Skip to main content

Resilience Measures in Ecosystems and Socioeconomic Networks

  • Chapter
  • First Online:
Systems Analysis Approach for Complex Global Challenges

Abstract

Background and Significance of the topic: This chapter contributes to the documentation of novel network-based resilience concepts to socio-ecological systems. Although the resilience concept has been studied in depth in ecological systems, it surely has relevance outside this area and in recent years has been a main domain of study for socioeconomic systems. This chapter provides an overview of the application of resilience concepts in ecology, with a particular focus on the application of two methods developed using ecological network analysis. Methodology: The first method uses information-theory based network analysis to ascertain the trade-off between efficiency and redundancy in networks (in terms of the structure and flows). The second method uses an energy-flow based method to assess keystoneness and the direct and indirect relations in the networks. Application/Relevance to systems analysis: Earlier work using information-theory based network analysis has shown that ecological systems display a robust balance between efficiency and redundancy in networks (in terms of the structure and flows) thereby bestowing them with robust and resilient features. Results indicate that a dam ecosystem in southwest China falls just short of the optimum but suffers substantial loss of robustness when the phytoplankton community is perturbed. Application to a virtual water network shows the system is not near the robustness peak. Using the energy-flow based method, a South African estuary showed alteration of the keystone species depending on the seasonality; a land use change model of Beijing showed a decrease in mutualism due to urban expansion. Policy and/or practice implications: The case studies presented illustrate the application of ecological network analysis. Positive and negative relations between sectors of ecosystems or economic systems highlight the influence of various species and economies on one another, resulting in a comprehensive picture of relations, impacts and therefore management options to achieve balance between sectors. Discussion and conclusion: Overall, networks provided a useful model to illustrate system resilience measures, and other system analysis methods of direct and indirect impacts of system components on each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Admiraal, J. F., Wossink, A., De Groot, W. T., & De Snoo, G. R. (2013). More than total economic value: How to combine economic valuation of biodiversity with ecological resilience. Ecological Economics, 89, 115–122.

    Article  Google Scholar 

  • Allesina, S., & Pascual, M. (2008). Network structure, predator—prey modules, and stability in large food webs. Theoretical ecology, 1, 55–64.

    Article  Google Scholar 

  • Carpenter, S., Walker, B., Anderies, J. M., & Abel, N. (2001). From metaphor to measurement: Resilience of what to what? Ecosystems, 4, 765–781.

    Article  Google Scholar 

  • Chapin IIIi, F. S., Zavaleta, E. S., Eviner, V. T., Naylor, R. L., Vitousek, P. M., Reynolds, H. L., Hooper, D. U., Lavorel, S., Sala, O. E., Hobbie, S. E., Mack, M.C., & Díaz, S. (2000). Consequences of changing biodiversity. Nature 405, 235–242.

    Google Scholar 

  • Chen, S., Fath, B. D., Chen, B. (2011). Information-based network environ analysis: A system perspective for ecological risk assessment. Ecological Indicators, 11(6), 1664–1672.

    Article  Google Scholar 

  • Chen, X., & Cohen, J. E. (2001). Transient dynamics and food-web complexity in the Lotka-Volterra cascade model. Proceedings of the Royal Society of London. Series B, Biological Sciences, 268, 869–877.

    Article  Google Scholar 

  • Cheng, G. D., Xiao, H. L., Xu, Z. M., Li, J. X., & Lu, M. F. (2006). Water issue and its counter-measure in the inland river basins of Northwest China—a case study in Heihe River Basin. Journal of Glaciology and Geocryology, 3, 406–413.

    Google Scholar 

  • Christensen, V., & Walters, C. J. (2004). Ecopath with ecosim: Methods, capabilities and limitations. Ecological Modelling, 172, 109–139.

    Article  Google Scholar 

  • Chrystal, R. A., & Scharler, U. M. (2014). Network analysis indices reflect extreme hydrodynamic conditions in a shallow estuarine lake (Lake St Lucia), South Africa. Ecological indicators, 38, 130–140.

    Article  Google Scholar 

  • Denman, K. L., Brasseur, G., Chidthaisong, A., Ciais, P., Cox, P. M., Dickinson, R. E., Hauglustaine, D., Heinze, C., Holland, E., Jacob, D., Lohmann, U., Ramachandran, S., da Silva Dias, P. L., Wofsy, S. C., & Zhang, X. (2007). Couplings between changes in the climate system and biogeochemistry. In S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor, & H. L. Miller (Eds.), Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment. Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press.

    Google Scholar 

  • Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z.-I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A.-H., Soto, D., Stiassny, M.L.J., Sullivan, C.A. (2006). Freshwater biodiversity : Importance, threats, status and conservation challenges. Biological reviews of the Cambridge Philosophical Society, 81(2), 163–182.

    Article  Google Scholar 

  • Elliott, M., & Quintino, V. (2007). The estuarine quality paradox, environmental homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Marine Pollution Bulletin, 54, 640–646.

    Article  Google Scholar 

  • Elmqvist, T., Folke, C., Nyström, M., Peterson, G., Bengtsson, J., & Walker, B. (2003). Response diversity, ecosystem change, and resilience. Frontiers in Ecology and the Environment, 1, 488–494.

    Article  Google Scholar 

  • Elton, C. S. (1958). Ecology of invasions by animals and plants. London: Chapman & Hall.

    Book  Google Scholar 

  • Fang, D., Fath, B. D., Chen, B., & Scharler, U. M. (2014). Network environ analysis for socio-economic water system. Ecological indicators, 47, 80–88.

    Article  Google Scholar 

  • Fath, B. (1998). Network synergism: Emergence of positive relations in ecological systems. Ecological Modelling, 107, 127–143.

    Article  Google Scholar 

  • Fath, B. D., Scharler, U., Ulanowicz, R. E., & Hannon, B. (2007). Ecological network analysis: network construction. Ecological Modelling, 208, 49–55.

    Article  Google Scholar 

  • Fath, B. D., Dean, C. A., & Katzmair, H. (2015). Navigating the adaptive cycle: An approach to managing the resilience of social systems. Ecology and Society, 20(2), 24.

    Article  Google Scholar 

  • Folke, C. (2006). Resilience: The emergence of a perspective for social—ecological systems analyses. Global Environmental Change, 16, 253–267.

    Article  Google Scholar 

  • Folke, C., Carpenter, S., Walker, B., Scheffer, M., Elmqvist, T., Gunderson, L., et al. (2004). Regime shifts, resilience, and biodiversity in ecosystem management. Annual Review of Ecology Evolution and Systematics, 35, 557–581.

    Article  Google Scholar 

  • Gamfeldt, L., & Hillebrand, H. (2008). Biodiversity effects on aquatic ecosystem functioning—maturation of a new paradigm. International Review of Hydrobiology, 93, 550–564.

    Article  Google Scholar 

  • Goerner, S. J., Lietaer, B., & Ulanowicz, R. E. (2009). Quantifying economic sustainability: Implications for free-enterprise theory, policy and practice. Ecological Economics, 69, 76–81.

    Article  Google Scholar 

  • Grilli, J., Rogers, T., & Allesina, S. (2016). Modularity and stability in ecological communities. Nature Communications, 7, 12031.

    Article  Google Scholar 

  • Gunderson, L. H., & Holling, C. S. (Eds.). (2002). Panarchy: Understanding transformations in human and natural systems. Washington DC: Island Press.

    Google Scholar 

  • Higashi, M., & Patten, B. C. (1989). Dominance of indirect causality in ecosystems. The American Naturalist, 133, 288–302.

    Article  Google Scholar 

  • Higashi, M., & Nakajima, H. (1995). Indirect effects in ecological interaction networks. I. The chain rule approach. Mathematical Biosciences, 130, 99–128.

    Article  MathSciNet  Google Scholar 

  • Holling, C. S. (1973). Resilience and the stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–23.

    Article  Google Scholar 

  • Holling, C. S. (1986). The resilience of terrestrial ecosystems: local surprise and global change. In W. C. Clark & R. E. Munn (Eds.), Sustainable Development of the Biosphere. London: Cambridge University Press.

    Google Scholar 

  • Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., et al. (2003). Climate change, human impacts, and the resilience of coral reefs. Science, 301, 929–934.

    Article  Google Scholar 

  • IPCC—Report of the intergovernmental panel on climate change (2007). Fourth Assessment Report. Climate change 2007: Synthesis report. Cambridge University Press. ISBN 92-9169-122-4.

    Google Scholar 

  • Jørgensen, S. E., Fath, B. D., Nielsen, S. N., Pulselli, F., Fiscus, D., Bastianoni, S. (2015). Flourishing within limits to growth: Following nature’s way. Earthscan Publisher. 220 p.

    Google Scholar 

  • Kharrazi, A., Rovenskaya, E., Fath, B. D., Yarime, M., & Kraines, S. (2013). Quantifying the sustainability of economic resource networks: An ecological information-based approach. Ecological Economics, 90, 177–186.

    Article  Google Scholar 

  • Kharrazi, A., Fath, B. D., & Katzmair, H. (2016). Advancing empirical approaches to the concept of resilience: A critical examination of panarchy, ecological information, and statistical evidence. Sustainability, 8, 935.

    Article  Google Scholar 

  • Kharrazi, A., Rovenskaya, E., & Fath, B. D. (2017). Network structure impacts global commodity trade growth and resilience. PLoS ONE, 12(2), e0171184. https://doi.org/10.1371/journal.pone.0171184.

    Article  Google Scholar 

  • Kauppi, P. E., Mielikainen, K., & Kuusela, K. (1992). Biomass and carbon budget of European forest, 1971 to 1990. Science, 256, 70–74.

    Article  Google Scholar 

  • Libralato, S., Christensen, V., & Pauly, D. (2006). A method for identifying keystone species in food web models. Ecol. Modell., 195, 153–171.

    Article  Google Scholar 

  • Loreau, M. (2000). Biodiversity and ecosystem functioning: Recent theoretical advances. Oikos, 91, 3–17.

    Article  Google Scholar 

  • MacArthur, R. H. (1955). Fluctuations of animal populations and a measure of community stability. Ecology, 36, 533–536.

    Article  Google Scholar 

  • May, R. M. (1972). Will a large complex system be stable? Nature, 238, 413–414.

    Article  Google Scholar 

  • McCann, K. S. (2000). The diversity-stability debate. Nature, 405, 228–233.

    Article  Google Scholar 

  • McNaughton, S. J. (1977). Diversity and stability of ecological communities: A comment on the role of empiricism in ecology. The American Naturalist, 111(979), 515–525.

    Article  Google Scholar 

  • MEA. (2005). Millenium ecosystem assessment, 2005. http://www.millenniumassessment.org.

  • Meadows, D. H., Meadows, D. L., Randers, J., & Behrens, W. W., III. (1972). The limits to growth. New York: Universe Books.

    Google Scholar 

  • Miao, L. J., Cui, L. F., Luan, Y. B., & He, B. (2011). Similarities and differences of Beijing and Shanghai’s land use changes induced by urbanization. Chinese Journal of Metal Science and Technology, 31(4), 398–404.

    Google Scholar 

  • Moore, J. C., & de Ruiter, P. C. (2012). Energetic Food Webs. An analysis of real and model ecosystems: Oxford University Press.

    Book  Google Scholar 

  • Moore, J. C., de Ruiter, P. C., & Hunt, H. W. (1993). Influence of productivity on the stability of real and model ecosystems. Science, 261, 906–908.

    Article  Google Scholar 

  • Mori, A. S., Furukawa, T., & Sasaki, T. (2013). Response diversity determines the resilience of ecosystems to environmental change. Biological Reviews of the Cambridge Philosophical Society, 88, 349–364.

    Article  Google Scholar 

  • Müller, F., Bergmann, M., Dannowski, R., Dippner, J. W., Gnauck, A., Haase, P., et al. (2016). Assessing resilience in long-term ecological data sets. Ecological indicators, 65, 10–43.

    Article  Google Scholar 

  • Mukherjee, J., Scharler, U. M., Fath, B. D., & Ray, S. (2015). Measuring sensitivity of robustness and network indices for an estuarine food web model under perturbations. Ecological Modelling, 306, 160–173.

    Article  Google Scholar 

  • Naeem, S., Chapin III, F. S., Costanza, R., Ehrlich, P. R., Golley, F. B., Hooper, D. U., Lawton, J. H., O’Neill, R. V., Mooney, H. A., Sala, O. E., Symstad, A. J., & Tilman, D. (1999). Biodiversity and ecosystem functioning: Maintaining natural life support processes. Issues in Ecology, 4, 1–11. Published by the Ecological Society of America.

    Google Scholar 

  • Neutel, A.-M., Heesterbeek, J. A. P., & De Ruiter, P. C. (2002). Stability in real food webs: Weak links in long loops. Science, 296, 1120–1123.

    Article  Google Scholar 

  • Pimm, S. L. (1982). Foodwebs. London: Chapman and Hall.

    Google Scholar 

  • Power, M. E., Tilman, D., Estes, J. A., Menge, B. A., Bond, W. J., Mills, L. S., et al. (1996). Challenges in the quest for keystones. BioScience, 46, 609–620.

    Article  Google Scholar 

  • Rist, L., Felton, A., Nyström, M., Troell, M., Sponseller, R. A., Bengtsson, J., et al. (2014). Applying resilience thinking to production ecosystems. Ecosphere, 5, 1–11.

    Article  Google Scholar 

  • Rutledge, R. W., Basore, B. L., & Mulholland, R. J. (1976). Ecological stability: An information theory viewpoint. Journal of Theoretical Biology, 57, 355–371.

    Article  Google Scholar 

  • Salas, A. K., & Borrett, S. B. (2011). Evidence for dominance of indirect effects in 50 trophic ecosystem networks. Ecological Modelling, 222, 1192–1204.

    Article  Google Scholar 

  • Scharler, U. M. (2012). Ecosystem development during open and closed phases of temporarily open/closed estuaries on the subtropical east coast of South Africa. Estuarine, Coastal Shelf Science, 108, 119–131.

    Article  Google Scholar 

  • Scharler, U. M., & Fath, B. D. (2009). Comparing network analysis methodologies for consumer—resource relations at species and ecosystems scales. Ecological Modelling, 220, 3210–3218.

    Article  Google Scholar 

  • Scheffer, M., Carpenter, S., Foley, J. A., Folke, C., & Walker, B. (2001). Catastrophic shifts in ecosystems. Nature, 413, 591–596.

    Article  Google Scholar 

  • Shevtsov, J., & Rael, R. (2015). Indirect energy flows in niche model food webs: Effects of size and connectance. PLoS ONE, 10(10), e0137829.

    Article  Google Scholar 

  • Szyrmer, I., & Ulanowicz, R. E. (1987). Total flows in ecosystems. Ecological Modelling, 35, 123–136.

    Article  Google Scholar 

  • Tilman, D. (1999). The ecological consequences of changes in biodiversity: A search for general principles. Ecology, 80, 1455–1474.

    Google Scholar 

  • Ulanowicz, R. E. (1986). Growth and development. New York: Springer.

    Book  Google Scholar 

  • Ulanowicz, R. E. (2002). Information theory in ecology. Journal of Computational Chemistry, 25, 393–399.

    Article  Google Scholar 

  • Ulanowicz, R. E. (2004). Quantitative methods for ecological network analysis. Computers and Chemistry, 28, 321–339.

    MATH  Google Scholar 

  • Ulanowicz, R. E. (2009). The dual nature of ecosystem dynamics. Ecological Modelling, 220(16), 1886–1892.

    Article  Google Scholar 

  • Ulanowicz, R. E., & Puccia, C. J. (1990). Mixed trophic impacts in ecosystems. COENOSES, 5, 7–16.

    Google Scholar 

  • Ulanowicz, R., Goerner, S., Lietaer, B., & Gomez, R. (2009). Quantifying sustainability: Resilience, efficiency and the return of information theory. Ecological Complexity, 6, 27–36.

    Article  Google Scholar 

  • Wackernagel, M., Schulz, N. B., Deumling, D., Linares, A. C., Jenkins, M., Kapos, V., et al. (2002). Tracking the ecological overshoot of the human economy. PNAS, 99, 9266–9271.

    Article  Google Scholar 

  • Wagensberg, J., Garcia, A., & Sole, R. V. (1990). Connectivity and information transfer in flow networks: Two magic numbers in ecology? Bulletin of Mathematical Biology, 52, 733–740.

    Article  Google Scholar 

  • Wootton, J. T. (1994). The nature and consequences of indirect effects in ecological communities. Annual Review of Ecology and Systematics, 25(1), 443–466.

    Article  Google Scholar 

  • Xia, L., Fath, B. D., Scharler, U. M., & Zhang, Y. (2016). Science of the total environment spatial variation in the ecological relationships among the components of Beijing’s carbon metabolic system. Science of the Total Environment, 544, 103–113.

    Article  Google Scholar 

  • Zhang, Y., Xia, L. L., & Xiang, W. N. (2014). Analyzing spatial patterns of urban carbon metabolism: A case study in Beijing, China. Landscape and Urban Planning, 130, 184–200.

    Article  Google Scholar 

  • Zorach, A. C., Ulanowicz, R. E. (2003). Quantifying the complexity of flow networks: How many roles are there?. Complexity, 8(3), 68–76.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula M. Scharler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Scharler, U.M. et al. (2018). Resilience Measures in Ecosystems and Socioeconomic Networks. In: Mensah, P., Katerere, D., Hachigonta, S., Roodt, A. (eds) Systems Analysis Approach for Complex Global Challenges. Springer, Cham. https://doi.org/10.1007/978-3-319-71486-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71486-8_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71485-1

  • Online ISBN: 978-3-319-71486-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics