholar 

  19. Visser WE, Jansen J, Friesema EC, et al. Novel pathogenic mechanism suggested by ex vivo analysis of MCT8 (SLC16A2) mutations. Hum Mutat. 2009;30:29–38.

    Article  CAS  Google Scholar 

  20. Sijens PE, Rodiger LA, Meiners LC, et al. 1H magnetic resonance spectroscopy in monocarboxylate transporter 8 gene deficiency. J Clin Endocrinol Metab. 2008;93:1854–9.

    Article  CAS  Google Scholar 

  21. Friesema EC, Jansen J, Heuer H, et al. Mechanisms of disease: psychomotor retardation and high T3 levels caused by mutations in monocarboxylate transporter 8. Nat Clin Pract Endocrinol Metab. 2006;2:512–23.

    Article  CAS  Google Scholar 

  22. Frints GM, Lenzner S, Bauters M, et al. MCT8 mutation analysis and identification of the first female with Allan–Herndon–Dudley syndrome due to loss of MCT8 expression. Eur J Hum Genet. 2008;16:1029–37.

    Article  CAS  Google Scholar 

  23. Trajkovic M, Visser TJ, Mittag J, Horn S, Lukas J, Darras VM, Raivich G, Bauer K, Heuer H. Abnormal thyroid hormone metabolism in mice lacking the monocarboxylate transporter 8. J Clin Invest. 2007;117:627–35.

    Article  CAS  Google Scholar 

  24. Ceballos A, Belinchon MM, Sanchez-Mendoza E, et al. Importance of monocarboxylate transporter 8 for the blood-brain barrier-dependent availability of 3,5,3′-triiodo-L-thyronine. Endocrinology. 2009;150:2491–6.

    Article  CAS  Google Scholar 

  25. Mayerl S, Müller J, Bauer R, et al. Transporters MCT8 and OATP1C1 maintain murine brain homeostasis. J Clin Invest. 2014;124:1987–99.

    Article  CAS  Google Scholar 

  26. López-Espíndola D, Morales-Bastos C, Grijota-Martínez C, et al. Mutations of the thyroid hormone transporter MCT8 cause prenatal brain damage and persistent hypomyelination. J Clin Endocrinol Metab. 2014;99:E2799–804.

    Article  Google Scholar 

  27. Liao XH, Di Cosmo C, Dumitrescu AM, et al. Distinct roles of deiodinases on the phenotype of Mct8 defect: a comparison of eight different mouse genotypes. Endocrinology. 2011;152:1180–91.

    Article  CAS  Google Scholar 

  28. Di Cosmo C, Liao XH, Dumitrescu AM, et al. Mice deficient in MCT8 reveal a mechanism regulating thyroid hormone secretion. J Clin Invest. 2010;120:3377–88.

    Article  Google Scholar 

  29. Trajkovic-Arsic M, Muller J, Darras VM, et al. Impact of monocarboxylate transporter-8 deficiency on the hypothalamus-pituitary-thyroid axis in mice. Endocrinology. 2010;151:5053–62.

    Article  CAS  Google Scholar 

  30. Trajkovic-Arsic M, Visser TJ, Darras VM, et al. Consequences of monocarboxylate transporter 8 deficiency for renal transport and metabolism of thyroid hormones in mice. Endocrinology. 2010;151:802–9.

    Article  CAS  Google Scholar 

  31. Wemeau JL, Pigeyre M, Proust-Lemoine E, et al. Beneficial effects of propylthiouracil plus L-thyroxine treatment in a patient with a mutation in MCT8. J Clin Endocrinol Metab. 2008;93:2084–8.

    Article  CAS  Google Scholar 

  32. Verge CF, Konrad D, Cohen M, et al. Diiodothyropropionic acid (DITPA) in the treatment of MCT8 deficiency. J Clin Endocrinol Metab. 2012;97:4515–23.

    Article  CAS  Google Scholar 

  33. Di Cosmo C, Liao XH, Dumitrescu AM, et al. A thyroid hormone analog with reduced dependence on the monocarboxylate transporter 8 for tissue transport. Endocrinology. 2009;150:4450–8.

    Article  Google Scholar 

  34. Kersseboom S, Horn S, Visser WE, et al. In vitro and mouse studies supporting therapeutic utility of triiodothyroacetic acid in MCT8 deficiency. Mol Endocrinol. 2014;28:1961–70.

    Article  Google Scholar 

  35. Refetoff S, DeWind LT, DeGroot LJ. Familial syndrome combining deaf-mutism, stuppled epiphyses, goiter and abnormally high PBI: possible target organ refractoriness to thyroid hormone. J Clin Endocrinol Metab. 1967;27:279–94.

    Article  CAS  Google Scholar 

  36. Dumitrescu AM, Refetoff S. The syndromes of reduced sensitivity to thyroid hormone. Biochim Biophys Acta. 2013;1830:3987–4003.

    Article  CAS  Google Scholar 

  37. Ferrara AM, Onigata K, Ercan O, et al. Homozygous thyroid hormone receptor β-gene mutations in resistance to thyroid hormone: three new cases and review of the literature. J Clin Endocrinol Metab. 2012;97:1328–36.

    Article  CAS  Google Scholar 

  38. Bassett JH, Williams GR. Role of thyroid hormones in skeletal development and bone maintenance. Endocr Rev. 2016;37:135–87.

    Article  CAS  Google Scholar 

  39. Refetoff S, Weiss RE, Usala SJ. The syndromes of resistance to thyroid hormone. Endocr Rev. 1993;14:348–99.

    CAS  PubMed  Google Scholar 

  40. Thompson CC, Weinberger C, Lebo R, et al. Identification of a novel thyroid hormone receptor expressed in the mammalian central nervous system. Science. 1987;237:1610–4.

    Article  CAS  Google Scholar 

  41. Kaneshige M, Suzuki H, Kaneshige K, et al. A targeted dominant negative mutation of the thyroid hormone alpha 1 receptor causes increased mortality, infertility, and dwarfism in mice. Proc Natl Acad Sci U S A. 2001;98:15095–100.

    Article  CAS  Google Scholar 

  42. Liu YY, Tachiki KH, Brent GA. A targeted thyroid hormone receptor alpha gene dominant-negative mutation (P398H) selectively impairs gene expression in differentiated embryonic stem cells. Endocrinology. 2002;143:2664–72.

    Article  CAS  Google Scholar 

  43. Tinnikov A, Nordström K, Thorén P, et al. Retardation of post-natal development caused by a negatively acting thyroid hormone receptor alpha1. EMBO J. 2002;21:5079–87.

    Article  CAS  Google Scholar 

  44. Bochukova E, Schoenmakers N, Agostini M, et al. A mutation in the thyroid hormone receptor alpha gene. N Engl J Med. 2012;366:243–9.

    Article  CAS  Google Scholar 

  45. Van Mullem A, van Heerebeek R, Chrysis D, et al. Clinical phenotype and mutant TRalpha1. N Engl J Med. 2012;366:1451–3.

    Article  Google Scholar 

  46. Moran C, Chatterjee K. Resistance to thyroid hormone due to defective thyroid receptor alpha. Best Pract Res Clin Endocrinol Metab. 2015;29:647–57.

    Article  CAS  Google Scholar 

  47. Demir K, van Gucht AL, Büyükinan M, et al. Diverse genotypes and phenotypes of three novel thyroid hormone receptor-α mutations. J Clin Endocrinol Metab. 2016;101:2945–54.

    Article  CAS  Google Scholar 

  48. Barca-Mayo O, Liao XH, Alonso M, et al. Thyroid hormone receptor α and regulation of type 3 deiodinase. Mol Endocrinol. 2011;25:575–83.

    Article  CAS  Google Scholar 

  49. Van Gucht AL, Meima ME, Zwaveling-Soonawala N. Resistance to thyroid hormone alpha in an 18-month-old girl: clinical, therapeutic, and molecular characteristics. Thyroid. 2016;26:338–46.

    Article  Google Scholar 

  50. Kim DW, Park JW, Willingham MC, et al. A histone deacetylase inhibitor improves hypothyroidism caused by a TRα1 mutant. Hum Mol Genet. 2014;23:2651–64.

    Article  CAS  Google Scholar 

  51. Dumitrescu AM, Liao XH, Abdullah MS, et al. Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat Genet. 2005;37:1247–52.

    Article  CAS  Google Scholar 

  52. Schoenmakers E, Agostini M, Mitchell C, et al. Mutations in the selenocysteine insertion sequence-binding protein 2 gene lead to a multisystem selenoprotein deficiency disorder in humans. J Clin Invest. 2010;120:4220–35.

    Article  CAS  Google Scholar 

  53. Schomburg L, Dumitrescu AM, Liao XH, et al. Selenium supplementation fails to correct the selenoprotein synthesis defect in subjects with SBP2 gene mutations. Thyroid. 2009;19:277–81.

    Article  CAS  Google Scholar 

  54. Saito Y, Shichiri M, Hamajima T, et al. Enhancement of lipid peroxidation and its amelioration by vitamin E in a subject with mutations in the SBP2 gene. J Lipid Res. 2015;56:2172–82.

    Article  CAS  Google Scholar 

  55. Schoenmakers E, Carlson B, Agostini M, et al. Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis. J Clin Invest. 2016;126:992–6.

    Article  Google Scholar 

  56. Anttonen A, Hilander T, Linnankivi T, et al. Selenoprotein biosynthesis defect causes progressive encephalopathy with elevated lactate. Neurology. 2015;85:1–10.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Edward Visser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Visser, W.E. (2019). Disorders of Thyroid Hormone Transporters and Receptors. In: Luster, M., Duntas, L., Wartofsky, L. (eds) The Thyroid and Its Diseases. Springer, Cham. https://doi.org/10.1007/978-3-319-72102-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-72102-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-72100-2

  • Online ISBN: 978-3-319-72102-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics