Skip to main content

Arctic Ocean Modeling: The Consistent Physics on the Path to the High Spatial Resolution

  • Chapter
  • First Online:
Book cover The Ocean in Motion

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

  • 1476 Accesses

Abstract

Modern numerical models of the Arctic Ocean (AO) exhibit the great progress partly thanks to the fine horizontal resolution, which helps to resolve many of the relevant processes explicitly. Nevertheless, some of the AO features are still modeled poorly by the models with a resolution of 5–10 km. It is anticipated, that the further increase in the horizontal resolution up to 100–1000 m will demand the understanding of the role of the AO specific processes. This paper is a brief review of some of such processes like mesoscale and submesoscale eddies and internal waves, and of the problems of their parameterization, caused by the closeness of their spatial scales. The internal waves and the internal wave-induced mixing are assumed to be the key processes to be taken into account to describe the AO cold halocline mixing properly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aksenov, Y., Karcher, M., Proshutinsky, A., Gerdes, R., de Cuevas, B., Golubeva, E., et al. (2016) Arctic pathways of Pacific Water: Arctic Ocean model intercomparison experiments. Journal of Geophysical Research Oceans, 121, 27–59.

    Google Scholar 

  2. Fer, I. (2014). Near-inertial mixing in the central Arctic Ocean. Journal of Physical Oceanography, 44, 2031–2049. https://doi.org/10.1175/JPO-D-13-0133.1.

    Article  Google Scholar 

  3. Fox-Kemper, B., Ferrari, R., & Hallberg, R. (2008). Parameterization of mixed layer eddies. Part I: Theory and diagnosis. Journal of Physical Oceanography, 38, 1145–1165.

    Article  Google Scholar 

  4. Gent, P. R., & McWilliams, J. C. (1990). Isopycnal mixing in ocean circulation models. Journal of Physical Oceanography, 20(1), 150–155.

    Article  Google Scholar 

  5. Hines, C. O. (1997). Doppler spread parameterization of gravity wave momentum deposition in the middle atmosphere. Part 2. Broad and quasimonochromatic spectra, and implementation. Journal of Atmospheric and Solar-Terrestrial Physics, 59, 387–400.

    Article  Google Scholar 

  6. Iakovlev, N. G. (2012). On the simulation of temperature and salinity fields in the Arctic Ocean. Izvestiya Atmospheric and Oceanic Physics, 48(1), 86–101. https://doi.org/10.1134/S0001433812010136.

    Article  Google Scholar 

  7. Iakovlev, N. G., Volodin, E. M., & Gritsun, A. S. (2016). Simulation of the spatiotemporal variability of the World Ocean sea surface height by the INM climate models. Izvestiya Atmospheric and Oceanic Physics, 52(4), 376–385. https://doi.org/10.1134/S0001433816040125.

    Article  Google Scholar 

  8. Large, W. G., McWilliams, J. C., & Doney, S. C. (1994). Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization. Reviews of Geophysics, 32, 363–403.

    Article  Google Scholar 

  9. LeBlond, P. H., & Mysak, L. A. (1978). Waves in the ocean (p. 602). Amsterdam: Elsevier Oceanographic Series, Elsevier Scientific Publishing Company.

    Google Scholar 

  10. Marshall, J., Hill, C., Perelman, L., Adcroft, A. Hydrostatic, quasi-hydrostatic, and nonhydrostatic ocean modeling. Journal of Geophysical Research, 102(C3), 5733–5752.

    Google Scholar 

  11. McPhee, M. G., & Kantha, L. H. (1989). Generation of internal waves by sea ice. Journal Geophysical Research, 94(C3), 3287–3302.

    Article  Google Scholar 

  12. McWilliams, J. C. (2016). Submesoscale currents in the ocean. Proceedings of the Royal Society of London A, 472, 20160117. https://doi.org/10.1098/rspa.2016.0117.

    Article  Google Scholar 

  13. Morozov, E. G., & Pisarev, S. V. (2002). Internal tides at the Arctic latitudes (numerical experiments). Oceanology, 42(2), 153–161.

    Google Scholar 

  14. Morozov, E. G., & Paka, V. T. (2010). Internal waves in a high-latitude region. Oceanology, 50(5), 668–674. https://doi.org/10.1134/S0001437010050048.

    Article  Google Scholar 

  15. Morozov, E. G. (1995). Semidiurnal internal wave global field. Deep-Sea Research, 42(1), 135–148. https://doi.org/10.1016/0967-0637(95)92886-C.

    Article  Google Scholar 

  16. Morozov, E. G., Paka, V. T., Bakhanov, V. V. (2008) Strong internal tides in the Kara Gates Strait. Geophysical Research Letters 35(16). https://doi.org/10.1029/2008gl033804.

  17. Morozov, E. G., & Marchenko, A. V. (2012). Short-period internal waves in an arctic Fjord (Spitsbergen). Izvestiya Atmospheric Oceanic Physics, 48(4), 401–408. https://doi.org/10.1134/S0001433812040123.

    Article  Google Scholar 

  18. Morozov, E. G., Kozlov, I. E., Shchuka, S. A., & Frey, D. I. (2017). Internal tide in the Kara Gates Strait. Oceanology, 57(1), 8–18. https://doi.org/10.1134/S0001437017010106.

    Article  Google Scholar 

  19. Morozov, E. G., Pisarev, S. V., Neiman, V. G., & Erofeeva, S. Y. (2003). Internal tidal waves in the Barents Sea. Doklady Earth Sciences, 393(8), 1124–1126.

    Google Scholar 

  20. Morozov, E. G., & Pisarev, S. V. (2003). Internal waves and polynya formation in the Laptev Sea. Doklady Earth Sciences, 398(7), 983–986.

    Google Scholar 

  21. Nurser, A. J. G., & Bacon, S. (2014). The Rossby radius in the Arctic Ocean. Ocean Science, 10, 967–975.

    Article  Google Scholar 

  22. Palmer, T. N., Shutts, G. J., & Swinbank, R. (1986). Alleviation of a systematic westerly bias in general circulation and numerical weather prediction models through an orographic gravity drag parameterization. Quarterly Journal of the Royal Meteorological Society, 112, 1001–1031.

    Article  Google Scholar 

  23. Proshutinsky, A., Steele, M., & Timmermans, M.-L. (2016). Forum for Arctic modeling and observational synthesis (FAMOS): past, current, and future activities. Journal of Geophysical Research Oceans, 121, 3803–3819. https://doi.org/10.1002/2016JC011898.

    Article  Google Scholar 

  24. Rudels, B., Jones, E. P., Anderson, L. G., Kattner, G. (1994) On the intermediate depth waters of the Arctic Ocean. In O. M. Johannessen, R. D. Muench, J. E. Overland (Eds.), The Polar Oceans and their role in shaping the global environment. Geophysical monograph. 85: 33–46.

    Google Scholar 

  25. Serreze, M. C., & Barry, R. G. (2011). Processes and impacts of Arctic amplification: a research synthesis. Global and Planetary Change, 77, 85–96.

    Article  Google Scholar 

  26. Timmermans, M.-L., Toole, J., Proshutinsky, A., Krishfield, R., & Plueddemann, A. (2008). Eddies in the Canada Basin, Arctic Ocean, observed from ice-tethered profilers. Journal of Physical Oceanography, 38, 133–145.

    Article  Google Scholar 

  27. Visbeck, M., Marshall, J., Haine, T., & Spall, M. (1997). Specification of eddy transfer coefficients in coarse resolution ocean circulation models. Journal of Physical Oceanography, 27, 381–402.

    Article  Google Scholar 

  28. Voltzinger, N. E., & Androsov, A. A. (2016). Nonhydrostatic dynamics of straits of the World Ocean. Fundamentalnaya i prikladnaya gidrofizika, 9(1), 26–40. (in Russian).

    Google Scholar 

Download references

Acknowledgements

The study was performed at the Institute of Numerical Mathematics, Russian Academy of Sciences and supported by the Russian Science Foundation, grant 14-27-00126.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikolay G. Iakovlev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Iakovlev, N.G. (2018). Arctic Ocean Modeling: The Consistent Physics on the Path to the High Spatial Resolution. In: Velarde, M., Tarakanov, R., Marchenko, A. (eds) The Ocean in Motion. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-319-71934-4_35

Download citation

Publish with us

Policies and ethics