Skip to main content

Endocrine Causes of Implantation Failure

  • Chapter
  • First Online:
Book cover Recurrent Implantation Failure

Abstract

Achieving successful implantation requires a complex endocrine stimulus of the endometrium. A deep understanding of this highly coordinated process is required for clinicians and investigators attempting to optimize an individual patient’s likelihood of success. Our current level of knowledge is the result of many elegant studies to elucidate these mechanisms. However, our tools for assessing the proper functioning of the endometrium in relation to hormonal response are limited. Modern infertility therapies that rely on gonadotropin stimulation undoubtedly change the chronology and histology of endometrium response. However, many patients achieve success despite these alterations. Patients with recurrent implantation failure, however, may be more sensitive to forces which change the normal physiologic state. Thus, careful attention to these issues in these patients is paramount. This chapter attempts to lay the groundwork for a comprehensive understanding of normal endometrial response, assess current diagnostic options and their limitations, and describe how pathological processes can disrupt normal implantation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Treloar AE, Boynton RE, Begn BG, Brown BW. Variation of the human menstrual cycle through reproductive life. Int J Fertil. 1967;12:77–126.

    CAS  PubMed  Google Scholar 

  2. Rock J, Bartlett MK. Biopsy studies of human endometrium. JAMA. 1937;108(24):2022–8.

    Article  CAS  Google Scholar 

  3. Noyes RW, Hertig AT, Rock J. Dating the endometrial biopsy. Fertil Steril. 1950;1:3–25.

    Article  Google Scholar 

  4. Murray MJ, Meyer WR, Zaino RJ, Lessey BA, Novotny DB, Ireland K, Zeng D, Fritz MA. A critical analysis of the accuracy, reproducibility, and clinical utility of histologic endometrial dating in fertile women. Fertil Steril. 2004;81:1333–43.

    Article  PubMed  Google Scholar 

  5. Scott RT, Snyder RR, Strickland DM, Tyburski CC, Bagnall JA, Reed KR, Adair CA, Hensley SB. The effect of interobserver variation in dating endometrial histology of the diagnosis of luteal phase defects. Fertil Steril. 1988;50:888–92.

    Article  CAS  PubMed  Google Scholar 

  6. Smith S, Hosid S, Scott L. Endometrial biopsy dating. Interobserver variation and its impact on clinical practice. J Reprod Med. 1995;76:782–91.

    Google Scholar 

  7. Deglidisch L. Hormonal pathology of the endometrium. Mod Pathol. 2000;13:285–94.

    Article  Google Scholar 

  8. Coutifaris C, Myers ER, Guzick DS, Diamond MP, Carson SA, Legro RS, McGovern PG, Schlaff WD, Carr BR, Steinkampf MP, Silva S, Vogel DL, Leppert PC. Histological dating of timed endometrial biopsy tissue is not related to fertility status. Fertil Steril. 2004;82:1264–72.

    Article  PubMed  Google Scholar 

  9. Evans J, Hannan NJ, Edgell TA, Vollenhoven BJ, Lutjen PJ, Osianlis T, Salamonsen LA, Rombauts LJF, Hincks C, Rombauts LJ, Salamonsen LA. Fresh versus frozen embryo transfer: backing clinical decisions with scientific and clinical evidence. Hum Reprod Update. 2014;0:1–14.

    Google Scholar 

  10. Horcajadas JA, Riesewijk A, Polman J, van Os R, Pellicer A, Mosselman S, Simon C. Effect of controlled ovarian hyperstimulation in IVF on endometrial gene expression profiles. Mol Hum Reprod. 2005;11:195–205.

    Article  CAS  PubMed  Google Scholar 

  11. Van Vaerenbergh I, Van Lommel L, Ghislain V, In’t Veld P, Schuit F, Fatemi HM, Devroey P, Bourgain C. In GnRH antagonist/rec-FSH stimulated cycles, advanced endometrial maturation on the day of oocyte retrieval correlates with altered gene expression. Hum Reprod. 2009;24:1085–91.

    Article  PubMed  Google Scholar 

  12. Li R, Qiao J, Wang L, Li L, Zhen X, Liu P, Zheng X. MicroRNA array and microarray evaluation of endometrial receptivity in patients with high serum progesterone levels on the day of hCG administration. Reprod Biol Endocrinol. 2011;9:29.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Kolibianakis EM, Bourgain C, Papanikolaou EG, Camus M, Tournaye H, Van Steirteghem AC, Devroey P. Prolongation of follicular phase by delaying hCG administration results in higher incidence of endometrial advancement on the day of oocyte retrieval in GnRH antagonist cycles. Hum Reprod. 2005;20:2453–6.

    Article  CAS  PubMed  Google Scholar 

  14. Ubaldi F, Bourgain C, Tournaye H, Smitz J, Van Steirteghem A, Devroey P. Endometrial evaluation by aspiration biopsy on the day of oocyte retrieval in the embryo transfer cycles in patients with serum progesterone rise during the follicular phase. Fertil Steril. 1997;67:521–6.

    Article  CAS  PubMed  Google Scholar 

  15. Shapiro BS, Daneshmand ST, Garner FC, Aguirre M, Hudson C, Thomas S. Evidence of impaired endometrial receptivity after ovarian stimulation for in vitro fertilization: a prospective randomized trial comparing fresh and frozen-thawed embryo transfer in normal responders. Fertil Steril. 2011;96(2):344–8.

    Article  PubMed  Google Scholar 

  16. Yang S, Pang T, Li R, Yang R, Zhen X, Chen X, Wang H, Ma C, Liu P, Qiao J. The individualized choice of embryo transfer timing for patients with elevated serum progesterone level on the HCG day in IVF/ICSI cycles: a prospective randomized clinical study. Gynecol Endocrinol. 2015;31(5):355–8.

    Article  CAS  PubMed  Google Scholar 

  17. Marchini M, Fedele L, Bianchi S, Losa GA, Ghisletta M, Gandiani GB. Secretory changes in preovulatory during controlled ovarian hyperstimulation with buserelin acetate and human gonadotropins. Fertil Steril. 1991;55:717–21.

    Article  CAS  PubMed  Google Scholar 

  18. Ma WG, Song H, Das SK, Paria BC, Dey SK. Estrogen is a critical determinant that specifies the duration of the window of uterine receptivity for implantation. Proc Natl Acad Sci U S A. 2003;100:2963–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chen ZJ, Shi Y, Sun Y, Zhang B, Liang X, Cao Y, Yang J, Liu J, Wei D, Weng N, Tian L, Hao C, Yang D, Zhou F, Shi J, Xu Y, Li J, Yan J, Qin Y, Zhao H, Zhang H, Legro R. Fresh versus frozen embryos for infertility in the polycystic ovary syndrome. N Engl J Med. 2016;375:523–33.

    Article  PubMed  Google Scholar 

  20. Chen HC, Zhang X, Barnes R, Confino E, Milad M, Puscheck E, Kazer R. Relationship between peak serum estradiol levels and treatment outcome in in vitro fertilization cycles after embryo transfer on day 3 or day 5. Fertil Steril. 2003;80:75–9.

    Article  PubMed  Google Scholar 

  21. Levi AJ, Drews MR, Bergh PA, Miller BT, Scott RT Jr. Controlled ovarian hyperstimulation does not adversely affect endometrial receptivity in in vitro fertilization cycles. Fertil Steril. 2001;76(4):670.

    Article  CAS  PubMed  Google Scholar 

  22. Papageorgiou T, Guibert J, Goffinet F, Patrat C, Fulla Y, Janssens Y, Zorn AR. Percentile curves of serum estradiol levels during controlled ovarian stimulation in 905 cycles stimulated with recombinant FSH show that high estradiol is not detrimental to IVF outcome. Hum Reprod. 2001;17:2846–50.

    Article  Google Scholar 

  23. Hancke K, More S, Kreienberg R, Weiss JM. Patients undergoing frozen-thawed embryo transfer have similar live birth rates in spontaneous and artificial cycles. J Assist Reprod Genet. 2012;29:403–7.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Tomax C, Alsbjerg B, Martikainen H, Humaidan P. Pregnancy loss after frozen-embryo transfer – a comparison of three protocols. Fertil Steril. 2012;98:1165–9.

    Article  Google Scholar 

  25. Ghobara T, Vandekerckhove P. Cycle regimens for frozen-thawed embryo transfer. Cochrane Database Syst Rev. 2008;7:CD003414.

    Google Scholar 

  26. Groenewoud ER, Cantineau AEP, Kollen BJ, Mackon NS, Cohlen BJ. What is the optimal means of preparing the endometrium in frozen-thawed embryo transfer cycles? A systematic review and meta-analysis. Hum Reprod Update. 2013;19:458–70.

    Article  PubMed  Google Scholar 

  27. Cattoli M. A randomized prospective study on cryopreserved-thawed embryo transfer: natural versus hormone replacement cycles. Abstracts of the 10th Annual Meeting of the ESHRE Brussels 1994;356:139.

    Google Scholar 

  28. Mounce G, McVeigh E, Turner K, Child TJ. Randomized, controlled pilot trial of natural versus hormone replacement therapy cycles in frozen embryo replacement in vitro fertilization. Fertil Steril. 2015;104:915–20.

    Article  CAS  PubMed  Google Scholar 

  29. Greco E, Litwicka K, Arrivi C, Varrichio MT, Caragia A, Greco A, Minasi MG, Fiorentino G. The endometrial preparation for frozen thawed euploid blastocyst transfer: a prospective randomized trial comparing clinical results from natural modified cycle with exogenous hormone stimulation with GnRH agonist. J Assist Reprod Genet. 2016;33:873–84.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Baird DD, Weinberg CR, Wilcox AJ, McConnaughey DR, Musey PL, Collins DC. Hormonal profiles of natural conception cycles in ending in early, unrecognized pregnancy loss. New Engl J Med. 1999;340:1796–9. Nonsupplemented luteal phase characteristics after the administration of recombinant human chorionic gonadotropin, recombinant luteinizing hormone, or gonadotropin-releasing hormone (GnRH) agonist to induce final oocyte maturation in in vitro fertilization patients after ovarian stimulation with recombinant follicle-stimulating hormone and GnRH antagonist cotreatment. J Clin Endocrinol Metab. 2003;88(9):4186–92

    Article  PubMed  Google Scholar 

  31. Jones GES. Some newer aspects of management of infertility. JAMA. 1949;141:1123–9.

    Article  CAS  Google Scholar 

  32. Speroff L, Fritz MA. Clinical gynecologic endocrinology and infertility. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2014.

    Google Scholar 

  33. Filicori M, Butler JP, Crowley WF Jr. Neuroendocrine regulation of the corpus luteum in the human. Evidence for pulsatile progesterone secretion. J Clin Invest. 1984;73:1638–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Davis OK, Berkeley AS, Naus GJ, Cholst IN, Freedman KS. The incidence of luteal phase defect in normal, fertile women, determine by serial endometrial biopsies. Fertil Steril. 1989;51:582–56.

    Article  CAS  PubMed  Google Scholar 

  35. Usadi RS, Groll JM, Lessey BA, Lininger RA, Zaino RJ, Fritz MA. Endometrial development and function in experimentally induced luteal phase deficiency. J Clin Endocrinol Metab. 2008;93:4058–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mitwally MF, Diamond MP, Abuzeid M. Vaginal micronized progesterone versus intramuscular progesterone for luteal support in women undergoing in vitro fertilization-embryo transfer. Fertil Steril. 2010;93(20):554–69.

    Google Scholar 

  37. American Society for Reproductive Medicine Practice Committee. Current clinical irrelevance of luteal phase deficiency: a committee opinion. Fertil Steril. 2015;103:327–e32.

    Google Scholar 

  38. Pritts EA, Atwood AK. Luteal phase support in infertility treatment: a meta-analysis of the randomized trials. Hum Reprod. 2002;17:2287–99.

    Article  CAS  PubMed  Google Scholar 

  39. Beckers NG, Latteau P, Eijkemans MJ, Macklon NS, de Jong FH, Devroey P, Fauser BC. The early luteal phase administration of estrogen and progesterone does not induce premature luteolysis in normo-ovulatory women. Eur J Endocrinol. 2006;1559(2):355–63.

    Google Scholar 

  40. Daya S, Gunby J. Luteal phase support in assisted reproduction cycles. Cochrane Database Syst Rev. 2004;10:CD004830.

    Google Scholar 

  41. Aghajanova L, Stavreus-Evers A, Lindeberg M, Landgren BM, Skjoldebrand Sparre L, Hovatta O. Thyroid-stimulating hormone receptor and thyroid hormone-receptors are involved in human endometrial physiology. Fertil Steril. 2011;95:230–7.

    Article  CAS  PubMed  Google Scholar 

  42. Catalano RD, Critchley HO, Heikinheimo O, Baird DT, Hapangama D, Sherwin JRA, Charnock-Jones DS, Smith SK, Sharkey AM. Mifepristone induced progesterone withdrawal reveals novel regulatory pathways in the human endometrium. Mol Hum Reprod. 2007;13:641–54.

    Article  CAS  PubMed  Google Scholar 

  43. Colicchia M, Campagnolo L, Baldini E, Ulisse S, Valensise H, Moretti C. Molecular basis of thyrotropin and thyroid hormone action during implantation and early development. Hum Reprod Update. 2014;20(6):884–904.

    Article  CAS  PubMed  Google Scholar 

  44. Scoccia B, Demir H, Kang Y, Fierro MA, Winston NJ. In vitro fertilization pregnancy rates in levothyroxine-treated women with hypothyroidism compared to women without thyroid dysfunction disorders. Thyroid. 2012;22:631–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ashkar FA, Semple E, Schmidt CH, St John E, Bartlewski PM, King WA. Thyroid hormone supplementation improves bovine embryo development in vitro. Hum Reprod. 2010;25:334–44.

    Article  CAS  PubMed  Google Scholar 

  46. Costa NN, Cordeiro MS, Silva TV, Sastre D, Santana PP, Sa AL, Sampaio RV, Santos SS, Adona PR, Miranda MS. Effect of triiodothyronine on developmental competence of bovine oocytes. Theriogenology. 2013;80:295–301.

    Article  CAS  PubMed  Google Scholar 

  47. Laoag-Fernandez JB, Matsuo H, Murakoshi H, Hamada AL, Tsang BK, Maruo T. 3,5,3′-Triiodothyronine down-regulates Fas and Fas ligand expression and suppresses caspase-3 and poly (adenosine 5′-diphosphate-ribose) polymerase cleavage and apoptosis in early placental extravillous trophoblasts in vitro. J Clin Endocrinol Metab. 2004;89:4069–77.

    Article  CAS  PubMed  Google Scholar 

  48. Krassas GE, Poppe K, Glinoer D. Thyroid function and human reproductive health. Endocr Rev. 2010;31:702–55.

    Article  CAS  PubMed  Google Scholar 

  49. Vissenberg R, van den Boogaard E, van Wely M, van der Post JA, Filers E, Bisschop PH, Goddijn M. Treatment of thyroid disorders before conception and in early pregnancy: a systematic review. Hum Reprod Update. 2012;18:360–73.

    Article  CAS  PubMed  Google Scholar 

  50. Hollowell JG, Staehling NW, Flanders WD, Hannon WH, Gunter EW, Spencer CA, et al. Serum TSH, T(4), and thyroid antibodies in the United States population (1988 to 1994): National Health and Nutrition Examination Survey (NHANES III). J Clin Endocrinol Metab. 2002;87:489–99.

    Article  CAS  PubMed  Google Scholar 

  51. National Academy of Clinical Biochemistry. Laboratory medicine practice guidelines. Laboratory support for the diagnosis of thyroid disease, vol. 13. Washington, DC: The National Academy of Clinical Biochemistry; 2002.

    Google Scholar 

  52. American Society for Reproductive Medicine Practice Committee. Subclinical hypothyroidism in the infertile female population: a guideline. Fertil Steril. 2015;104:545–53.

    Article  Google Scholar 

  53. De Groot L, Abalovich M, Alexander EK, Amino N, Barbour L, Cobin RH, Eastman CJ, Lazarus JH, Luton D, Mandel SJ, Mestman J, Rovet J, Sullivan S. Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society clinical practice guideline. J Clin Endocrinol Metab. 2012;97:2543–65.

    Article  PubMed  Google Scholar 

  54. Kim CH, Ahn JW, Kang SP, Kim SH, Chae HD, Kang BM. Effect of levothyroxine treatment on in vitro fertilization and pregnancy outcome in infertile women with subclinical hypothyroidism undergoing in vitro fertilization/intracytoplasmic sperm injection. Fertil Steril. 2011;95(5):1650–4.

    Article  CAS  PubMed  Google Scholar 

  55. Abdel Rahman AH, Aly Abbassy H, Abbassy AA. Improved in vitro fertilization outcomes after treatment of subclinical hypothyroidism in infertile women. Endocr Pract. 2010;16:792–7.

    Article  PubMed  Google Scholar 

  56. Negro R, Mangieri T, Coppola L, Presicce G, Casavola EC, Gismondi R, Locorotondo G, Caroli P, Pezzarossa A, Dazzi D, Hassan H. Levothyroxine treatment in thyroid peroxidase antibody-positive women undergoing assisted reproduction technologies: a prospective study. Hum Reprod. 2005;20:1529–33.

    Article  CAS  PubMed  Google Scholar 

  57. van den Boogaard E, Vissenberg R, Land JA, van Wely M, van der Post JA, Goddijn M, Bisschop PH. Significance of (sub)clinical thyroid dysfunction and thyroid autoimmunity before conception and in early pregnancy: a systematic review. Hum Reprod Update. 2011;17:605–19.

    Article  PubMed  Google Scholar 

  58. Negro R, Schwartz A, Gismondi R, Tinelli A, Mangieri T, Stagnaro-Green A. Increased pregnancy loss rate in thyroid antibody negative women with TSH levels between 2.5 and 5.0 in the first trimester of pregnancy. J Clin Endocrinol Metab. 2010;95:E44–8.

    Article  PubMed  Google Scholar 

  59. Fox C, Morin S, Jeong JW, Scott RT Jr, Lessey BA. Local and systemic factors and implantation: what is the evidence? Fertil Steril. 2016;105:873–84.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emre Seli MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Morin, S., Ata, B., Seli, E. (2018). Endocrine Causes of Implantation Failure. In: Franasiak, J., Scott Jr., R. (eds) Recurrent Implantation Failure. Springer, Cham. https://doi.org/10.1007/978-3-319-71967-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71967-2_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71966-5

  • Online ISBN: 978-3-319-71967-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics