Skip to main content

Systematics and Evolution of Australian Seagrasses in a Global Context

  • Chapter
  • First Online:
Seagrasses of Australia

Abstract

Seagrasses have evolved independently at least four times throughout their evolutionary history . All seagrasses are members of the monocot order Alismatales . A new molecular phylogenetic analysis, applying a molecular clock based on recently redefined fossil evidence, provides a framework for describing the timing and relationships of seagrass lineage evolution. The deeper time phylogenetic history of the marine monocotyledons dates back approximately 105 million years ago (Ma) to an ancestor from which two significant lineages evolved more recently. The marine Hydrocharitaceae (Enhalus, Thalassia and Halophila) are a tropical globally distributed lineage which include Australian endemic species of Halophila. The Cymodoceaceae lineage and the Zosteraceae/Potamogetonaceae diverged some ~67 Ma but in each lineage the genera arose more recently. Most seagrass species appear to have evolved in the last ~5 Ma, some more recently. The extant distribution of species will not be the result of vicariance but of long distance connectivity at a global scale. The most significant implication of these results to global biogeography is that there must have been, and likely continues to be, ongoing long distance dispersal leading to the current widespread distributions of species and congeners. The Australian seagrass flora represents all the major evolutionary lineages of seagrasses except the northern hemisphere Phyllospadix, a major clade of Zostera and some of the forms of Halophila. Pollination efficiency is a significant potential driver in the evolution of filiform pollen, and is likely associated with the single seeded fruit in water pollinated species of seagrass in the lineages of seagrass that exhibit this character.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackerman JD (1995) Convergence of filiform pollen morphologies in seagrasses: functional mechanisms. Evol Ecol 9(2):139–153

    Article  Google Scholar 

  • Ackerman JD (2006) Sexual reproduction of seagrasses: pollination in the marine context. In: Larkum WD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht

    Google Scholar 

  • Arber A (1920) Water plants: A study of aquatic angiosperms. Cambridge University Press, London

    Google Scholar 

  • Ascherson P, Graebner P (1907) IV. II. Potamogetonaceae Heft 31 Verlag von H R Engelmann. In: Cramer J (ed) Das Pflanzenreich. A. Engler, Weinheim/Bergstrasse, p 184

    Google Scholar 

  • Beaulieu JM, O’Meara BC, Crane P, Donoghue MJ (2015) Heterogeneous rates of molecular evolution and diversification could explain the triassic age estimate for angiosperms. Syst Biol 64(5):869–878. https://doi.org/10.1093/sysbio/syv027

    Article  PubMed  CAS  Google Scholar 

  • Bell CD, Soltis DE, Soltis PS (2010) The age and diversification of the angiosperms re-revisited. Am J Bot 97(8):1296–1303

    Google Scholar 

  • Bouckaert R, Heled J, Kuhnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: a software platform for bayesian evolutionary analysis. Plos Comput Biol 10(4):e1003537. https://doi.org/10.1371/journal.pcbi.1003537

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bromham L, Penny D (2003) The modern molecular clock. Nat Rev Genet 4(3):216–224

    Article  CAS  PubMed  Google Scholar 

  • Byng JW, Chase MW, Christenhusz MJM, Fay MF, Judd WS, Mabberley DJ, Sennikov AN, Soltis DE, Soltis PS, Stevens PF, Briggs B, Brockington S, Chautems A, Clark JC, Conran J, Haston E, Moller M, Moore M, Olmstead R, Perret M, Skog L, Smith J, Tank D, Vorontsova M, Weber A, (Angiosperm Phylogeny Group) (2016) An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Bot J Linn Soc 181(1):1–20. https://doi.org/10.1111/boj.12385

    Article  Google Scholar 

  • Chen LY, Chen JM, Gituru RW, Wang QF (2012) Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae. BMC Evol Biol 12:30. https://doi.org/10.1186/1471-2148-12-30

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chen LY, Chen JM, Gituru RW, Wang QF (2013) Eurasian origin of Alismatidae inferred from statistical dispersal-vicariance analysis. Mol Phylogenet Evol 67(1):38–42. https://doi.org/10.1016/j.ympev.2013.01.001

    Article  PubMed  Google Scholar 

  • Chen LY, Grimm GW, Wang QF, Renner SS (2015) A phylogeny and biogeographic analysis for the Cape-Pondweed family Aponogetonaceae (Alismatales). Mol Phylogenet Evol 82:111–117. https://doi.org/10.1016/j.ympev.2014.10.007

    Article  PubMed  Google Scholar 

  • Cox PA, Knox BR (1989) Two-dimensional pollination in hydrophilous plants: Convergent evolution in the genera Halodule (Cymodoceaceae), Halophila (Hydrocharitaceae) Ruppia (Ruppiaceae) and Lepilaena (Zannichelliaceae). Am J Bot 76(2):164–175

    Article  Google Scholar 

  • Coyer JA, Hoarau G, Kuo J, Tronholm A, Veldsink J, Olsen JL (2013) Phylogeny and temporal divergence of the seagrass family Zosteraceae using one nuclear and three chloroplast loci. Syst Biodivers 11(3):271–284. https://doi.org/10.1080/14772000.2013.821187

    Article  Google Scholar 

  • Cronquist AC (1981) An integrated system of classification of flowering plants. Columbia University Press, New York

    Google Scholar 

  • Dahlgren RMT (1985) The families of the monocotyledons. Springer, Berlin

    Book  Google Scholar 

  • den Hartog C (1970) The sea-grasses of the world. North-Holland Publishing Company, Amsterdam

    Google Scholar 

  • den Hartog C (1971) The dynamic aspect in the ecology of seagrass communities. Thalass Jugosl 7(1):101–112

    Google Scholar 

  • den Hartog C, Kuo J (2006) Taxonomy and biogeography of seagrasses. In: Larkum WD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation, 1st edn. Springer, Dordrecht, p 691

    Google Scholar 

  • dos Reis M, Donoghue PCJ, Yang Z (2016) Bayesian molecular clock dating of species divergences in the genomics era. Nat Rev Genet 17:71–80. https://doi.org/10.1038/nrg.2015.8

    Article  PubMed  CAS  Google Scholar 

  • Fawcett JA, Maere S, Van de Peer Y (2009) Plants with double genomes might have had a better chance to survive the Cretaceous-Tertiary extinction event. Proc Natl Acad Sci USA 106(14):5737–5742

    Google Scholar 

  • Gavryushkina A, Welch D, Stadler T, Drummond AJ (2014) Bayesian inference of sampled ancestor trees for epidemiology and fossil calibration. PLoS Comput Biol 10:e1003919

    Article  PubMed  PubMed Central  Google Scholar 

  • Green EP, Short FT (2003) World atlas of seagrasses. University of California Press, Berkley

    Google Scholar 

  • Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate Maximum-Likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59(3):307–321. https://doi.org/10.1093/sysbio/syq010

    Article  PubMed  CAS  Google Scholar 

  • Heath TA, Huelsenbeck JP, Stadler T (2014) The fossilized birth-death process for coherent calibration of divergence-time estimates. PNAS 111(29):E2957–E2966. https://doi.org/10.1073/pnas.1319091111

    Article  PubMed  CAS  Google Scholar 

  • Hertweck KL, Kinney MS, Stuart SA, Maurin O, Mathews S, Chase MW, Gandolfo MA, Pires JC (2015) Phylogenetics, divergence times and diversification from three genomic partitions in monocots. Bot J Linn Soc 178(3):375–393. https://doi.org/10.1111/boj.12260

    Article  Google Scholar 

  • Iles WJD, Smith SY, Graham SW (2013) Refining our understanding of the phylogenetic backbone of Alismatales. In: Wilkin P, Mayo SJ (eds) Early events in monocot evolution. Systematics Association Special Volume edn. Cambridge University Press, Cambridge, pp 1–28

    Google Scholar 

  • Iles WJD, Lee C, Sokoloff DD, Remizowa MV, Yadav SR, Barrett MD, Barrett RL, Macfarlane TD, Rudall PJ, Graham SW (2014) Reconstructing the age and historical biogeography of the ancient flowering-plant family Hydatellaceae (Nymphaeales). BMC Evol Biol 14:102. https://doi.org/10.1186/1471-2148-14-102

    Article  PubMed  PubMed Central  Google Scholar 

  • Iles WJD, Smith SY, Gandolfo MA, Graham SW (2015) Monocot fossils suitable for molecular dating analyses. Bot J Linn Soc 178(3):346–374. https://doi.org/10.1111/boj.12233

    Article  Google Scholar 

  • Ivany LC, Protell RW, Jones DS (1990) Animal-plant relationships and paleobiogeography of an Eocene seagrass community from Florida. Palaios 5:244–258. https://doi.org/10.2307/3514943

    Article  Google Scholar 

  • Jacobs SWL, Les DH, Moody ML (2006) New combinations in Australasian Zostera (Zosteraceae). Telopea 11(2):127–128

    Article  Google Scholar 

  • Janssen T, Bremer K (2004) The age of major monocot groups inferred from 800+ rbcL sequences. Bot J Linn Soc 146(4):385–398

    Article  Google Scholar 

  • Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649. https://doi.org/10.1093/bioinformatics/bts199

    Article  PubMed  PubMed Central  Google Scholar 

  • Kendrick GA, Waycott M, Carruthers TJB, Cambridge ML, Hovey R, Krauss SL, Lavery PS, Les DH, Lowe RJ, Vidal OMI, Ooi JLS, Orth RJ, Rivers DO, Ruiz-Montoya L, Sinclair EA, Statton J, van Dijk JK, Verduin JJ (2012) The central role of dispersal in the maintenance and persistence of seagrass populations. Bioscience 62(1):56–65. https://doi.org/10.1525/Bio.2012.62.1.10

    Article  Google Scholar 

  • Kumar S, Hedges SB (2016) Advances in time estimation methods for molecular data. Mol Biol Evol 33:863–869. https://doi.org/10.1093/molbev/msw026

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kuo J, den Hartog C (2006) Taxonomy and biogeography of seagrasses. In: Larkum WD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 1–23

    Google Scholar 

  • Kuo J, Lee Long W, Coles RG (1993) Occurrence and fruit and seed biology of Halophila tricostata Greenway (Hydrocharitaceae). Aust J Mar Freshw Res 44:43–57

    Google Scholar 

  • Larkum AWD, den Hartog C (1989) Evolution and biogeography of seagrasses. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of the seagrasses: a treatise on the biology of seagrasses with special reference to the Australian region. Elsevier, Amsterdam, pp 112–156

    Google Scholar 

  • Larkum AWD, Waycott M, Conran JG (2016) Chapter 1: evolution and biogeography of seagrasses. In: Larkum AWD, Kendrick GA, Ralph PJ (eds) Seagrasses of Australia. Springer, Heidelberg

    Google Scholar 

  • Les DH (1988) Breeding systems, population structure and evolution in hydrophylous angiosperms. Ann Mo Bot Gard 75:819–835

    Article  Google Scholar 

  • Les DH, Haynes RR (1995) Systematics of subclass Alismatidae: a synthesis of approaches. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ (eds) Monocotyledons: systematics and evolution. Royal Botanic Gardens, Kew, pp 1–26

    Google Scholar 

  • Les DH, Tippery NP (2013) In time and with water … the systematics of alismatid monocotyledons. In: Wilkin P, Mayo SJ (eds) Early events in monocot evolution. The Systematics Association Special Volume, vol 83. Cambridge University Press, Cambridge, p 118

    Google Scholar 

  • Les DH, Cleland MA, Waycott M (1997) Phylogenetic studies in Alismatidae, II: evolution of marine angiosperms (seagrasses) and hydrophily. Syst Bot 22(3):443–463

    Article  Google Scholar 

  • Les DH, Moody ML, Jacobs SWL, Bayer RJ (2002) Systematics of seagrasses (Zosteraceae) in Australia and New Zealand. Syst Bot 27(3):468–484

    Google Scholar 

  • Les DH, Crawford DJ, Kimball RT, Moody ML, Landolt E (2003) Biogeography of discontinuously distributed hydrophytes: a molecular appraisal of intercontinental disjunctions. Int J Plant Sci 164(6):917–932

    Article  Google Scholar 

  • Li XX, Zhou ZK (2009) Phylogenetic studies of the core Alismatales inferred from morphology and rbcL sequences. Prog Nat Sci 19(8):931–945. https://doi.org/10.1016/j.pnsc.2008.09.008

    Article  CAS  Google Scholar 

  • Lohaus R, Van de Peer Y (2016) Of dups and dinos: evolution at the K/Pg boundary. Curr Opin Plant Biol 30:62–69. https://doi.org/10.1016/j.pbi.2016.01.006

    Article  PubMed  CAS  Google Scholar 

  • McConchie CA, Knox RB, Ducker SC (1982) Ultrastructure and cytochemistry of the hydrophilous pollen of Lepilaena (Zannichelliaceae). Micron (1969) 13(3):339–340. https://doi.org/10.1016/0047-7206(82)90048-6

    Article  Google Scholar 

  • McMahon K, van Dijk K-J, Ruiz-Montoya L, Kendrick GA, Krauss SL, Waycott M, Verduin J, Lowe R, Statton J, Brown E, Duarte CM (2014) The movement ecology of seagrasses. Proc R Soc B-Biol Sci 281(8 October 2014):20140878. https://doi.org/10.1098/rspb.2014.0878

    Article  Google Scholar 

  • Morrone JJ, Crisci JV (1995) Historical biogeography: introduction to methods. Annu Rev Ecol Syst 26:373–401. https://doi.org/10.1146/annurev.es.26.110195.002105

    Article  Google Scholar 

  • Olsen JL, Stam WT, Coyer JA, Reusch TBH, Billingham M, Bostrom C, Calvert E, Christie H, Granger S, La Lumiere R, Milchakova N, Oudot-Le Secq MP, Procaccini G, Sanjabi B, Serrao E, Veldsink J, Widdicombe S, Wyllie-Echeverria S (2004) North Atlantic phylogeography and large-scale population differentiation of the seagrass Zostera marina L. Mol Ecol 13(7):1923–1941. https://doi.org/10.1111/j.1365-294X.2004.02205.x

    Article  PubMed  CAS  Google Scholar 

  • Olsen JL, Rouzé P, Verhelst B, Lin Y-C, Bayer T, Collen J, Dattolo E, De Paoli E, Dittami S, Maumus F, Michel G, Kersting A, Lauritano C, Lohaus R, Töpel M, Tonon T, Vanneste K, Amirebrahimi M, Brakel J, Boström C, Chovatia M, Grimwood J, Jenkins JW, Jueterbock A, Mraz A, Stam WT, Tice H, Bornberg-Bauer E, Green PJ, Pearson GA, Procaccini G, Duarte CM, Schmutz J, Reusch TBH, Van de Peer Y (2016) The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530:331–335. https://doi.org/10.1038/nature16548

    Article  PubMed  CAS  Google Scholar 

  • Petersen G, Seberg O, Cuenca A, Stevenson DW, Thadeo M, Davis JI, Graham S, Ross TG (2016) Phylogeny of the Alismatales (Monocotyledons) and the relationship of Acorus (Acorales?). Cladistics 32(2):141–159. https://doi.org/10.1111/cla.12120

    Article  Google Scholar 

  • Posluszny U, Charlton WA, Les DH (2000) Modularity in helobial flowers. In: Wilson KD, Morrison D (eds) Systematics and evolution of monocots. CSIRO Publishing, Victoria, pp 63–74

    Google Scholar 

  • Robertson EL (1984) Seagrasses. In: Womersley HBS (ed) Volume 1: the marine benthic flora of southern Australia. Government Printer, Adelaide, pp 57–122

    Google Scholar 

  • Ronquist F (1997) Dispersal-vicariance analysis: a new approach to the quantification of historical biogeography. Syst Biol 46:195–203. https://doi.org/10.1093/sysbio/46.1.195

    Article  Google Scholar 

  • Ross TG, Barrett CF, Soto Gomez M, Lam VKY, Henriquez CL, Les DH, Davis JI, Cuenca A, Petersen G, Seberg O, Thadeo M, Givnish TJ, Conran J, Stevenson DW, Graham SW (2016) Plastid phylogenomics and molecular evolution of Alismatales. Cladistics 32(2):160–178. https://doi.org/10.1111/cla.12133

    Article  Google Scholar 

  • Schulte P, Alegret L, Arenillas I, Arz JA, Barton PJ, Bown PR et al (2010) The Chicxulub asteroid impact and mass extinction at the Cretaceous-Paleogene boundary. Science 327(5970):1214–1218. https://doi.org/10.1126/science.1177265

    Article  PubMed  CAS  Google Scholar 

  • Sculthorpe CD (1967) The biology of aquatic vascular plants. Edward Arnold Publishers, London

    Google Scholar 

  • Soltis DE, Soltis PS, Endress PK, Chase MW (2005) Phylogeny and evolution of angiosperms. Sinauer Associates, Sunderland, Mass

    Google Scholar 

  • Thorne RF (1992) An updated phylogenetic classification of the flowering plants. Aliso 13(2):365–390

    Article  Google Scholar 

  • Tomlinson PB (1982) Helobiae (Alismatidae). In: Metcalfe CR (ed) Anatomy of the monocotyledons, vol VII. Clarendon Press, Oxford

    Google Scholar 

  • Van de Peer Y, Fawcett JA, Proost S, Sterck L, Vandepoele K (2009) The flowering world: a tale of duplications. Trends Plant Sci 14(12):680–688

    Google Scholar 

  • van Dijk KJ, van Tussenbroek BI, Jimenez-Duran K, Marquez-Guzman JG, Ouborg J (2009) High levels of gene flow and low population genetic structure related to high dispersal potential of a tropical marine angiosperm. Mar Ecol Prog Ser 390:67–77. https://doi.org/10.3354/meps08190

    Article  Google Scholar 

  • van Tussenbroek BI, Santos MGB, Wong JGR, van Dijk JK, Waycott M (2010) A guide to the tropical seagrasses of the Western Atlantic. Universidad Nacional Autónoma de México

    Google Scholar 

  • Vanneste K, Baele G, Maere S, Van de Peer Y (2014) Analysis of 41 plant genomes supports a wave of successful genome duplications in association with the Cretaceous-Paleogene boundary. Genome Res 24(8):1334–1347. https://doi.org/10.1101/gr.168997.113

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Waisel Y (1972) Biology of halophytes. Academic Press, London

    Google Scholar 

  • Waycott M, Les DH (2000) Current perspectives on marine angiosperm evolution. Biol Mar Mediterr 7(2):160–163

    Google Scholar 

  • Waycott M, McMahon KM, Mellors JE, Calladine A, Kleine D (2004) A guide to tropical seagrasses of the Indo-West Pacific. James Cook University, Townsville

    Google Scholar 

  • Waycott M, Procaccini G, Les DH, Reusch TBH (2006) Seagrass evolution, ecology and conservation: a genetic perspective. In: Larkum WD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Dordrecht, pp 25–50

    Google Scholar 

  • Waycott M, McMahon K, Lavery P (2014) A guide to southern temperate seagrasses. CSIRO Publishing, Melbourne

    Google Scholar 

  • Wiley EO (1988) Vicariance Biogeography. Annu Rev Ecol Syst 19:513–542. https://doi.org/10.1146/annurev.es.19.110188.002501

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Waycott .

Editor information

Editors and Affiliations

Appendix 1

Appendix 1

See Table 5.5.

Table 5.5 List of samples and their GenBank numbers (ncbi.nih.gov) used in phylogenetic analysis

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Waycott, M., Biffin, E., Les, D.H. (2018). Systematics and Evolution of Australian Seagrasses in a Global Context. In: Larkum, A., Kendrick, G., Ralph, P. (eds) Seagrasses of Australia. Springer, Cham. https://doi.org/10.1007/978-3-319-71354-0_5

Download citation

Publish with us

Policies and ethics