Skip to main content

Abstract

A variational Poisson structure on a differential equation \(\mathcal {E}\) is a \(\mathcal {C}\)-differential operator that takes cosymmetries of \(\mathcal {E}\) to its symmetries and possesses the necessary integrability properties. In the literature on integrable systems, Poisson structures are traditionally called Hamiltonian operators. We expose here the computational theory of local variational Poisson structures for normal equations. In this chapter the solutions of Problems 1.24, 1.25, 1.26, and 1.28 is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blaszak, M., Szablikowski, B.M.: Classical r-matrix theory of dispersionless systems: Ii. (2 + 1)-dimension theory. J. Phys. A 35, 10345 (2002). arXiv:nlin/0211018

    Google Scholar 

  2. Dubrovin, B.A., Novikov, S.P.: Poisson brackets of hydrodynamic type. Soviet Math. Dokl. 30, 651–654 (1984)

    MATH  Google Scholar 

  3. Dubrovin, B.A.: Geometry of 2d topological field theories. Lect. Notes Math. 1620, 120–348 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ferapontov, E.V., Galvao, C.A.P., Mokhov, O., Nutku, Y.: Bi-hamiltonian structure of equations of associativity in 2-d topological field theory. Commun. Math. Phys. 186, 649–669 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ferapontov, E.V., Lorenzoni, P., Savoldi, A.: Hamiltonian operators of Dubrovin–Novikov type in 2d. Lett. Math. Phys. 105(3), 341–377 (2014). arXiv:1312.0475

    Google Scholar 

  6. Ferapontov, E.V., Pavlov, M.V., Vitolo, R.F.: Projective-geometric aspects of homogeneous third-order hamiltonian operators. J. Geom. Phys. 85, 16–28 (2014). https://doi.org/10.1016/j.geomphys.2014.05.027

    Article  MathSciNet  MATH  Google Scholar 

  7. Ferapontov, E.V., Pavlov, M.V., Vitolo, R.F.: Towards the classification of homogeneous third-order Hamiltonian operators. Int. Math. Res. Not. 22, 6829–6855 (2016)

    MathSciNet  Google Scholar 

  8. Ferapontov, E.V., Pavlov, M.V., Vitolo, R.F.: Systems of conservation laws with third-order Hamiltonian structures’, to appear in Lett. Math. Phys. (2018)

    Google Scholar 

  9. Kersten, P., Krasilshchik, I., Verbovetsky, A.: On the integrability conditions for some structures related to evolution differential equations. Acta Appl. Math. 83, 167–173 (2004)

    Google Scholar 

  10. Krasilshchik, J., Verbovetsky, A.M.: Geometry of jet spaces and integrable systems. J. Geom. Phys. 61, 1633–1674 (2011). arXiv:1002.0077

    Google Scholar 

  11. Neyzi, F., Nutku, Y., Sheftel, M.B.: Multi-hamiltonian structure of Plebanski’s second heavenly equation. J. Phys. A 38, 8473 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Pavlov, M.V., Vitolo, R.F.: On the bi-Hamiltonian geometry of the WDVV equations. Lett. Math. Phys. 105(8), 1135–1163 (2015)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krasil’shchik, J., Verbovetsky, A., Vitolo, R. (2017). Variational Poisson Structures. In: The Symbolic Computation of Integrability Structures for Partial Differential Equations. Texts & Monographs in Symbolic Computation. Springer, Cham. https://doi.org/10.1007/978-3-319-71655-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71655-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71654-1

  • Online ISBN: 978-3-319-71655-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics