Skip to main content

Satellite Remote Sensing of Submesoscale Eddies in the Russian Seas

  • Chapter
  • First Online:
The Ocean in Motion

Part of the book series: Springer Oceanography ((SPRINGEROCEAN))

Abstract

Satellite images of high resolution, primarily radar images, have shown that submesoscale eddies (diameter less than the Rossby internal radius of deformation) are a common element of water dynamics of the inner Russian seas (the Black, Caspian, Baltic, and White). Characteristic diameters of these eddies are 2–8 km. Examples of satellite images of such eddies in the coastal zone and open sea are presented, and mechanisms of their generation are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arkhipkin, V. S., Bondarenko, A. L., Vedev, D. L., & Kosarev, A. N. (1992). Peculiarities of water circulation at eastern coast of the Middle Caspian Sea. Vodnye Resursy, 6, 36–43. (in Russian).

    Google Scholar 

  2. Eldevik, T., & Dysthe, K. B. (2002). Spiral eddies. Journal of Physical Oceanography, 32(3), 851–869.

    Article  Google Scholar 

  3. Elkin, D. N., & Zatsepin, A. G. (2013). Laboratory investigation of a mechanism of periodic eddy formation behined capes in a Coastal Sea. Oceanology, 53(1), 29–41. (in Russian).

    Article  Google Scholar 

  4. Fedorov, K. N., & Ginsburg, A. I. (1986). “Mushroom-like” currents (vortex dipoles) in the ocean and in a laboratory tank. Annales Geophysicae, 4(B, 5), 507–516.

    Google Scholar 

  5. Ginzburg, A. I. (1992). Nonstationary eddy motions in the ocean. Oceanology, 32(6), 689–694.

    Google Scholar 

  6. Ginzburg, A. I. (1994). Horizontal exchange processes in the near-surface layer of the Black Sea. Earth Observation and Remote Sensing, 12, 190–202.

    Google Scholar 

  7. Ginzburg, A. I., Kostianoy, A. G., Soloviev, D. M., & Stanichny, S. V. (2000). Remotely sensed coastal/deep-basin water exchange processes in the Black Sea surface layer. In D. Halpern (Ed.) Satellites, oceanography and society (pp. 273–287). Amsterdam: Elsevier.

    Google Scholar 

  8. Ginzburg, A. I., Bulycheva, E. V., Kostianoy, A. G., & Soloviev, D. M. (2015). Vortex dynamics in the southeastern Baltic Sea from satellite radar data. Oceanology, 55(6), 805–813.

    Google Scholar 

  9. Golitsyn, G. S. (2012). On the nature of spiral eddies on the surface of seas and oceans. Izvestiya, Atmospheric and Oceanic Physics, 48(3), 350–354.

    Article  Google Scholar 

  10. Ivanov, A. Yu., & Ginzburg, A. I. (2002). Oceanic eddies in synthetic aperture radar images. Proceedings of Indian Academy of Sciences. Earth and Planetary Sciences, 111(3):281–295.

    Google Scholar 

  11. Johannessen, J. A., Kudryavtsev, V., Akimov, D., Eldevik, T., Winther, N., & Chapron, B. (2005). On radar imaging of current features: 2. Mesoscale eddy and current front detection. Journal of Geophysical Research, 110 (C07017). https://doi.org/10.1029/2004JC002802.

  12. Kamenkovich, V. M., Koshlyakov, M. N., & Monin, A. S. (1987). Synoptic eddies in the ocean. Hydrometeoizdat, Leningrad (in Russian), 511 p.

    Google Scholar 

  13. Karimova, S. S. (2010). On manifestation of vortical structures in satellite radar images. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 7(3), 152–160. (in Russian).

    Google Scholar 

  14. Karimova, S. S. (2012). Investigation of submesoscale vortices of the Baltic, Black and Caspian Seas based on satellite radar data. PhD Thesis, Moscow, 187 p.

    Google Scholar 

  15. Karimova, S. S. (2012). Statistical Analysis of submesoscale eddies in the Baltic, Black and Caspian Seas using satellite SAR images. Issledovanie Zemli iz kosmosa, 3, 31–47.

    Google Scholar 

  16. Karimova, S. S., Lavrova, O. Yu., & Soloviev, D. M. (2012). Observation of eddy structures in the Baltic Sea with the use of radiolocation and radiometric satellite data. Izvestiya, Atmospheric and Oceanic Physics, 48(9), 1006–1013.

    Google Scholar 

  17. Kostianoy, A. G., & Belkin, I. M. (1989). A survey of observations on intrathermocline eddies in the World Ocean. In J. C. J. Nihoul, B. M. Jamart (Eds.), Mesoscale/synoptic coherent structures in geophysical turbulenceProceedings of 20th International Liege Colloq. Ocean Hydrodynamics (pp. 821–841). Amsterdam: Elsevier.

    Google Scholar 

  18. Kostianoy, A. G., Ginzburg, A. I., Sheremet, N. A., Lavrova, O. Yu., & Mityagina, M. I. (2010). Small-scale eddies in the Black Sea. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 7(1), 248–259. (in Russian).

    Google Scholar 

  19. Lavrova, O. Yu. (2005). Slicks as indicators of eddy activity in the coastal area. Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa, 2, 118–123. (in Russian).

    Google Scholar 

  20. Lavrova, O. Yu., Kostianoy, A. G., Lebedev, S. A., Mityagina, M. I., Ginzburg, A. I., & Sheremet, N. A. (2011). Complex satellite monitoring of the Russian seas. IKI RAS: Moscow, 424 p. (in Russian).

    Google Scholar 

  21. Lavrova, O. Yu., & Mityagina, M. I. (2016). Manifestation specifics of hydrodynamic processes in satellite images of intense phytoplankton bloom areas. Izvestiya, Atmospheric and Oceanic Physics, 52(9), 974–987.

    Article  Google Scholar 

  22. Mityagina, M. I., Lavrova, O. Yu., & Karimova, S. S. (2010). Multi-sensor survey of seasonal variability in coastal eddy and internal wave signatures in the north-eastern Black Sea. International Journal of Remote Sensing, 31(17), 4779–4790.

    Google Scholar 

  23. Munk, W., Armi, L., Fischer, K., & Zachariasen, F. (2000). Spirals on the sea. Procedings of the. Royal Society of London A, 456, 1217–1280.

    Article  Google Scholar 

  24. Oguz, T., Latun, V. S., Latif, M. A., Vladimirov, V. V., Sur, H. I., Markov, A. A., et al. (1993). Circulation in the surface and intermediate layers of the Black sea. Deep-Sea Research, 40, 1597–1612.

    Article  Google Scholar 

  25. Osinski, R., Pak, D., Walczowski, W., & Piechura, J. (2010). Baroclinic radius of deformation in the southern Baltic Sea. Oceanologia, 52(3), 417–429.

    Article  Google Scholar 

  26. Richardson, P. L., Bower, A. S., & Zenk, W. (2000). A census of Meddies tracked by floats. Progress in Oceanography, 45, 209–250.

    Google Scholar 

  27. Robinson, A. R. (Ed.) (1983). Eddies in marine science. Springer, 609 p.

    Google Scholar 

  28. Rodionov, A. A., Zimin, A. V., Kozlov, I. E., & Shapron, B. (2014). Submesoscale structures and dynamics in the White Sea. State of art and directions of research. Fundamentalnaya i prikladnaya gidrofizika, 7(3), 29–41. (in Russian).

    Google Scholar 

  29. Scully-Power, P. (1986). Navy Oceanographer Shuttle Observations, STS 41-G, Mission Report. In Naval underwater systems center technical report NUSC TD 7611. 71 p.

    Google Scholar 

  30. Stevenson, R. E. (1989). Oceanography from the Space Shuttle. Office of Naval Research. The University Corporation for Atmospheric Research. 200 p.

    Google Scholar 

  31. Stevenson, R. E. (1998). Spiral eddies: The discovery that changed the face of the oceans. 21st Century Science and Technology, 11, 58–71.

    Google Scholar 

  32. Stommel, H., Meinke, J., & Zenk, W. (1977). New animals for the eddy zoo. Polymode News (Unpublished Newsletter), 22(1).

    Google Scholar 

  33. Sur, H. I., & Ilyin, Yu. P. (1997). Evolution of satellite derived mesoscale thermal patterns in the Black Sea. Progress in Oceanography, 39, 109–151.

    Google Scholar 

  34. Tavri, A., Singha, S., Lehner, S., & Topouzelis, K. (2016). Observation of sub-mesoscale eddies over Baltic Sea using TERRASAR-X and oceanographic data. In Proceedings of Living Planet Symposium 2016, Prague, Czech Republic, 9–13 May 2016 (ESA SP-740, August 2016).

    Google Scholar 

  35. Thomas, L. N., Tandon, A., & Mahadevan, A. (2008). Submesoscale processes and dynamics. Ocean Modeling in an Eddying Regime. Geophysical Monograph Series Vol. 177:17–37. The American Geophysical Union, Washington, DC. https://doi.org/10.1029/177gm04.

  36. Zatsepin, A. G., Ginzburg, A. I., Kostianoy, A. G., Kremenetsky, V. V., Krivosheya, V. G., Stanichny, S. V., et al. (2003). Observation of Black Sea mesoscale eddies and associated horizontal mixing. Journal of Geophysical Research, 108(C8), 3246. https://doi.org/10.1029/2002JC001390.

  37. Zatsepin, A. G., Kondrashov, A. A., Korzh, A. O., Kremenetskiy, V. V., Ostrovskii, A. G., & Soloviev, D. M. (2011). Submesoscale eddies at the Caucasus Black Sea shelf and the mechanisms of their generation. Oceanology, 51(4), 554–567.

    Google Scholar 

  38. Zatsepin, A. G., Ostrovskii, A. G., Kremenetskiy, V. V., Piotoukh, V. B., Kuklev, S. B., Moskalenko, L. V., Podymov, O. I., et al. (2013). On the nature of short-period oscillations of the main Black Sea pycnocline, submesoscale eddies, and response of the marine environment to the catastrophic showers of 2012. Izvestija RAN. Fizika Atmosphery i Okeana, 49(6), 717–732. (in Russian).

    Google Scholar 

  39. Zimin, A. V., Atadzhanova, O. A., Romanenkov, D. A., Kozlov, I. E., & Chapron, B. (2016). Submesoscale eddies in the White Sea based on satellite SAR data. Issledovanie Zemli iz kosmosa, 1–2, 129–135. (in Russian).

    Google Scholar 

Download references

Acknowledgements

Analysis of high resolution optical satellite imagery made by A. G. Kostianoy and A. I. Ginzburg was supported by the Russian Science Foundation Grant 14-50-00095. O. Yu. Lavrova and M. I. Mityagina analyzed SAR imagery and studied submesoscale eddies in the framework and with a support of the Russian Science Foundation Grant 14-17-00555.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey G. Kostianoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kostianoy, A.G., Ginzburg, A.I., Lavrova, O.Y., Mityagina, M.I. (2018). Satellite Remote Sensing of Submesoscale Eddies in the Russian Seas. In: Velarde, M., Tarakanov, R., Marchenko, A. (eds) The Ocean in Motion. Springer Oceanography. Springer, Cham. https://doi.org/10.1007/978-3-319-71934-4_24

Download citation

Publish with us

Policies and ethics