Skip to main content

Recursion Operators for Symmetries

  • Chapter
  • First Online:
  • 524 Accesses

Part of the book series: Texts & Monographs in Symbolic Computation ((TEXTSMONOGR))

Abstract

A recursion operator for symmetries of an equation \(\mathcal {E}\) is a \(\mathcal {C}\)-differential operator \(\mathcal {R}\colon \varkappa =\mathcal {F}(\mathcal {E};m) \to \varkappa \) that takes symmetries of \(\mathcal {E}\) to themselves. We expose below a computational theory of such operators based on the tangent covering techniques. The simplest version of this theory relates to local operators, but in reality all recursion operators, except for the case of linear equations with constant coefficients, are nonlocal. Such operators, in general, act on shadows of symmetries only. Unfortunately, to the best of our knowledge, a self-contained theory for these operators (as well as for nonlocal operators of other types that are considered below) does not exist at the moment, but some reasonable ideas can be applied to particular classes of examples nevertheless. In this chapter, we give the solution to Problems 1.20 and 1.28.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This and many other examples that are discussed below were taken from [145, 146].

References

  1. Baran, H., Krasilshchik, I.S., Morozov, O.I., Vojčák, P.: Nonlocal symmetries of Lax integrable equations: a comparative study. Submitted to Theor. Math. Phys. (2016). arXiv:1611.04938

    Google Scholar 

  2. Dorfman, I.Y.: Dirac Structures and Integrability of Nonlinear Evolution Equations. Wiley, Chichester/New York (1993)

    MATH  Google Scholar 

  3. Kersten, P., Krasilshchik, I., Verbovetsky, A.: A geometric study of the dispersionless Boussinesq type equation. Acta Appl. Math. 90, 143–178 (2006)

    Google Scholar 

  4. Krasilshchik, I.S.: Algebras with flat connections and symmetries of differential equations. In: Komrakov, B.P., Krasilshchik, I.S., Litvinov, G.L., Sossinsky, A.B. (eds.) Lie Groups and Lie Algebras: Their Representations, Generalizations and Applications, pp. 407–424. Kluwer, Dordrecht/Boston (1998)

    Google Scholar 

  5. Krasilshchik, J., Verbovetsky, A., Vitolo, R.: A unified approach to computation of integrable structures. Acta Appl. Math. 120(1), 199–218 (2012)

    Google Scholar 

  6. Maltsev, A.Y., Novikov, S.P.: On the local systems Hamiltonian in the weakly non-local Poisson brackets. Phys. D 156(1–2), 53–80 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Malykh, A.A., Nutku, Y., Sheftel, M.B.: Partner symmetries of the complex Monge–Ampère equation yield hyper-Kähler metrics without continuous symmetries. J. Phys. A 36(39), 10023 (2003). arXiv:math-ph/0305037

    Google Scholar 

  8. Marvan, M.: Another look on recursion operators. In: Differential Geometry and Applications. Proceedings of the Conference, Brno, 1995, pp. 393–402. Masaryk University, Brno (1996)

    Google Scholar 

  9. Marvan, M., Sergyeyev, A.: Recursion operators for dispersionless integrable systems in any dimension. Inverse Prob. 28, 025011 (2012). arXiv:nlin/1107.0784

    Google Scholar 

  10. Morozov, O.I.: Recursion operators and nonlocal symmetries for integrable rmdKP and rdDym equations (2012). arXiv:nlin/1202.2308

    Google Scholar 

  11. Morozov, O.I.: A recursion operator for the Universal Hierarchy equation via Cartan’s method of equivalence. Cent. Eur. J. Math. 12(2), 271–283 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Neyzi, F., Nutku, Y., Sheftel, M.B.: Multi-hamiltonian structure of Plebanski’s second heavenly equation. J. Phys. A 38, 8473 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Sergyeyev, A.: Locality of symmetries generated by nonhereditary, inhomogeneous, and time-dependent recursion operators: a new application for formal symmetries. Acta Appl. Math. 83, 95–109 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Sergyeyev, A.: Why nonlocal recursion operators produce local symmetries: new results and applications. J. Phys. A 38(15), 3397–3407 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Sergyeyev, A.: Recursion operators for multidimensional integrable PDEs. (2017, Submitted). arXiv:1710.05907

    Google Scholar 

  16. Sergyeyev, A.: A simple construction of recursion operators for multidimensional dispersionless integrable systems. J. Math. Anal. Appl. 454, 468–480 (2017). arXiv:1501.01955

    Google Scholar 

  17. Sheftel, M.B., Malykh, A.A.: On classification of second-order PDEs possessing partner symmetries. J. Phys. A 42(39), 395202 (2009). arXiv:0904.2909

    Google Scholar 

  18. Wang, J.P.: Symmetries and Conservation Laws of Evolution Equations. PhD thesis, Vrije Universiteit/Thomas Stieltjes Institute, Amsterdam (1998)

    Google Scholar 

  19. Wang, J.P.: A list of 1 + 1 dimensional integrable equations and their properties. J. Nonlinear Math. Phys. 9, 213–233 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krasil’shchik, J., Verbovetsky, A., Vitolo, R. (2017). Recursion Operators for Symmetries. In: The Symbolic Computation of Integrability Structures for Partial Differential Equations. Texts & Monographs in Symbolic Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-71655-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71655-8_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71654-1

  • Online ISBN: 978-3-319-71655-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics