Skip to main content

Examining the Science Behind Skin Lines Currently Used for Surgical Excisions, and Introducing a New Concept of BEST (Biodynamic Excisional Skin Tension) Lines

  • Chapter
  • First Online:
Biodynamic Excisional Skin Tension Lines for Cutaneous Surgery

Abstract

Surgical literature is inundated with references to Langer’s Lines, Cleavage Lines, Wrinkle Lines and Skin Tension Lines. The author undertakes a detailed literature review to understand current evidence behind skin lines in cutaneous surgery and puts forward a hypothesis that incisional and excisional lines are different. While the lines mentioned above are fine for making incisions, when wound tension is created after excision of skin lesions or cancers, as opposed to creating incisions for egress, the dynamics change—and therefore (what the author terms) Biodynamic Excisional Skin Tension Lines matter and need to be determined accurately. Further, areas like the scalp (due to no underlying attachment of muscles and the galeal aponeurosis layer) and the lower limb (due to the vascular plane) need special considerations in cutaneous surgery. Therefore, when it comes to current practice in dermatological and cutaneous surgery, the science of skin biodynamics suggests that best excisional lines do not always conform to current surgical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dupuytren G. Traité théorique et pratique des blessures par armes de guerre. Paris; 1834.

    Google Scholar 

  2. Langer K. On the anatomy and physiology of the skin, I: the cleavability of the cutis. Br J Plast Surg. 1978;31(1):3–8.

    Article  Google Scholar 

  3. Gibson T. Karl Langer (1819–1887) and his lines. Br J Plast Surg. 1978;31(1):1–2.

    Article  CAS  PubMed  Google Scholar 

  4. Langer K. Zur Anatomie und Physiologie der Haut. Über die Spaltbarkeit der Cutis. Sitzungsbericht der Mathematisch-naturwissenschaftlichen Classe der Wiener Kaiserlichen Academie der Wissenschaften 1861, Abt 44.

    Google Scholar 

  5. Kocher ET. Chirurgische Operationslehre. Jena; 1982.

    Google Scholar 

  6. Malgaigne JF. Traite d’anatomie Chirurgicale et de Chirurgie Experimentale. Paris: J.B. Baillie’re; 1834.

    Google Scholar 

  7. Peng W, Tan C. Lichen planus pigmentosus-inversus following Langer’s lines of cleavage: a rare clinical presentation. Dermatol Sin. 2015;33:241–2.

    Article  Google Scholar 

  8. Wollenberg A, Eames T. Skin diseases following a Christmas tree pattern. Clin Dermatol. 2011;29:189–94.

    Article  PubMed  Google Scholar 

  9. Faga A. A new method to visualize Langer’s lines. J Dermatol Surg Oncol. 1981;7(1):53–5.

    Article  CAS  PubMed  Google Scholar 

  10. Gibson T, Kenedi RM. The structural components of the dermis and their mechanical characteristics. In: Montagna W, Bentley JP, Dobson RL, editors. Advances in biology of skin, vol. 10. New York: Appleton-Century-Crofts; 1970. p. 34–7.

    Google Scholar 

  11. Eschricht K. Ueber die Richtung der Haare am menschlichen Koerpen, Miiller’s Arch. 1837, rec. by Poirot P and Charpy A. Traite d’Anatomie Hurnaine. Paris: Masson; 1899. p. 886.

    Google Scholar 

  12. Hutchinson C, Koop CE. Lines of cleavage in the skin of the newborn infant. Anat Rec. 1956;126:299–310.

    Article  CAS  PubMed  Google Scholar 

  13. Sawhney CP, Monga HL. Wound contraction in rabbits and the effectiveness of skin grafts in preventing it. Br J Plast Surg. 1971;24(3):233–7.

    Article  CAS  PubMed  Google Scholar 

  14. Kennedy DF, Cliff WJ. A systemic study of wound contraction in mammalian skin. J Pathol. 1979;11:207–22.

    CAS  Google Scholar 

  15. Gross JP, Farinelli W, Sadow P, Anderson R, Bruns R. On the mechanism of skin wound “contraction”: a granulation tissue “knockout” with a normal phenotype. Proc Natl Acad Sci U S A. 1995;12:5982–6.

    Article  Google Scholar 

  16. Catty RHC. Healing and contraction of experimental full thickness wounds in the human. Br J Surg. 1965;52:542–8.

    Article  CAS  PubMed  Google Scholar 

  17. Billingham RE, Medawar PB. Contracture and intussusceptive growth in the healing of extensive wounds in mammalian skin. J Anat. 1955;89:114–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bulacio Nuñez AW. A new theory regarding the lines of skin tension. Plast Reconstr Surg. 1974;53:663–9.

    Article  PubMed  Google Scholar 

  19. Ridge MD, Wright V. The directional effects of skin. A bioengineering study of skin, with particular reference to Langer’s lines. J Invest Dermatol. 1966;46:341–34.

    Article  CAS  PubMed  Google Scholar 

  20. Bush JA, Ferguson MWJ, Mason T, McGrouther DA. Skin tension or skin compression? Small circular wounds are likely to shrink, not gape. J Plast Reconstr Aesthet Surg. 2008;61(5):529–34.

    Article  PubMed  Google Scholar 

  21. Langer K. On the anatomy and physiology of the skin II. Skin tension. Br J Plast Surg. 1978;31:93–106.

    Article  Google Scholar 

  22. Ksander GA, Vistnes LM, Rose EH. Excisional wound biomechanics, skin tension lines and elastic contraction. Plast Reconstr Surg. 1977;59(3):398–406.

    Article  CAS  PubMed  Google Scholar 

  23. Bush J, Ferguson MW, Mason T, McGrouther G. The dynamic rotation of Langer’s lines on facial expression. J Plast Reconstr Aesthet Surg. 2007;60:393–9.

    Article  PubMed  Google Scholar 

  24. Borges AF. Relaxed skin tension lines (RSTL) versus other skin lines. Plast Reconstr Surg. 1984;73:144–50.

    Article  CAS  PubMed  Google Scholar 

  25. Nakano Y, Motegi K. Orientation of cleavage lines, fibrous connective tissues and blood vessels in the facial skin. J Maxillofac Surg. 1983;11(2):58–63.

    Article  CAS  PubMed  Google Scholar 

  26. Motegi K. Consideration of the formation and biological significance of hypertrophic scar. J Maxillofac Surg. 1984;12:123–7.

    Article  CAS  PubMed  Google Scholar 

  27. Niijima Y. The structure of connective tissues. J Japan Med Soc. 1962;4:374.

    Google Scholar 

  28. Reihsner R, Balogh B, Menzel EJ. Two-dimensional elastic properties of human skin in terms of an incremental model at the in vivo configuration. Med Eng Phys. 1995;17(4):304–13.

    Article  CAS  PubMed  Google Scholar 

  29. Daly CH, Odland GF. Age-related changes in the mechanical properties of human skin. J Invest Dermatol. 1979;73:84–7.

    Article  CAS  PubMed  Google Scholar 

  30. Escoffier C, de Rigal J, Rochefort A, Vasselet R, Leveque JL, Agache PG. Age-related mechanical properties of human skin: an in vivo study. J Invest Dermatol. 1989;93(3):353–7.

    Article  CAS  PubMed  Google Scholar 

  31. Lanir Y. A structural theory for the homogeneous biaxial stress-strain relationship in flat collagenous tissue. J Biomech. 1979;12:423–36.

    Article  CAS  PubMed  Google Scholar 

  32. Lanir Y, Fung YC. Two-dimensional mechanical properties of rabbit skin. I. Experimental system. J Biomech. 1974;7(1):29–34.

    Article  CAS  PubMed  Google Scholar 

  33. Lanir Y, Fung YC. Two-dimensional mechanical properties of rabbit skin. II. Experimental results. J Biomech. 1974;7(2):171–82.

    Article  CAS  PubMed  Google Scholar 

  34. Wilhelmi BJ, Blackwell SJ, Phillips LG. Langer’s lines: to use or not to use. Plast Reconstr Surg. 1999;104(1):208–14.

    Article  CAS  PubMed  Google Scholar 

  35. Malgaigne JF. Traité d’anatomie chirurgicale et de chirurgie expérimentale. Paris: J.B. Baillie’re; 1838.

    Google Scholar 

  36. Blocker TG, Hendrix JH, Herrmann GC, Hall E. Application of technics of reconstructive surgery to certain problems in general surgery. Ann Surg. 1949;129(6):777–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Courtiss EH, Longarcre JJ, deStefano GA, et al. The placement of elective skin incisions. Plast Reconstr Surg. 1963;31:31–44.

    Article  CAS  PubMed  Google Scholar 

  38. Mansfield EW. Gravity-induced wrinkle lines in vertical membranes. Proc R Soc Lond. 1981;375:307–25.

    Article  Google Scholar 

  39. Jankauskas S, Cohen IK, Grabb WC. Basic techniques of plastic surgery. In: Smith JW, Aston SJ, editors. Plastic surgery. 4th ed. Boston: Little, Brown and Company; 1991.

    Google Scholar 

  40. Tellioğlu AT. Determination of wrinkle lines with a transparent adhesive sheet. Plast Reconstr Surg. 2001;108(3):803–4.

    Article  PubMed  Google Scholar 

  41. Waldorf JC, Perdikis G, Terkonda SP. Planning incisions. Oper Tech Gen Surg. 2002;4(3):199–206.

    Article  Google Scholar 

  42. Namiki Y, Fukuta K, Alani H. The directions of static skin tensions in the face: their roles in facial incisions. Ann Plast Surg. 1992;28(2):147–51.

    Article  CAS  PubMed  Google Scholar 

  43. Danielson DA. Wrinkling of the human skin. J Biomech. 1977;10(3):201–4.

    Article  CAS  PubMed  Google Scholar 

  44. Danielson DA, Natarajan S. Tension field theory and the stress in stretched skin. J Biomech. 1975;8:135–42.

    Article  CAS  PubMed  Google Scholar 

  45. Griffiths CE. The clinical identification and quantification of photodamage. Br J Dermatol. 1992;127:37–42.

    Article  PubMed  Google Scholar 

  46. Gilchrest BA. Skin aging and photoaging: an overview. J Am Acad Dermatol. 1989;21:610–3.

    Article  CAS  PubMed  Google Scholar 

  47. Tagami H. Functional characteristics of the stratum corneum in photoaged skin in comparison with those found in intrinsic aging. Arch Dermatol Res. 2008;300:S1–6.

    Article  PubMed  Google Scholar 

  48. Waller JM, Maibach HI. A quantitative approach to age and skin structure and function: protein, glycosaminoglycan, water, and lipid content and structure. In: Barel AO, Paye M, Maibach HI, editors. Handbook of cosmetic science and technology. 3rd ed. London: Informa Health Care; 2009. p. 243–60.

    Google Scholar 

  49. Bosset S, Barre P, Chalon A, Kurfurst R, Bonte F, Andre P, Nicolas J. Skin ageing: clinical and histopathologic study of permanent and reducible wrinkles. Eur J Dermatol. 2002;12:247–52.

    PubMed  Google Scholar 

  50. Piérard GE, Lapière CM. The microanatomical basis of facial frown lines. Arch Dermatol. 1989;125:1090–2.

    Article  PubMed  Google Scholar 

  51. Contet-Audonneau JL, Jeanmaire C, Pauly G. A histological study of human wrinkle structures: comparison between sun-exposed areas of the face, with or without wrinkles, and sun-protected areas. Br J Dermatol. 1999;140:1038–47.

    Article  CAS  PubMed  Google Scholar 

  52. Tsuji T, Yorifuji T, Hayashi Y, Hamada T. Light and scanning electron microscopic studies on wrinkles in aged persons’ skin. Br J Dermatol. 1986;114:329–35.

    Article  CAS  PubMed  Google Scholar 

  53. Scott I, Green MR. The human periorbital wrinkle. In: Baran R, Maibach HI, editors. Textbook of cosmetic dermatology. New York: Taylor & Francis; 2004. p. 277–82.

    Google Scholar 

  54. Humbert P, Viennet C, Legagneux K, Grandmottet F, Robin S, Oddos T, Muret P. In the shadow of the wrinkle: theories. J Cosmet Dermatol. 2012;11(1):72–8.

    Article  PubMed  Google Scholar 

  55. Yasui T, Takahashi Y, Ito M, Fukushima S, Araki T. Observation of dermal collagen fiber in wrinkled skin using polarization-resolved second-harmonic-generation microscopy. Opt Express. 2009;17:912–23.

    Article  CAS  PubMed  Google Scholar 

  56. Piérard GE, Uhoda I, Piérard-Franchimont C. From skin microrelief to wrinkles: an area ripe for investigation. J Cosmet Dermatol. 2003;2:21–8.

    Article  PubMed  Google Scholar 

  57. Genzer J, Groenewold J. Soft matter with hard skin: from skin wrinkles to templating and material characterization. Soft Matter. 2006;2:310–23.

    Article  CAS  PubMed  Google Scholar 

  58. Agache PG, Humbert P. Measuring the skin. Berlin: Springer; 2004. p. 727–57.

    Book  Google Scholar 

  59. Kuwazuru O, Saothong J, Yoshikawa N. Mechanical approach to aging and wrinkling of human facial skin based on the multistage buckling theory. Med Eng Phys. 2008;30:516–22.

    Article  PubMed  Google Scholar 

  60. Magnenat-Thalmann N, Kalra P, Lévêque JL, Bazin R, Batisse D, Querleux B. A computational skin model: fold and wrinkle formation. IEEE Trans Inf Technol Biomed. 2002;6:317–23.

    Article  PubMed  Google Scholar 

  61. Flynn C, McCormack BAO. Finite element modelling of forearm skin wrinkling. Skin Res Technol. 2008;14:261–9.

    Article  PubMed  Google Scholar 

  62. Wulf HC, Sandby-Møller J, Kobayasi T, Gniadecki R. Skin aging and natural photoprotection. Micron. 2004;35:185–91.

    Article  CAS  PubMed  Google Scholar 

  63. Sang PI, Hodgins JK. Capturing and animating skin deformation in human motion. ACM Trans Graph. 2006;25:881–9.

    Article  Google Scholar 

  64. Terzopoulos D, Waters K. Physically-based facial modeling, analysis, and animation. J Visual Comp Animat. 1990;1:73–80.

    Article  Google Scholar 

  65. Rose EH, Vistnes LM, Ksander VA. Skin tension lines in the domestic pig. Plast Reconstr Surg. 1976;57(6):729–32.

    Article  CAS  PubMed  Google Scholar 

  66. Nomura Y, Ota M, Tochimaru H. Self-healing congenital generalized skin creases: Michelin tire baby syndrome. J Am Acad Dermatol 2010;63(6):1110–1.

    Article  PubMed  Google Scholar 

  67. Makrantonaki E, Bekou V, Zouboulis CC. Genetics and skin aging. Dermatoendocrinology. 2012;4(3):280–4.

    Article  Google Scholar 

  68. Christoffersen M, Frikke-Schmidt R, Schnohr P, Jensen GB, Nordestgaard BG, Tybjærg-Hansen A. Visible age-related signs and risk of ischemic heart disease in the general population: a prospective cohort study. Circulation. 2014;129(9):990–8.

    Article  PubMed  Google Scholar 

  69. Universitat Autònoma de Barcelona. Why Shar Pei dogs have so many wrinkles. Science Daily. 2008; 16 Nov 2008.

    Google Scholar 

  70. Borges AF. Relaxed skin tension lines. Dermatol Clin. 1989;7:169–77.

    Article  CAS  PubMed  Google Scholar 

  71. Kraissl CJ, Conway H. Excision of small tumors of the skin of the face with special reference to the wrinkle lines. Surgery. 1949;25(4):592–600.

    CAS  PubMed  Google Scholar 

  72. Thacker JG, Stalnecker MC, Allaire PE, Edgerton MT, Rodeheaver GT, Edlich RF. Practical applications of skin biomechanics. Clin Plast Surg. 1977;4(2):167–71.

    CAS  PubMed  Google Scholar 

  73. Borges AF, Alexander JE. Relaxed skin tension lines, z-plasties on scars, and fusiform excision of lesions. Br J Plast Surg. 1962;15:242–54.

    Article  CAS  PubMed  Google Scholar 

  74. Cox AT. The cleavage lines of the skin. Br J Surg. 1941;29:234.

    Article  Google Scholar 

  75. Rubin LR. Langer’s lines and facial scars. Plast Reconstr Surg. 1948;3:147–55.

    Article  CAS  Google Scholar 

  76. Borges AF. Elective incisions and scar revision. Boston: Little, Brown and Company; 1973.

    Google Scholar 

  77. Sarifakioglu N, Terzioglu A, Ates L, et al. A new phenomenon: “sleep lines” on the face. Scand J Plast Reconstr Surg Hand Surg. 2004;38:244–7.

    Article  PubMed  Google Scholar 

  78. Kraissl CJ. The selection of appropriate lines for elective surgical incisions. Plast Reconstr Surg (1946). 1951;8(1):1–28.

    Article  CAS  Google Scholar 

  79. Pierard GE, Lapiere CM. Microanatomy of the dermis in relation to relaxed skin tension lines and Langer’s lines. Am J Dermatopathol. 1987;9:219–24.

    Article  CAS  PubMed  Google Scholar 

  80. Langer K. Zur Anatomie und Physiologie der Haul.III. Uber die Elasticitiit der Cutis. Sitzungsber Math Cl Kaiserlich Acad Wiss. 1862;45:156.

    Google Scholar 

  81. Gillespie PH, Banwell PE, Hormbrey EL, et al. A new model for assessment in plastic surgery: knowledge of relaxed skin tension lines. Br J Plast Surg. 2000;53:243–4.

    Article  CAS  PubMed  Google Scholar 

  82. Su CW, Alizadeh K, Lee RC. The scar problem. Clin Plast Surg. 1998;25:451.

    CAS  PubMed  Google Scholar 

  83. Scott P, Gahary A, Chambers M, et al. Biological basis of hypertrophic scarring. Adv Struct Biol. 1994;3:157.

    Google Scholar 

  84. Grinell F, Zhu M, Carlson MA, Abrams JM. Release of mechanical tension triggers apoptosis of human fibroblasts in a model of regressing granulation tissue. Exp Cell Res. 1999;248:608.

    Article  Google Scholar 

  85. Mustoe TA. Prevention of excessive scar formation: a surgical perspective. In: Teot L, Ziegler UE, Banwell PE, editors. Surgery in wounds. Berlin: Springer; 2004. p. 489.

    Google Scholar 

  86. Pierard GE, Pierard-Franchimont C, Lapiere CM. Histopathology aid at the diagnosis of the Ehlers-Danlos syndrome gravis and mitis types. Int J Dermatol. 1983;22:300–4.

    Article  CAS  PubMed  Google Scholar 

  87. Pierard GE. Syndrome d’Ascher et Cutis Laxa. Ann Dermatol Venereol. 1983;110:237–40.

    CAS  PubMed  Google Scholar 

  88. Kenedi RM, Gibson T. Etude Experimentale des Tensions de la Peau dans le Corps I-fumain-Systeme de Mesure des Forces et Resultats. Rev Franc Mecan. 1962;4:121.

    Google Scholar 

  89. Zahouani H, Djaghloul M, Vargiolu R, Mezghani S, Mansori MEL. Contribution of human skin topography to the characterization of dynamic skin tension during senescence: morpho-mechanical approach. J Phys Conf Ser. 2014;483:1. https://doi.org/10.1088/1742-6596/483/1/012012.

    Article  Google Scholar 

  90. Lawrence-Katz J. Anisotropy of Young’s modulus of bone. Nature. 1980;283(5742):106.

    Article  Google Scholar 

  91. Stark HL. Directional variations in the extensibility of human skin. Br J Plast Surg. 1977;30:105–14.

    Article  CAS  PubMed  Google Scholar 

  92. Barbenel JC. Identification of Langer’s lines. In: Serup J, Jemec GBE, editors. Handbook of non-invasive methods and the skin. Boca Raton: CRC Press; 1995. p. 341–4.

    Google Scholar 

  93. Zahouani H. Méthodes de caractérisation de la surface cutanée. Encyclopédie Médico-Chirurgicale. Editions Scientifiques et Médicales. Paris: Elsevier SAS; 2012. p. 50–140, H-10.

    Google Scholar 

  94. Zahouani H, Vargiolu R. Skin line morphology: tree and branches. Editions Springer measuring the skin. sous la direction du Professeur P. AGACHE; 2005. p. 40–59.

    Chapter  Google Scholar 

  95. Hashimoto L. New methods for surface ultrastructure. Int J Dermatol. 1974;13:357–81.

    Article  CAS  PubMed  Google Scholar 

  96. Gibson T, Kenedi RM, Craik JE. The mobile micro-architecture of dermal collagen: a bioengineering study. Br J Surg. 1965;52(10):764–70.

    Article  CAS  PubMed  Google Scholar 

  97. Morgan FR. The mechanical properties of collagen fibres-stress/strain curves. Soc Leather Tr Chem. 1960;44:170.

    CAS  Google Scholar 

  98. Kenedi RM, Gibson T, Daly CH. Bioengineering studies of the human skin, the effect of unidirectional tension. London: Butterworth; 1965.

    Google Scholar 

  99. Vogel HG. Effects of age on the biomechanical and biochemical properties of rat and human skin. J Soc Cosmet Chem. 1983;34:453–63.

    Google Scholar 

  100. Brown RE, Butler JP, Rogers RA, Leith DE. Mechanical connections between elastin and collagen. Connect Tissue Res. 1994;30:295.

    Article  CAS  PubMed  Google Scholar 

  101. Staloff IA, Guan E, Katz S, Rafailovitch M, Sokolov A, Sokolov S. An in vivo study of the mechanical properties of facial skin and influence of aging using digital image speckle correlation. Skin Res Technol. 2008;14(2):127–34.

    Article  PubMed  Google Scholar 

  102. Agache PG, Monneur C, Leveque JL, et al. Mechanical properties and Young’s modulus of human skin in vivo. Arch Dermatol Res. 1980;269:221–32.

    Article  CAS  PubMed  Google Scholar 

  103. Silver F, Siperko L, Seehra G. Mechanobiology of force transduction in dermal tissue. Skin Res Technol. 2003;9:3–23.

    Article  PubMed  Google Scholar 

  104. Balin A, Kligman A. Aging and the skin. New York: Raven Press; 1989.

    Google Scholar 

  105. Wilkes G, Brown I, Wildnauer R. The biomechanical properties of skin. CRC Crit Rev Biomed. 1973;1(4):453–95.

    CAS  Google Scholar 

  106. Carmichael SW. The tangled web of Langer’s lines. Clin Anat. 2014;27:162–8.

    Article  PubMed  Google Scholar 

  107. Howes EL, Harvey SC. Clinical significance of experimental studies in wound healing. Ann Surg. 1935;102:94.

    Article  Google Scholar 

  108. Howes EL, Sooy J, Harvey SC. Healing of wounds as determined by their tensile strength. JAMA. 1929;92:42.

    Article  Google Scholar 

  109. Capek L, Jacquet E, Dzan L, Simunek A. The analysis of forces needed for the suturing of elliptical skin wounds. Med Biol Eng Comput. 2012;50:193–8.

    Article  PubMed  Google Scholar 

  110. Wunderlich RC, Heerema NA. Hair crown patterns of human newborns. Studies on parietal hair whorl locations and their directions. Clin Pediatr. 1975;14(11):1045–9.

    Article  CAS  Google Scholar 

  111. Tolhurst MD, Carstens MH, Greco RJ, Hurwitz DJ. The surgical anatomy of the scalp. Plast Reconstr Surg. 1991;87:603.

    Article  CAS  PubMed  Google Scholar 

  112. Jackson IT. General considerations. In: Jackson IT, editor. Local flaps in head and neck reconstruction. St. Louis: Mosby; 1985. p. 4–5.

    Google Scholar 

  113. Azzoloni A, Riberti C, Caalca D. Skin expansion in head and neck reconstructive surgery. Plast Reconstr Surg. 1992;90:799.

    Article  Google Scholar 

  114. Sasaki GH. Intraoperative sustained limited expansion (ISLE) as an immediate reconstructive technique. Clin Plast Surg. 1987;14:563.

    CAS  PubMed  Google Scholar 

  115. Camirand A, Doucet JA. Comparison between parallel hairline incisions and perpendicular incisions when performing a facelift. Plast Reconstr Surg. 1995;99:10.

    Article  Google Scholar 

  116. Paul SP. Rotation flaps of the scalp: study of the design, planning and biomechanics of single, double and triple pedicle flaps. In: Paul SP, Norman RA, editors. Clinical cases in skin cancer surgery and treatment, clinical cases in dermatology. Basel: Springer; 2016. p. 31–44.

    Chapter  Google Scholar 

  117. Cutting C. Critical closing and perfusion pressures in flap survival. Ann Plast Surg. 1982;9:524.

    Article  CAS  PubMed  Google Scholar 

  118. Topaz M, Carmel NN, Topaz G, Li M, Li YZ. Stress–relaxation and tension relief system for immediate primary closure of large and huge soft tissue defects: an old–new concept: new concept for direct closure of large defects. Medicine. 2014;93(28):e234.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Raposio E, Nordström RE. Biomechanical properties of scalp flaps and their correlations to reconstructive and aesthetic surgery procedures. Skin Res Technol. 1998;4:94–8.

    Article  CAS  PubMed  Google Scholar 

  120. Paul SP, Matulich J, Charlton NA. New skin tensiometer device: computational analyses to understand biodynamic excisional skin tension lines. Sci Rep. 2016;6:30117. https://doi.org/10.1038/srep30117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Paul SP. The keystone design perforator island flap: an easy option for the lower limb, but how does it actually work? In: Paul SP, Norman RA, editors. Clinical cases in skin cancer surgery and treatment, clinical cases in dermatology. Basel: Springer; 2016. p. 65–79.

    Chapter  Google Scholar 

  122. Behan FC, Terrill PJ, Breidahl A, Cavallo A, Ashton M. Island flaps including the Bezier type in the treatment of malignant melanoma. Aust N Z J Surg. 1995;65:870–80.

    Article  CAS  PubMed  Google Scholar 

  123. Taylor GI, Doyle M, McCarten G. The Doppler probe for planning flaps: anatomical study and clinical applications. Br J Plast Surg. 1990;43:1–16.

    Article  CAS  PubMed  Google Scholar 

  124. Behan FC. The keystone design perforator island flap in reconstructive surgery. ANZ J Surg. 2003;73:112–20.

    Article  PubMed  Google Scholar 

  125. Behan FC, Lo C. Principles and misconceptions regarding the keystone island flap. Ann Surg Oncol. 2009;16:1722–3.

    Article  PubMed  Google Scholar 

  126. Milton SH. Experimental studies on island flaps. Plast Reconstr Surg. 1972;48(6):574–8.

    Article  Google Scholar 

  127. Jordan DJ, Malahias M, Hindocha S, Juma A. Flap decisions and options in soft tissue coverage of the lower limb. Open Orthop J. 2014;8:423–32.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Haertsch PA. The surgical plane in the leg. Br J Plast Surg. 1981;34:464–9.

    Article  CAS  PubMed  Google Scholar 

  129. Douglas CD, Low NC, Seitz MJ. The ‘keystone concept’: time for some science. Perspectives ANZ J Surg. 2013;83:498–504.

    Article  Google Scholar 

  130. Douglas CD, Low NC, Seitz MJ. The keystone flap: not an advance, just a stretch. Ann Surg Oncol. 2013;20:973–80.

    Article  PubMed  Google Scholar 

  131. Leshin B, Whitaker DC, Swanson NA. An approach to patient assessment and preparation in cutaneous oncology. J Am Acad Dermatol. 1988;19:1081–8.

    Article  CAS  PubMed  Google Scholar 

  132. Balch CM, Milton GW, Shaw HM, Seng-Jaw S. Cutaneous melanoma. Philadelphia: JB Lippincott; 1985. p. 71–90.

    Google Scholar 

  133. Bennett RG. Fundamentals of cutaneous surgery. St. Louis: CV Mosby; 1988. p. 353–44.

    Google Scholar 

  134. Leshin B. Proper planning and execution of surgical excisions. Chapter 15: Basic surgical concepts and procedures. In: Wheeland RG, editor. Cutaneous surgery. Philadelphia: WB Saunders; 1994. p. 171–7.

    Google Scholar 

  135. Bernstein L. Incisions and excisions in elective facial surgery. Arch Otolaryngol. 1973;97:238–43.

    Article  CAS  PubMed  Google Scholar 

  136. Pinkus F. Die Faltung der Haut. In: Pinkus F, editor. Die normale Anatomie der Haut. Jadassohn’s Handbuch der Haut und Geschlechtskrankheiten, vol. 1. Berlin: Springer; 1927. p. 4–76.

    Google Scholar 

  137. Pinkus F. Die Faltung der Haut. In: Pinkus F, editor. Die normale Anatomie der Haut. Jadassohn’s Handbuch der Haut und Geschlechtskrankheiten, vol. 1. Berlin: Springer; 1927. p. 4–76.

    Google Scholar 

  138. Paul SP. Biodynamic excisional skin tension (BEST) lines: revisiting Langer’s lines, skin biomechanics, current concepts in cutaneous surgery, and the (lack of) science behind skin lines used for surgical excisions. J Dermatol Res. 2017;2(1):77–87.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Paul, S.P. (2018). Examining the Science Behind Skin Lines Currently Used for Surgical Excisions, and Introducing a New Concept of BEST (Biodynamic Excisional Skin Tension) Lines. In: Biodynamic Excisional Skin Tension Lines for Cutaneous Surgery . Springer, Cham. https://doi.org/10.1007/978-3-319-71495-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71495-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71494-3

  • Online ISBN: 978-3-319-71495-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics