Skip to main content

Stem Cell-Based Therapies for Polyglutamine Diseases

  • Chapter
  • First Online:
Polyglutamine Disorders

Abstract

Polyglutamine (polyQ) diseases are a family of neurodegenerative disorders with very heterogeneous clinical presentations, although with common features such as progressive neuronal death. Thus, at the time of diagnosis patients might present an extensive and irreversible neuronal death demanding cell replacement or support provided by cell-based therapies. For this purpose stem cells, which include diverse populations ranging from embryonic stem cells (ESCs), to fetal stem cells, mesenchymal stromal cells (MSCs) or induced pluripotent stem cells (iPSCs) have remarkable potential to promote extensive brain regeneration and recovery in neurodegenerative disorders. This regenerative potential has been demonstrated in exciting pre and clinical assays. However, despite these promising results, several drawbacks are hampering their successful clinical implementation. Problems related to ethical issues, quality control of the cells used and the lack of reliable models for the efficacy assessment of human stem cells. In this chapter the main advantages and disadvantages of the available sources of stem cells as well as their efficacy and potential to improve disease outcomes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Takahashi T, Katada S, Onodera O (2010) Polyglutamine diseases: where does toxicity come from? what is toxicity? where are we going? J Mol Cell Biol 2:180–191

    Article  CAS  PubMed  Google Scholar 

  2. Teive HA (2009) Spinocerebellar ataxias. Arq Neuropsiquiatr 67:1133–1142

    Article  PubMed  Google Scholar 

  3. Ostenfeld T, Svendsen CN (2003) Recent advances in stem cell neurobiology. Adv Tech Stand Neurosurg 28:3–89

    Article  CAS  PubMed  Google Scholar 

  4. Dulak J, Szade K, Szade A, Nowak W, Jozkowicz A (2015) Adult stem cells: hopes and hypes of regenerative medicine. Acta Biochim Pol 62:329–337

    Article  CAS  PubMed  Google Scholar 

  5. Kim TG, Yao R, Monnell T, Cho JH, Vasudevan A, Koh A, Peeyush KT, Moon M, Datta D, Bolshakov VY et al (2014) Efficient specification of interneurons from human pluripotent stem cells by dorsoventral and rostrocaudal modulation. Stem Cells 32:1789–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  PubMed  Google Scholar 

  7. Anderson DJ (1989) The neural crest cell lineage problem: neuropoiesis? Neuron 3:1–12

    Article  CAS  PubMed  Google Scholar 

  8. Cattaneo E, McKay R (1990) Proliferation and differentiation of neuronal stem cells regulated by nerve growth factor. Nature 347:762–765

    Article  CAS  PubMed  Google Scholar 

  9. Davis AA, Temple S (1994) A self-renewing multipotential stem cell in embryonic rat cerebral cortex. Nature 372:263–266

    Article  CAS  PubMed  Google Scholar 

  10. Kilpatrick TJ, Bartlett PF (1993) Cloning and growth of multipotential neural precursors: requirements for proliferation and differentiation. Neuron 10:255–265

    Article  CAS  PubMed  Google Scholar 

  11. Temple S (1989) Division and differentiation of isolated CNS blast cells in microculture. Nature 340:471–473

    Article  CAS  PubMed  Google Scholar 

  12. Eriksson PS, Perfilieva E, Bjork-Eriksson T, Alborn AM, Nordborg C, Peterson DA, Gage FH (1998) Neurogenesis in the adult human hippocampus. Nat Med 4:1313–1317

    Article  CAS  PubMed  Google Scholar 

  13. Gage FH, Temple S (2013) Neural stem cells: generating and regenerating the brain. Neuron 80:588–601

    Article  CAS  PubMed  Google Scholar 

  14. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  15. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  PubMed  Google Scholar 

  16. Sadan O, Shemesh N, Barzilay R, Dadon-Nahum M, Blumenfeld-Katzir T, Assaf Y, Yeshurun M, Djaldetti R, Cohen Y, Melamed E et al (2012) Mesenchymal stem cells induced to secrete neurotrophic factors attenuate quinolinic acid toxicity: a potential therapy for Huntington’s disease. Exp Neurol 234:417–427

    Article  CAS  PubMed  Google Scholar 

  17. Lindvall O, Kokaia Z (2009) Prospects of stem cell therapy for replacing dopamine neurons in Parkinson’s disease. Trends Pharmacol Sci 30:260–267

    Article  CAS  PubMed  Google Scholar 

  18. Lindvall O, Kokaia Z, Martinez-Serrano A (2004) Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 10(Suppl):S42–S50

    Article  PubMed  CAS  Google Scholar 

  19. O’Donoghue K, Fisk NM (2004) Fetal stem cells. Best Pract Res Clin Obstet Gynaecol 18:853–875

    Article  PubMed  Google Scholar 

  20. Sousa-Ferreira L, Aveleira C, Botelho M, Alvaro AR, Pereira de Almeida L, Cavadas C (2014) Fluoxetine induces proliferation and inhibits differentiation of hypothalamic neuroprogenitor cells in vitro. PLoS ONE 9:e88917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Mendonca LS, Nobrega C, Hirai H, Kaspar BK, Pereira de Almeida L (2015) Transplantation of cerebellar neural stem cells improves motor coordination and neuropathology in Machado-Joseph disease mice. Brain J Neurol 138:320–335

    Article  Google Scholar 

  22. Chintawar S, Hourez R, Ravella A, Gall D, Orduz D, Rai M, Bishop DP, Geuna S, Schiffmann SN, Pandolfo M (2009) Grafting neural precursor cells promotes functional recovery in an SCA1 mouse model. J Neurosci Official J Soc Neurosci 29:13126–13135

    Article  CAS  Google Scholar 

  23. Benraiss A, Goldman SA (2011) Cellular therapy and induced neuronal replacement for Huntington’s disease. Neurother J Am Soc Exp Neurother 8:577–590

    Article  CAS  Google Scholar 

  24. Golas MM, Sander B (2016) Use of human stem cells in Huntington disease modeling and translational research. Exp Neurol 278:76–90

    Article  CAS  PubMed  Google Scholar 

  25. Borlongan CV, Koutouzis TK, Poulos SG, Saporta S, Sanberg PR (1998) Bilateral fetal striatal grafts in the 3-nitropropionic acid-induced hypoactive model of Huntington’s disease. Cell Transplant 7:131–135

    Article  CAS  PubMed  Google Scholar 

  26. Hurelbrink CB, Armstrong RJ, Dunnett SB, Rosser AE, Barker RA (2002) Neural cells from primary human striatal xenografts migrate extensively in the adult rat CNS. Eur J Neurosci 15:1255–1266

    Article  PubMed  Google Scholar 

  27. Palfi S, Conde F, Riche D, Brouillet E, Dautry C, Mittoux V, Chibois A, Peschanski M, Hantraye P (1998) Fetal striatal allografts reverse cognitive deficits in a primate model of Huntington disease. Nat Med 4:963–966

    Article  CAS  PubMed  Google Scholar 

  28. Wictorin K, Ouimet CC, Bjorklund A (1989) Intrinsic organization and connectivity of intrastriatal striatal transplants in rats as revealed by DARPP-32 immunohistochemistry: specificity of connections with the lesioned host brain. Eur J Neurosci 1:690–701

    Article  PubMed  Google Scholar 

  29. Madrazo I, Franco-Bourland RE, Castrejon H, Cuevas C, Ostrosky-Solis F (1995) Fetal striatal homotransplantation for Huntington’s disease: first two case reports. Neurol Res 17:312–315

    Article  CAS  PubMed  Google Scholar 

  30. Kopyov OV, Jacques S, Lieberman A, Duma CM, Eagle KS (1998) Safety of intrastriatal neurotransplantation for Huntington’s disease patients. Exp Neurol 149:97–108

    Article  CAS  PubMed  Google Scholar 

  31. Philpott LM, Kopyov OV, Lee AJ, Jacques S, Duma CM, Caine S, Yang M, Eagle KS (1997) Neuropsychological functioning following fetal striatal transplantation in Huntington’s chorea: three case presentations. Cell Transplant 6:203–212

    Article  CAS  PubMed  Google Scholar 

  32. Keene CD, Chang RC, Leverenz JB, Kopyov O, Perlman S, Hevner RF, Born DE, Bird TD, Montine TJ (2009) A patient with Huntington’s disease and long-surviving fetal neural transplants that developed mass lesions. Acta Neuropathol 117:329–338

    Article  PubMed  Google Scholar 

  33. Keene CD, Sonnen JA, Swanson PD, Kopyov O, Leverenz JB, Bird TD, Montine TJ (2007) Neural transplantation in Huntington disease: long-term grafts in two patients. Neurology 68:2093–2098

    Article  CAS  PubMed  Google Scholar 

  34. Quinn N, Brown R, Craufurd D, Goldman S, Hodges J, Kieburtz K, Lindvall O, MacMillan J, Roos R (1996) Core Assessment Program for Intracerebral Transplantation in Huntington’s Disease (CAPIT-HD). Movement disorders: official journal of the Movement Disorder Society 11:143–150

    Article  CAS  Google Scholar 

  35. Bachoud-Levi AC, Remy P, Nguyen JP, Brugieres P, Lefaucheur JP, Bourdet C, Baudic S, Gaura V, Maison P, Haddad B et al (2000) Motor and cognitive improvements in patients with Huntington’s disease after neural transplantation. Lancet 356:1975–1979

    Article  CAS  PubMed  Google Scholar 

  36. Gaura V, Bachoud-Levi AC, Ribeiro MJ, Nguyen JP, Frouin V, Baudic S, Brugieres P, Mangin JF, Boisse MF, Palfi S et al (2004) Striatal neural grafting improves cortical metabolism in Huntington’s disease patients. Brain J Neurol 127:65–72

    Article  Google Scholar 

  37. Bachoud-Levi AC, Gaura V, Brugieres P, Lefaucheur JP, Boisse MF, Maison P, Baudic S, Ribeiro MJ, Bourdet C, Remy P et al (2006) Effect of fetal neural transplants in patients with Huntington’s disease 6 years after surgery: a long-term follow-up study. Lancet Neurol 5:303–309

    Article  PubMed  Google Scholar 

  38. Hauser RA, Furtado S, Cimino CR, Delgado H, Eichler S, Schwartz S, Scott D, Nauert GM, Soety E, Sossi V et al (2002) Bilateral human fetal striatal transplantation in Huntington’s disease. Neurology 58:687–695

    Article  CAS  PubMed  Google Scholar 

  39. Freeman TB, Cicchetti F, Hauser RA, Deacon TW, Li XJ, Hersch SM, Nauert GM, Sanberg PR, Kordower JH, Saporta S et al (2000) Transplanted fetal striatum in Huntington’s disease: phenotypic development and lack of pathology. Proc Natl Acad Sci USA 97:13877–13882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Furtado S, Sossi V, Hauser RA, Samii A, Schulzer M, Murphy CB, Freeman TB, Stoessl AJ (2005) Positron emission tomography after fetal transplantation in Huntington’s disease. Ann Neurol 58:331–337

    Article  PubMed  Google Scholar 

  41. Cicchetti F, Saporta S, Hauser RA, Parent M, Saint-Pierre M, Sanberg PR, Li XJ, Parker JR, Chu Y, Mufson EJ et al (2009) Neural transplants in patients with Huntington’s disease undergo disease-like neuronal degeneration. Proc Natl Acad Sci USA 106:12483–12488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rosser AE, Barker RA, Harrower T, Watts C, Farrington M, Ho AK, Burnstein RM, Menon DK, Gillard JH, Pickard J et al (2002) Unilateral transplantation of human primary fetal tissue in four patients with Huntington’s disease: NEST-UK safety report ISRCTN no 36485475. J Neurol Neurosurg Psychiatry 73:678–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barker RA, Mason SL, Harrower TP, Swain RA, Ho AK, Sahakian BJ, Mathur R, Elneil S, Thornton S, Hurrelbrink C et al (2013) The long-term safety and efficacy of bilateral transplantation of human fetal striatal tissue in patients with mild to moderate Huntington’s disease. J Neurol Neurosurg Psychiatry 84:657–665

    Article  PubMed  Google Scholar 

  44. Reuter I, Tai YF, Pavese N, Chaudhuri KR, Mason S, Polkey CE, Clough C, Brooks DJ, Barker RA, Piccini P (2008) Long-term clinical and positron emission tomography outcome of fetal striatal transplantation in Huntington’s disease. J Neurol Neurosurg Psychiatry 79:948–951

    Article  CAS  PubMed  Google Scholar 

  45. Gallina P, Paganini M, Lombardini L, Mascalchi M, Porfirio B, Gadda D, Marini M, Pinzani P, Salvianti F, Crescioli C et al (2010) Human striatal neuroblasts develop and build a striatal-like structure into the brain of Huntington’s disease patients after transplantation. Exp Neurol 222:30–41

    Article  PubMed  Google Scholar 

  46. Boer GJ (1999) Ethical issues in neurografting of human embryonic cells. Theor Med Bioeth 20:461–475

    Article  CAS  PubMed  Google Scholar 

  47. Freeman TB, Cicchetti F, Bachoud-Levi AC, Dunnett SB (2011) Technical factors that influence neural transplant safety in Huntington’s disease. Exp Neurol 227:1–9

    Article  CAS  PubMed  Google Scholar 

  48. Bachoud-Levi AC, Perrier AL (2014) Regenerative medicine in Huntington’s disease: current status on fetal grafts and prospects for the use of pluripotent stem cell. Revue Neurologique 170:749–762

    Article  PubMed  Google Scholar 

  49. Barberi T, Klivenyi P, Calingasan NY, Lee H, Kawamata H, Loonam K, Perrier AL, Bruses J, Rubio ME, Topf N et al (2003) Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 21:1200–1207

    Article  CAS  PubMed  Google Scholar 

  50. Fan HC, Ho LI, Chi CS, Chen SJ, Peng GS, Chan TM, Lin SZ, Harn HJ (2014) Polyglutamine (PolyQ) diseases: genetics to treatments. Cell Transplant 23:441–458

    Article  PubMed  Google Scholar 

  51. Okabe S, Forsberg-Nilsson K, Spiro AC, Segal M, McKay RD (1996) Development of neuronal precursor cells and functional postmitotic neurons from embryonic stem cells in vitro. Mech Dev 59:89–102

    Article  CAS  PubMed  Google Scholar 

  52. Aubry L, Bugi A, Lefort N, Rousseau F, Peschanski M, Perrier AL (2008) Striatal progenitors derived from human ES cells mature into DARPP32 neurons in vitro and in quinolinic acid-lesioned rats. Proc Natl Acad Sci U S A 105:16707–16712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ma L, Hu B, Liu Y, Vermilyea SC, Liu H, Gao L, Sun Y, Zhang X, Zhang SC (2012) Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell 10:455–464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kaemmerer WF, Low WC (1999) Cerebellar allografts survive and transiently alleviate ataxia in a transgenic model of spinocerebellar ataxia type-1. Exp Neurol 158:301–311

    Article  CAS  PubMed  Google Scholar 

  55. Delli Carri A, Onorati M, Lelos MJ, Castiglioni V, Faedo A, Menon R, Camnasio S, Vuono R, Spaiardi P, Talpo F et al (2013) Developmentally coordinated extrinsic signals drive human pluripotent stem cell differentiation toward authentic DARPP-32+ medium-sized spiny neurons. Development 140:301–312

    Article  PubMed  CAS  Google Scholar 

  56. Arber C, Precious SV, Cambray S, Risner-Janiczek JR, Kelly C, Noakes Z, Fjodorova M, Heuer A, Ungless MA, Rodriguez TA et al (2015) Activin A directs striatal projection neuron differentiation of human pluripotent stem cells. Development 142:1375–1386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Abdipranoto-Cowley A, Park JS, Croucher D, Daniel J, Henshall S, Galbraith S, Mervin K, Vissel B (2009) Activin A is essential for neurogenesis following neurodegeneration. Stem Cells 27:1330–1346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sekiguchi M, Hayashi F, Tsuchida K, Inokuchi K (2009) Neuron type-selective effects of activin on development of the hippocampus. Neurosci Lett 452:232–237

    Article  CAS  PubMed  Google Scholar 

  59. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R et al (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  PubMed  Google Scholar 

  60. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R et al (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–1221

    Article  CAS  PubMed  Google Scholar 

  61. Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457:277–280

    Article  CAS  PubMed  Google Scholar 

  62. Grskovic M, Javaherian A, Strulovici B, Daley GQ (2011) Induced pluripotent stem cells—opportunities for disease modelling and drug discovery. Nat Rev Drug Discov 10:915–929

    CAS  PubMed  Google Scholar 

  63. Merkle FT, Eggan K (2013) Modeling human disease with pluripotent stem cells: from genome association to function. Cell Stem Cell 12:656–668

    Article  CAS  PubMed  Google Scholar 

  64. Pankevich DE, Altevogt BM, Dunlop J, Gage FH, Hyman SE (2014) Improving and accelerating drug development for nervous system disorders. Neuron 84:546–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Grunseich C, Zukosky K, Kats IR, Ghosh L, Harmison GG, Bott LC, Rinaldi C, Chen KL, Chen G, Boehm M et al (2014) Stem cell-derived motor neurons from spinal and bulbar muscular atrophy patients. Neurobiol Dis 70:12–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Nihei Y, Ito D, Okada Y, Akamatsu W, Yagi T, Yoshizaki T, Okano H, Suzuki N (2013) Enhanced aggregation of androgen receptor in induced pluripotent stem cell-derived neurons from spinal and bulbar muscular atrophy. J Biol Chem 288:8043–8052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Koch P, Breuer P, Peitz M, Jungverdorben J, Kesavan J, Poppe D, Doerr J, Ladewig J, Mertens J, Tuting T et al (2011) Excitation-induced ataxin-3 aggregation in neurons from patients with Machado-Joseph disease. Nature 480:543–546

    Article  CAS  PubMed  Google Scholar 

  68. Consortium, H.D.i (2012) Induced pluripotent stem cells from patients with Huntington’s disease show CAG-repeat-expansion-associated phenotypes. Cell Stem Cell 11:264–278

    Article  CAS  Google Scholar 

  69. Liu GH, Ding Z, Izpisua Belmonte JC (2012) iPSC technology to study human aging and aging-related disorders. Curr Opin Cell Biol 24:765–774

    Article  CAS  PubMed  Google Scholar 

  70. Sandoe J, Eggan K (2013) Opportunities and challenges of pluripotent stem cell neurodegenerative disease models. Nat Neurosci 16:780–789

    Article  CAS  PubMed  Google Scholar 

  71. Ward RJ, Zucca FA, Duyn JH, Crichton RR, Zecca L (2014) The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol 13:1045–1060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cooper O, Seo H, Andrabi S, Guardia-Laguarta C, Graziotto J, Sundberg M, McLean JR, Carrillo-Reid L, Xie Z, Osborn T et al (2012) Pharmacological rescue of mitochondrial deficits in iPSC-derived neural cells from patients with familial Parkinson’s disease. Sci Transl Med 4, 141ra190

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Jeon I, Lee N, Li JY, Park IH, Park KS, Moon J, Shim SH, Choi C, Chang DJ, Kwon J et al (2012) Neuronal properties, in vivo effects, and pathology of a Huntington’s disease patient-derived induced pluripotent stem cells. Stem Cells 30:2054–2062

    Article  CAS  PubMed  Google Scholar 

  74. Mitne-Neto M, Machado-Costa M, Marchetto MC, Bengtson MH, Joazeiro CA, Tsuda H, Bellen HJ, Silva HC, Oliveira AS, Lazar M et al (2011) Downregulation of VAPB expression in motor neurons derived from induced pluripotent stem cells of ALS8 patients. Hum Mol Genet 20:3642–3652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nguyen HN, Byers B, Cord B, Shcheglovitov A, Byrne J, Gujar P, Kee K, Schule B, Dolmetsch RE, Langston W et al (2011) LRRK2 mutant iPSC-derived DA neurons demonstrate increased susceptibility to oxidative stress. Cell Stem Cell 8:267–280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Camnasio S, Delli Carri A, Lombardo A, Grad I, Mariotti C, Castucci A, Rozell B, Lo Riso P, Castiglioni V, Zuccato C et al (2012) The first reported generation of several induced pluripotent stem cell lines from homozygous and heterozygous Huntington’s disease patients demonstrates mutation related enhanced lysosomal activity. Neurobiol Dis 46:41–51

    Article  CAS  PubMed  Google Scholar 

  77. Sanchez-Danes A, Richaud-Patin Y, Carballo-Carbajal I, Jimenez-Delgado S, Caig C, Mora S, Di Guglielmo C, Ezquerra M, Patel B, Giralt A et al (2012) Disease-specific phenotypes in dopamine neurons from human iPS-based models of genetic and sporadic Parkinson’s disease. EMBO Mol Med 4:380–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Onofre I (2016) Dissecting the pathogenesis of Machado-Joseph Disease in a new human disease model derived from induced pluripotent stem cells (Doctoral Dissertation). In University of Coimbra

    Google Scholar 

  79. Carmona V, Cunha-Santos J, Onofre I, Simoes AT, Vijayakumar U, Davidson BL, Pereira de Almeida L (2017) Unravelling endogenous microRNA system dysfunction as a new pathophysiological mechanism in Machado-Joseph disease. Mol Ther J Am Soc Gene Ther 25:1038–1055

    Article  CAS  Google Scholar 

  80. Mattson MP, Magnus T (2006) Ageing and neuronal vulnerability. Nat Rev Neurosci 7:278–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mattis VB, Tom C, Akimov S, Saeedian J, Ostergaard ME, Southwell AL, Doty CN, Ornelas L, Sahabian A, Lenaeus L et al (2015) HD iPSC-derived neural progenitors accumulate in culture and are susceptible to BDNF withdrawal due to glutamate toxicity. Hum Mol Genet 24:3257–3271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Hansen SK, Borland H, Hasholt LF, Tumer Z, Nielsen JE, Rasmussen MA, Nielsen TT, Stummann TC, Fog K, Hyttel P (2016) Generation of spinocerebellar ataxia type 3 patient-derived induced pluripotent stem cell line SCA3.B11. Stem Cell Res 16:589–592

    Article  CAS  PubMed  Google Scholar 

  83. Fink KD, Crane AT, Leveque X, Dues DJ, Huffman LD, Moore AC, Story DT, Dejonge RE, Antcliff A, Starski PA et al (2014) Intrastriatal transplantation of adenovirus-generated induced pluripotent stem cells for treating neuropathological and functional deficits in a rodent model of Huntington’s disease. Stem Cells Transl Med 3:620–631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Mu S, Wang J, Zhou G, Peng W, He Z, Zhao Z, Mo C, Qu J, Zhang J (2014) Transplantation of induced pluripotent stem cells improves functional recovery in Huntington’s disease rat model. PLoS ONE 9:e101185

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Lee MO, Moon SH, Jeong HC, Yi JY, Lee TH, Shim SH, Rhee YH, Lee SH, Oh SJ, Lee MY et al (2013) Inhibition of pluripotent stem cell-derived teratoma formation by small molecules. Proc Natl Acad Sci U S A 110:E3281–E3290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Miura K, Okada Y, Aoi T, Okada A, Takahashi K, Okita K, Nakagawa M, Koyanagi M, Tanabe K, Ohnuki M et al (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotechnol 27:743–745

    Article  CAS  PubMed  Google Scholar 

  87. Hargus G, Cooper O, Deleidi M, Levy A, Lee K, Marlow E, Yow A, Soldner F, Hockemeyer D, Hallett PJ et al (2010) Differentiated Parkinson patient-derived induced pluripotent stem cells grow in the adult rodent brain and reduce motor asymmetry in Parkinsonian rats. Proc Natl Acad Sci U S A 107:15921–15926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Peng SP, Copray S (2016) Comparison of human primary with human iPS cell-derived dopaminergic neuron grafts in the rat model for Parkinson’s Disease. Stem Cell Rev 12:105–120

    Article  CAS  Google Scholar 

  89. Wang S, Zou C, Fu L, Wang B, An J, Song G, Wu J, Tang X, Li M, Zhang J et al (2015) Autologous iPSC-derived dopamine neuron transplantation in a nonhuman primate Parkinson’s disease model. Cell Discov 1:15012

    Article  PubMed  PubMed Central  Google Scholar 

  90. Ben-David U, Benvenisty N (2011) The tumorigenicity of human embryonic and induced pluripotent stem cells. Nat Rev Cancer 11:268–277

    Article  CAS  PubMed  Google Scholar 

  91. Ben-David U, Benvenisty N, Mayshar Y (2010) Genetic instability in human induced pluripotent stem cells: classification of causes and possible safeguards. Cell Cycle 9:4603–4604

    Article  CAS  PubMed  Google Scholar 

  92. Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3:393–403

    CAS  PubMed  Google Scholar 

  93. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147

    Article  CAS  PubMed  Google Scholar 

  94. Kern S, Eichler H, Stoeve J, Kluter H, Bieback K (2006) Comparative analysis of mesenchymal stem cells from bone marrow, umbilical cord blood, or adipose tissue. Stem Cells 24:1294–1301

    Article  CAS  PubMed  Google Scholar 

  95. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC, Deans RJ, Krause DS, Keating A (2005) Clarification of the nomenclature for MSC: the international society for cellular therapy position statement. Cytotherapy 7:393–395

    Article  CAS  PubMed  Google Scholar 

  96. Lee M, Jeong SY, Ha J, Kim M, Jin HJ, Kwon SJ, Chang JW, Choi SJ, Oh W, Yang YS et al (2014) Low immunogenicity of allogeneic human umbilical cord blood-derived mesenchymal stem cells in vitro and in vivo. Biochem Biophys Res Commun 446:983–989

    Article  CAS  PubMed  Google Scholar 

  97. Choumerianou DM, Dimitriou H, Perdikogianni C, Martimianaki G, Riminucci M, Kalmanti M (2008) Study of oncogenic transformation in ex vivo expanded mesenchymal cells, from paediatric bone marrow. Cell Prolif 41:909–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Caplan AI, Dennis JE (2006) Mesenchymal stem cells as trophic mediators. J Cell Biochem 98:1076–1084

    Article  CAS  PubMed  Google Scholar 

  99. Zhang Y, Chopp M, Liu XS et al (2016) Exosomes derived from mesenchymal stromal cells promote axonal growth of cortical neurons. Mol Neurobiol 54(4):2659–2673

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  100. Lee ST, Chu K, Jung KH, Im WS, Park JE, Lim HC, Won CH, Shin SH, Lee SK, Kim M et al (2009) Slowed progression in models of Huntington disease by adipose stem cell transplantation. Ann Neurol 66:671–681

    Article  CAS  PubMed  Google Scholar 

  101. Im W, Lee ST, Park JE, Oh HJ, Shim J, Lim J, Chu K, Kim M (2010) Transplantation of patient-derived adipose stem cells in YAC128 Huntington’s disease transgenic mice. PLoS currents 2

    Google Scholar 

  102. Hosseini M, Moghadas M, Edalatmanesh MA, Hashemzadeh MR (2015) Xenotransplantation of human adipose derived mesenchymal stem cells in a rodent model of Huntington’s disease: motor and non-motor outcomes. Neurol Res 37:309–319

    Article  PubMed  Google Scholar 

  103. Edalatmanesh MA, Bahrami AR, Hosseini E, Hosseini M, Khatamsaz S (2011) Bone marrow derived mesenchymal stem cell transplantation in cerebellar degeneration: a behavioral study. Behav Brain Res 225:63–70

    Article  PubMed  Google Scholar 

  104. Snyder BR, Chiu AM, Prockop DJ, Chan AW (2010) Human multipotent stromal cells (MSCs) increase neurogenesis and decrease atrophy of the striatum in a transgenic mouse model for Huntington’s disease. PLoS ONE 5:e9347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Sadan O, Bahat-Stromza M, Barhum Y, Levy YS, Pisnevsky A, Peretz H, Ilan AB, Bulvik S, Shemesh N, Krepel D et al (2009) Protective effects of neurotrophic factor-secreting cells in a 6-OHDA rat model of Parkinson disease. Stem Cells Dev 18:1179–1190

    Article  CAS  PubMed  Google Scholar 

  106. Sadan O, Shemesh N, Barzilay R, Bahat-Stromza M, Melamed E, Cohen Y, Offen D (2008) Migration of neurotrophic factors-secreting mesenchymal stem cells toward a quinolinic acid lesion as viewed by magnetic resonance imaging. Stem Cells 26:2542–2551

    Article  CAS  PubMed  Google Scholar 

  107. Dey ND, Bombard MC, Roland BP, Davidson S, Lu M, Rossignol J, Sandstrom MI, Skeel RL, Lescaudron L, Dunbar GL (2010) Genetically engineered mesenchymal stem cells reduce behavioral deficits in the YAC 128 mouse model of Huntington’s disease. Behav Brain Res 214:193–200

    Article  CAS  PubMed  Google Scholar 

  108. Lin YT, Chern Y, Shen CK, Wen HL, Chang YC, Li H, Cheng TH, Hsieh-Li HM (2011) Human mesenchymal stem cells prolong survival and ameliorate motor deficit through trophic support in Huntington’s disease mouse models. PLoS ONE 6:e22924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Rossignol J, Boyer C, Leveque X, Fink KD, Thinard R, Blanchard F, Dunbar GL, Lescaudron L (2011) Mesenchymal stem cell transplantation and DMEM administration in a 3NP rat model of Huntington’s disease: morphological and behavioral outcomes. Behav Brain Res 217:369–378

    Article  CAS  PubMed  Google Scholar 

  110. Rossignol J, Fink KD, Crane AT, Davis KK, Bombard MC, Clerc S, Bavar AM, Lowrance SA, Song C, Witte S et al (2015) Reductions in behavioral deficits and neuropathology in the R6/2 mouse model of Huntington’s disease following transplantation of bone-marrow-derived mesenchymal stem cells is dependent on passage number. Stem Cell Res Ther 6:9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  111. Chang YK, Chen MH, Chiang YH, Chen YF, Ma WH, Tseng CY, Soong BW, Ho JH, Lee OK (2011) Mesenchymal stem cell transplantation ameliorates motor function deterioration of spinocerebellar ataxia by rescuing cerebellar Purkinje cells. J Biomed Sci 18

    Google Scholar 

  112. Matsuura S, Shuvaev AN, Iizuka A, Nakamura K, Hirai H (2014) Mesenchymal stem cells ameliorate cerebellar pathology in a mouse model of spinocerebellar ataxia type 1. Cerebellum 13:323–330

    Article  CAS  PubMed  Google Scholar 

  113. Fink KD, Rossignol J, Crane AT, Davis KK, Bombard MC, Bavar AM, Clerc S, Lowrance SA, Song C, Lescaudron L et al (2013) Transplantation of umbilical cord-derived mesenchymal stem cells into the striata of R6/2 mice: behavioral and neuropathological analysis. Stem Cell Res Ther 4:130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Dongmei H, Jing L, Mei X, Ling Z, Hongmin Y, Zhidong W, Li D, Zikuan G, Hengxiang W (2011) Clinical analysis of the treatment of spinocerebellar ataxia and multiple system atrophy-cerebellar type with umbilical cord mesenchymal stromal cells. Cytotherapy 13:913–917

    Article  PubMed  Google Scholar 

  115. Jin JL, Liu Z, Lu ZJ, Guan DN, Wang C, Chen ZB, Zhang J, Zhang WY, Wu JY, Xu Y (2013) Safety and efficacy of umbilical cord mesenchymal stem cell therapy in hereditary spinocerebellar ataxia. Curr Neurovascular Res 10:11–20

    Article  CAS  Google Scholar 

  116. Miao X, Wu X, Shi W (2015) Umbilical cord mesenchymal stem cells in neurological disorders: a clinical study. Indian J Biochem Biophys 52:140–146

    CAS  PubMed  Google Scholar 

  117. Fink KD, Deng P, Torrest A, Stewart H, Pollock K, Gruenloh W, Annett G, Tempkin T, Wheelock V, Nolta JA (2015) Developing stem cell therapies for juvenile and adult-onset Huntington’s disease. Regenerative Med 10:623–646

    Article  CAS  Google Scholar 

  118. Maucksch C, Vazey EM, Gordon RJ, Connor B (2013) Stem cell-based therapy for Huntington’s disease. J Cell Biochem 114:754–763

    Article  CAS  PubMed  Google Scholar 

  119. Barker RA, de Beaufort I (2013) Scientific and ethical issues related to stem cell research and interventions in neurodegenerative disorders of the brain. Prog Neurobiol 110:63–73

    Article  PubMed  Google Scholar 

  120. Dunnett SB, Rosser AE (2014) Challenges for taking primary and stem cells into clinical neurotransplantation trials for neurodegenerative disease. Neurobiol Dis 61:79–89

    Article  PubMed  Google Scholar 

  121. Aboody K, Capela A, Niazi N, Stern JH, Temple S (2011) Translating stem cell studies to the clinic for CNS repair: current state of the art and the need for a Rosetta stone. Neuron 70:597–613

    Article  CAS  PubMed  Google Scholar 

  122. Council EPa (2004) Directive 2004/23/EC of 31 March 2004, on setting standards of quality and safety for the donation, procurement, testing, processing, preservation, storage and distribution of human tissues and cells. J Eur Union, pp 48–58

    Google Scholar 

  123. Qiu Z, Farnsworth SL, Mishra A, Hornsby PJ (2013) Patient-specific induced pluripotent stem cells in neurological disease modeling: the importance of nonhuman primate models. Stem Cells Cloning Adv App 6:19–29

    Google Scholar 

  124. Chow A, Morshead CM (2016) Cyclosporin A enhances neurogenesis in the dentate gyrus of the hippocampus. Stem Cell Res 16:79–87

    Article  CAS  PubMed  Google Scholar 

  125. Erlandsson A, Lin CH, Yu F, Morshead CM (2011) Immunosuppression promotes endogenous neural stem and progenitor cell migration and tissue regeneration after ischemic injury. Exp Neurol 230:48–57

    Article  CAS  PubMed  Google Scholar 

  126. Dooley D, Vidal P, Hendrix S (2014) Immunopharmacological intervention for successful neural stem cell therapy: new perspectives in CNS neurogenesis and repair. Pharmacol Ther 141:21–31

    Article  CAS  PubMed  Google Scholar 

  127. Pluchino S, Zanotti L, Brambilla E, Rovere-Querini P, Capobianco A, Alfaro-Cervello C, Salani G, Cossetti C, Borsellino G, Battistini L et al (2009) Immune regulatory neural stem/precursor cells protect from central nervous system autoimmunity by restraining dendritic cell function. PLoS ONE 4:e5959

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Pluchino S, Zanotti L, Rossi B, Brambilla E, Ottoboni L, Salani G, Martinello M, Cattalini A, Bergami A, Furlan R et al (2005) Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism. Nature 436:266–271

    Article  CAS  PubMed  Google Scholar 

  129. Han SS, Williams LA, Eggan KC (2011) Constructing and deconstructing stem cell models of neurological disease. Neuron 70:626–644

    Article  CAS  PubMed  Google Scholar 

  130. Huch M, Koo BK (2015) Modeling mouse and human development using organoid cultures. Development 142:3113–3125

    Article  CAS  PubMed  Google Scholar 

  131. Kelava I, Lancaster MA (2016) Dishing out mini-brains: current progress and future prospects in brain organoid research. Dev Biol

    Article  CAS  PubMed  Google Scholar 

  132. Lancaster MA, Knoblich JA (2014) Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125

    Article  PubMed  CAS  Google Scholar 

  133. Ertl P, Sticker D, Charwat V, Kasper C, Lepperdinger G (2014) Lab-on-a-chip technologies for stem cell analysis. Trends Biotechnol 32:245–253

    Article  CAS  PubMed  Google Scholar 

  134. Ghaemmaghami AM, Hancock MJ, Harrington H, Kaji H, Khademhosseini A (2012) Biomimetic tissues on a chip for drug discovery. Drug Discov Today 17:173–181

    Article  CAS  PubMed  Google Scholar 

  135. Neuzi P, Giselbrecht S, Lange K, Huang TJ, Manz A (2012) Revisiting lab-on-a-chip technology for drug discovery. Nat Rev Drug Discovery 11:620–632

    Article  CAS  PubMed  Google Scholar 

  136. Maclean FL, Rodriguez AL, Parish CL, Williams RJ, Nisbet DR (2016) Integrating biomaterials and stem cells for neural regeneration. Stem Cells Dev 25:214–226

    Article  CAS  PubMed  Google Scholar 

  137. Gu Q, Tomaskovic-Crook E, Lozano R, Chen Y, Kapsa RM, Zhou Q, Wallace GG, Crook JM (2016) Functional 3D neural mini-tissues from printed gel-based bioink and human neural stem cells. Adv Healthc Mater 5:1429–1438

    Article  CAS  PubMed  Google Scholar 

  138. Hsieh FY, Lin HH, Hsu SH (2015) 3D bioprinting of neural stem cell-laden thermoresponsive biodegradable polyurethane hydrogel and potential in central nervous system repair. Biomaterials 71:48–57

    Article  CAS  PubMed  Google Scholar 

  139. Murphy SV, Atala A (2014) 3D bioprinting of tissues and organs. Nat Biotechnol 32:773–785

    Article  CAS  PubMed  Google Scholar 

  140. Juopperi TA, Kim WR, Chiang CH, Yu H, Margolis RL, Ross CA, Ming GL, Song H (2012) Astrocytes generated from patient induced pluripotent stem cells recapitulate features of Huntington’s disease patient cells. Mol Brain 5:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Zhang N, An MC, Montoro D, Ellerby LM (2010) Characterization of human Huntington’s disease cell model from induced pluripotent stem cells. PLoS Curr 2, RRN1193

    Article  PubMed  PubMed Central  Google Scholar 

  142. Marthaler AG, Tubsuwan A, Schmid B, Poulsen UB, Engelbrecht AF, Mau-Holzmann UA, Hyttel P, Nielsen TT, Nielsen JE, Holst B (2016) Generation of an isogenic, gene-corrected control cell line of the spinocerebellar ataxia type 2 patient-derived iPSC line H266. Stem Cell Res 16:202–205

    Article  CAS  PubMed  Google Scholar 

  143. Xia G, Santostefano K, Hamazaki T, Liu J, Subramony SH, Terada N, Ashizawa T (2013) Generation of human-induced pluripotent stem cells to model spinocerebellar ataxia type 2 in vitro. J Mol Neurosci 51:237–248

    Article  CAS  PubMed  Google Scholar 

  144. Luo Y, Fan Y, Zhou B, Xu Z, Chen Y, Sun X (2012) Generation of induced pluripotent stem cells from skin fibroblasts of a patient with olivopontocerebellar atrophy. Tohoku J Exp Med 226:151–159

    Article  CAS  PubMed  Google Scholar 

  145. An MC, Zhang N, Scott G, Montoro D, Wittkop T, Mooney S, Melov S, Ellerby LM (2012) Genetic correction of Huntington’s disease phenotypes in induced pluripotent stem cells. Cell Stem Cell 11:253–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luís Pereira de Almeida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mendonça, L.S., Onofre, I., Miranda, C.O., Perfeito, R., Nóbrega, C., de Almeida, L.P. (2018). Stem Cell-Based Therapies for Polyglutamine Diseases. In: Nóbrega, C., Pereira de Almeida, L. (eds) Polyglutamine Disorders. Advances in Experimental Medicine and Biology, vol 1049. Springer, Cham. https://doi.org/10.1007/978-3-319-71779-1_21

Download citation

Publish with us

Policies and ethics