Skip to main content

Shifting Climate Sensitivities, Shifting Paradigms: Tree-Ring Science in a Dynamic World

  • Chapter
  • First Online:
The Palgrave Handbook of Critical Physical Geography

Abstract

In the field of tree-ring science, findings of unstable growth responses by trees to climate have spurred self-reflection and generated debate, with significant implications for climate change politics, science, and discourse. To interrogate this issue, we bring together quantitative data on climate-growth relationships in Great Smoky Mountains National Park, Tennessee, and qualitative survey data on the practices and perspectives of tree-ring scientists. Our tree-ring data compel us to consider often-overlooked socioecological factors that may influence trees’ sensitivities to climate, including atmospheric pollution and historical changes in land use and ecosystem structure and function. Survey data contextualize our analyses within broader changes in the field, demonstrating that climate-growth relationships are increasingly understood as fluid, non-linear, and contingent rather than stable and fixed.

The uniformitarian principle is assumed in all dendrochronological inferences, and, as in all sciences of the past, if this principle does not hold, no conclusions regarding the past can be made.

—Harold C. Fritts 1976, Tree Rings and Climate

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams, H., S. Stephenson, T. Blasing, and D. Duvick. 1985. Growth-trend declines of spruce and fir in mid-appalachian subalpine forests. Environmental and Experimental Botany 25 (4): 315–325.

    Article  Google Scholar 

  • Allen, E.R., and H.L. Gholz. 1996. Air quality and atmospheric deposition in southern U.S. forests. In Impact of air pollutants on Southern Pine Forests, ed. S. Fox and R. Mickler, 83–170. New York: Springer Verlag.

    Chapter  Google Scholar 

  • Anchukaitis, K.J., P. Breitenmoser, K.R. Briffa, A. Buchwal, U. Büntgen, E.R. Cook, R.D. D’Arrigo, et al. 2012. Tree rings and volcanic cooling. Nature Geoscience 5 (12): 836–837.

    Article  Google Scholar 

  • Anderegg, W., and G.R. Goldsmith. 2014. Public interest in climate change over the past decade and the effects of the ‘climategate’ media event. Environmental Research Letters 9 (5): 054005.

    Article  Google Scholar 

  • Baes, C., and S. McLaughlin. 1984. Trace elements in tree rings: Evidence of recent and historical air pollution. Science 224: 494–497.

    Article  Google Scholar 

  • Barber, V., G. Juday, and B. Finney. 2000. Reduced growth of Alaskan white spruce in the twentieth century from temperature-induced drought stress. Nature 405: 668–673.

    Article  Google Scholar 

  • Biondi, F., and K. Waikul. 2004. DendroClim2002: A C++ program for statistical calibration of climate signals in tree-ring chronologies. Computers and Geoscience 30 (3): 303–311.

    Article  Google Scholar 

  • Bridge, M. 2012. Locating the origins of wood resources: A review of dendroprovenancing. Journal of Archaeological Science 39 (8): 2828–2834.

    Article  Google Scholar 

  • Brienen, R.J.W., G. Helle, T.L. Pons, J.L. Guyot, and M. Gloor. 2012. Oxygen isotopes in tree rings are a good proxy for Amazon precipitation and El Nino-Southern Oscillation variability. Proceedings of the National Academy of Sciences of the United States of America 109 (42): 16957–16962.

    Article  Google Scholar 

  • Briffa, K., F. Schweingruber, P. Jones, T. Osborn, S. Shiyatov, and E. Vaganov. 1998. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes. Nature 391: 678–682.

    Article  Google Scholar 

  • Carrer, M., and C. Urbinati. 2006. Long-term change in the sensitivity of tree-ring growth to climate forcing in Larix decidua. New Phytologist 170 (4): 861–872.

    Article  Google Scholar 

  • Cook, E. 1985. A time series analysis approach to tree-ring standardization. Ph.D. Tucson, University of Arizona School of Renewable Natural Resources.

    Google Scholar 

  • Cook, E.R., and A.H. Johnson. 1989. Climate change and forest decline: A review of the red spruce case. Water, Air and Soil Pollution 48 (1): 127–140.

    Google Scholar 

  • Copenheaver, C., L. Grinter, J. Lorber, M. Neathour, and M. Spinney. 2002. A dendroecological and dendroclimatic analysis of Pinus virginiana and Pinus rigida at two slope positions in the Virginia Piedmont. Castanea 67: 302–315.

    Google Scholar 

  • Coyle, D.R., K.D. Klepzig, F.H. Koch, L.A. Morris, J.T. Nowak, S.W. Oak, W.J. Otrosina, W.D. Smith, and K. Gandhi. 2015. A review of southern pine decline in North America. Forest Ecology and Management 349: 134–148.

    Article  Google Scholar 

  • D’Arrigo, R., R. Kaufmann, N. Davi, G. Jacoby, C. Laskowski, R. Myeni, and P. Cherubini. 2004. Thresholds for warming-induced growth decline at elevational tree line in the Yukon Territory, Canada. Global Biogeochemical Cycles, 18 (3).

    Google Scholar 

  • D’Arrigo, R., R. Wilson, B. Liepert, and P. Cherubini. 2008. On the ‘divergence problem’ in northern forests: A review of the tree-ring evidence and possible causes. Global Planetary Change 60 (3): 289–305.

    Article  Google Scholar 

  • Dale, V.H., M.L. Tharp, K.O. Lannom, and D.G. Hodges. 2010. Modeling transient response of forests to climate change. Science of the Total Environment 408 (8): 1888–1901.

    Article  Google Scholar 

  • Dougherty, P.M., D. Whitehead, and J.M. Vose. 1994. Environmental constraints on the structure and productivity of pine forest ecosystems: A comparative analysis. Ecological Bulletins 43: 64–75.

    Google Scholar 

  • Driscoll, W., G. Wiles, R. D’Arrigo, and M. Wilmking. 2005. Divergent tree growth response to recent climate warming, Lake Clark National Park and Preserve, Alaska. Geophysical Research Letters, 32 (20).

    Google Scholar 

  • Emhart, V.I., T.A. Martin, T.L. White, and D.A. Huber. 2006. Genetic variation in basal area increment phenology and its correlation with growth rate in loblolly and slash pine families and clones. Canadian Journal of Forest Research 36 (4): 961–971.

    Article  Google Scholar 

  • Esper, J., and D. Frank. 2009. Divergence pitfalls in tree-ring research. Climatic Change 94 (3): 261–266.

    Article  Google Scholar 

  • Flagler, R.B., and A.H. Chappelka. 1996. Growth response of southern pines to acidic precipitation and ozone. In Impact of Air Pollutants on Southern Pine Forests, ed. S. Fox and R. Mickler, 388–424. New York: Springer Verlag.

    Chapter  Google Scholar 

  • Frank, D., U. Büntgen, R. Böhm, M. Maugeri, and J. Esper. 2007. Warmer early instrumental measurements versus colder reconstructed temperatures: Shooting at a moving target. Quaternary Science Reviews 26 (25): 3298–3310.

    Article  Google Scholar 

  • Friend, A., and W. Hafley. 1989. Climatic limitations to growth in loblolly and shortleaf pine: A dendroclimatological approach. Forest Ecology and Management 26 (2): 113–122.

    Article  Google Scholar 

  • Fritts, H. 1976. Tree rings and climate. New York: Academic Press.

    Google Scholar 

  • Grissino-Mayer, H.D. 2001. Evaluating crossdating accuracy: A manual and tutorial for the computer program COFECHA. Tree-Ring Research 57: 205–221.

    Google Scholar 

  • ———. 2016. Fire as a once-dominant disturbance process in the yellow pine and mixed pine-hardwood forests of the Appalachian Mountains. In Natural disturbances and historic range of variation: Type, frequency, severity, and post-disturbance structure in Central Hardwood Forests, ed. C. Greenberg and B. Collins, 123–146. Berlin: Springer Verlag.

    Chapter  Google Scholar 

  • Grissino-Mayer, H.D., and D.R. Butler. 1993. Effects of climate on growth of shortleaf pine in northern Georgia: A dendroclimatic study. Southeastern Geographer 33 (1): 65–81.

    Article  Google Scholar 

  • Harrod, J., and R. White. 1999. Age structure and radial growth in xeric pine-oak forests in western Great Smoky Mountains National Park. Journal of the Torrey Botanical Society 126: 139–146.

    Article  Google Scholar 

  • Harrod, J., P. White, and M. Harmon. 1998. Changes in xeric forests in western Great Smoky Mountains National Park, 1936–1995. Castanea 63: 346–360.

    Google Scholar 

  • Harrod, J., M. Harmon, and P. White. 2000. Post-fire succession and twentieth century reduction in fire frequency on xeric southern Appalachian sites. Journal of Vegetation Science 11 (4): 465–472.

    Article  Google Scholar 

  • Holliman, R. 2011. Advocacy in the tail: Exploring the implications of ‘climategate’ for science journalism and public debate in the digital age. Journalism 12 (7): 832–846.

    Article  Google Scholar 

  • Holmes, R. 1983. Computer-assisted quality control in tree-ring dating and measurement. Tree-Ring Bulletin 43: 69–78.

    Google Scholar 

  • Hulme, M. 2011. Reducing the future to climate: A story of climate determinism and reductionism. Osiris 26 (1): 245–266.

    Article  Google Scholar 

  • Jacoby, G.C., and R.D. D’Arrigo. 1995. Tree ring width and density evidence of climatic and potential forest change in Alaska. Global Biogeochemical Cycles 9 (2): 227–234.

    Article  Google Scholar 

  • Jasanoff, S. 2003. Technologies of humility: Citizen participation in governing science. Minerva 41 (3): 223–244.

    Article  Google Scholar 

  • ———. 2007. Technologies of humility. Nature 450: 33.

    Article  Google Scholar 

  • Ke, L., X. Ding, R.L. Tanner, J.J. Schauer, and M. Zheng. 2007. Source contributions to carbonaceous aerosols in the Tennessee Valley Region. Atmospheric Environment 41: 8898–8923.

    Article  Google Scholar 

  • Larson, E., K. Kipfmueller, C. Hale, L. Frelich, and P. Reich. 2010. Tree rings detect earthworm invasions and their effects in northern hardwood forests. Biological Invasions 12 (5): 1053–1066.

    Article  Google Scholar 

  • LeBlanc, D., D. Raynal, and E. White. 1987. Acidic deposition and tree growth I: The use of stem analysis to study historical growth patterns. Journal of Environmental Quality 16 (4): 325–333.

    Article  Google Scholar 

  • Mann, M.E., R.S. Bradley, and M.K. Hughes. 1998. Global-scale temperature patterns and climate forcing over the past six centuries. Nature 392: 779–787.

    Article  Google Scholar 

  • ———. 1999. Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations. Geophysical Research Letters 26 (6): 759–762.

    Article  Google Scholar 

  • Mann, M.E., J.D. Fuentes, and S. Rutherford. 2012. Underestimation of volcanic cooling in tree-ring-based reconstructions of hemispheric temperatures. Nature Geoscience 5 (3): 202–205.

    Article  Google Scholar 

  • Marcinkowski, K., D. Peterson, and G. Ettl. 2015. Nonstationary temporal response of mountain hemlock growth to climatic variability in the North Cascade Range, Washington, USA. Canadian Journal of Forest Research 45 (6): 676–688.

    Article  Google Scholar 

  • Maxwell, J., G. Harley, and S. Robeson. 2016. On the declining relationship between tree growth and climate in the Midwest United States: The fading drought signal. Climatic Change 138: 127–142.

    Article  Google Scholar 

  • McIntyre, S., and R. McKitrick. 2005. Hockey sticks, principal components, and spurious significance. Geophysical Research Letters, 32 (3).

    Google Scholar 

  • McLaughlin, S., and K. Percy. 1999. Forest health in North America: Some perspectives on actual and potential roles of climate and air pollution. Water, Air and Soil Pollution 116: 151–197.

    Article  Google Scholar 

  • National Park Service. 2002. Air Quality in the National Parks. 2nd ed. Washington, DC: U.S. Department of the Interior.

    Google Scholar 

  • Oberhuber, W., W. Kofler, K. Pfeifer, A. Seeber, A. Gruber, and G. Wiesner. 2008. Long-term changes in tree-ring-climate relationships at Mt. Patscherkofel (Tyrol, Austria) since the mid-1980s. Trees-Structure and Function 22 (1): 31–40.

    Article  Google Scholar 

  • Orvis, K., and H.D. Grissino-Mayer. 2002. Standardizing the reporting of abrasive papers used to surface tree-ring samples. Tree-Ring Research 58: 47–50.

    Google Scholar 

  • Perry, T. 1971. Dormancy of trees in winter. Science 171: 29–36.

    Article  Google Scholar 

  • Porter, T.J., and M. Pisaric. 2011. Temperature-growth divergence in white spruce forests of Old Crow Flats, Yukon Territory, and adjacent regions of northwestern North America. Global Change Biology 17 (11): 3418–3430.

    Article  Google Scholar 

  • Pyle, C. 1988. The type and extent of anthropogenic vegetation disturbance in the Great Smoky Mountains before National Park Service acquisition. Castanea 53: 183–196.

    Google Scholar 

  • Saladyga, T., and R. Maxwell. 2015. Temporal variability in climate response of eastern hemlock in the Central Appalachian Region. Southeastern Geographer 55 (2): 143–163.

    Article  Google Scholar 

  • Shaver, C.L., K.A. Tonnessen, and T.G. Maniero. 1994. Clearing the air at Great Smoky Mountains National Park. Ecological Applications 4 (4): 690–701.

    Article  Google Scholar 

  • Smiljanić, M., J.W. Seo, A. Läänelaid, M. van der Maaten-Theunissen, B. Stajić, and M. Wilmking. 2014. Peatland pines as a proxy for water table fluctuations: Disentangling tree growth, hydrology and possible human influence. Science of the Total Environment 500: 52–63.

    Article  Google Scholar 

  • Smouse, P., and L. Saylor. 1973. Studies of the Pinus rigida-serotina complex I. A study of geographic variation. Annals of the Missouri Botanical Garden 60: 174–191.

    Article  Google Scholar 

  • South, D., and E. Buckner. 2003. The decline of southern yellow pine timberland. Journal of Forestry 101 (1): 30–35.

    Google Scholar 

  • Speer, J.H. 2010. Fundamentals of Tree-Ring Research. Tucson: The University of Arizona Press.

    Google Scholar 

  • Stambaugh, M., and R. Guyette. 2004. Long-term growth and climate response of shortleaf pine at the Missouri Ozark Forest Ecosystem Project. In Proceedings of the 14th Central Hardwood Forest Conference, ed. D.A. Yaussy, D.M. Mix, R.P. Long, and P.C. Goebel, 448–458. Newtown Square, PA: USDA Forest Service.

    Google Scholar 

  • Szeicz, J., and G. MacDonald. 1994. Age-dependent tree-ring growth responses of subarctic white spruce to climate. Canadian Journal of Forest Research 24 (1): 120–132.

    Article  Google Scholar 

  • Tomlinson, G.H. 2003. Acidic deposition, nutrient leaching and forest growth. Biogeochemistry 65 (1): 51–81.

    Article  Google Scholar 

  • Van Deusen, P.C. 1990. Evaluating time-dependent tree ring and climate relationships. Journal of Environmental Quality 19 (3): 481–488.

    Article  Google Scholar 

  • Wahl, E., and C. Ammann. 2007. Robustness of the Mann, Bradley, Hughes reconstruction of Northern Hemisphere surface temperatures: Examination of criticisms based on the nature and processing of proxy climate evidence. Climatic Change 85 (1): 33–69.

    Article  Google Scholar 

  • White, P., P. Soulé, and S. van de Gevel. 2014. Impacts of human disturbance on the temporal stability of climate–growth relationships in a red spruce forest, southern Appalachian Mountains, USA. Dendrochronologia 32 (1): 71–77.

    Article  Google Scholar 

  • Wiles, G., C. Mennett, S. Jarvis, R. D’Arrigo, N. Wiesenberg, and D. Lawson. 2012. Tree-ring investigations into changing climatic responses of yellow-cedar, Glacier Bay, Alaska. Canadian Journal of Forest Research 42 (4): 814–819.

    Article  Google Scholar 

  • Wilmking, M., and I. Myers-Smith. 2008. Changing climate sensitivity of black spruce in a peatland-forest landscape in Interior Alaska. Dendrochronologia 25 (3): 167–175.

    Article  Google Scholar 

  • Wilson, R., and W. Elling. 2004. Temporal instability in tree-growth/climate response in Lower Bavarian Forest region: Implications for dendroclimatic reconstructions. Trees-Structure and Function 18 (1): 19–28.

    Article  Google Scholar 

  • Yamaguchi, D.K. 1991. A simple method for cross-dating increment cores from living trees. Canadian Journal of Forest Research 21 (3): 414–416.

    Article  Google Scholar 

  • Zahner, R. 1962. Terminal growth and wood formation by juvenile loblolly pine under two soil moisture regimes. Forest Science 8 (4): 345–352.

    Google Scholar 

  • Zang, C., and F. Biondi. 2015. Treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography 38 (4): 431–436.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Biermann, C., Grissino-Mayer, H.D. (2018). Shifting Climate Sensitivities, Shifting Paradigms: Tree-Ring Science in a Dynamic World. In: Lave, R., Biermann, C., Lane, S. (eds) The Palgrave Handbook of Critical Physical Geography. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-319-71461-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71461-5_10

  • Published:

  • Publisher Name: Palgrave Macmillan, Cham

  • Print ISBN: 978-3-319-71460-8

  • Online ISBN: 978-3-319-71461-5

  • eBook Packages: Social SciencesSocial Sciences (R0)

Publish with us

Policies and ethics