Skip to main content

The Microbiology of Seagrasses

  • Chapter
  • First Online:
Seagrasses of Australia

Abstract

Like both terrestrial plants and other benthic marine organisms, seagrasses host abundant and diverse communities of microorganisms. These microbes fundamentally influence seagrass physiology and health, while also regulating the biogeochemical dynamics of entire seagrass meadows. Discrete populations of bacteria, fungi , microalgae, archaea and viruses inhabit seagrass leaves, roots and rhizomes and the surrounding sediments. The plethora of ecological interactions taking place between seagrasses and this microbiome span the continuum of symbiotic relationships from mutualism to parasitism. Indeed, the metabolic activities of some seagrass associated microbes , such as diazotrophic and sulphur oxidizing bacteria, govern the local chemical environment in ways that facilitate seagrass survival . On the other hand, pathogens, such as the protozoan parasite Labyrinthula cause disease outbreaks that can lead to mass seagrass die offs. While the role of the seagrass microbiome in defining the success of seagrass habitats is becoming increasingly apparent, there is still much to be learnt. For instance, the development of an understanding of how seagrass associated microbes may buffer or augment the negative impacts of growing environmental pressures will be valuable for informing decisions regarding the management and conservation of threatened seagrass habitats. In this chapter we will synthesise the current state of knowledge on the microbiology of seagrasses, with a goal of conveying the often overlooked importance of the seagrass microbiome in governing seagrass health and the biogeochemical stability of seagrass ecosystems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Afiyatullov SS, Leshchenko E, Sobolevskaya M, Gerasimenko A, Khudyakova YV, Kirichuk N, Mikhailov V (2015) New 3-[2′(R)-Hydroxybutyl]-7-Hydroxyphthalide from marine isolate of the fungus Penicillium claviforme. Chem Nat Compd 51:111–115

    Article  CAS  Google Scholar 

  • Ainsworth T, Krause L, Bridge T, Torda G, Raina JB, Zakrzewski M et al (2015) The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts. ISME J 9:2261–2274

    Article  CAS  Google Scholar 

  • Aladro-Lubel MA, Martinez-Murillo ME (1999) Epibiotic protozoa (ciliophora) on a community of Thalassia testudinum banks ex Konig in a coral reef in Veracruz, Mexico. Aquat Bot 65:239–254

    Article  Google Scholar 

  • Amaral-Zettler L, Artigas L F, Baross J, Bharathi PA, Boetius L, Chandramohan D, Herndl G, Kogure K, Neal P, Pedrós-Alió C, Ramette A, Schouten S, Stal L, Thessen A, Leeuw J D, Sogin M (2010) , In: McIntyre AD (ed) A global census of marine microbes, in life in the world’s oceans: diversity, distribution, and abundance. Wiley-Blackwell, Oxford, UK. https://doi.org/10.1002/9781444325508.ch12

  • Armiger LC (1964) An occurrence of Labyrinthula in New Zealand Zostera. NZ J Bot 2:3–9

    Article  Google Scholar 

  • Arnold TM, Tanner CE, Rothen M, Bullington J (2008) Wound-induced accumulations of condensed tannins in turtlegrass, Thalassia testudinum. Aquat Bot 89:27–33

    Article  CAS  Google Scholar 

  • Arnosti C (2011) Microbial extracellular enzymes and the marine carbon cycle. Annual Review of Marine Science 3:401–425

    Article  PubMed  Google Scholar 

  • Arunpanichlert J, Rukachaisirikul V, Sukpondma Y, Phongpaichit S, Supaphon O, Sakayaroj J (2011) A β-Resorcylic macrolide from the seagrass-derived fungus Fusarium sp. PSU-ES73. Arch Pharmacal Res 34:1633–1637

    Article  CAS  Google Scholar 

  • Arunpanichlert J, Rukachaisirikul V, Tadpetch K, Phongpaichit S, Hutadilok-Towatana N, Supaphon O, Sakayaroj J (2012) A dimeric chromanone and a phthalide: metabolites from the seagrass-derived fungus Bipolaris sp. PSU-ES64. Phytochem Lett 5:604–608

    Article  CAS  Google Scholar 

  • Arunpanichlert J, Rukachaisirikul V, Phongpaichit S, Supaphon O, Sakayaroj J (2015a) Meroterpenoid, isocoumarin, and phenol derivatives from the seagrass-derived fungus Pestalotiopsis sp. PSU-ES194. Tetrahedron 71:882–888

    Article  CAS  Google Scholar 

  • Arunpanichlert J, Rukachaisirikul V, Phongpaichit S, Supaphon O, Sakayaroj J (2015b) Xylariphilone: a new azaphilone derivative from the seagrass-derived fungus Xylariales sp. PSU-ES163. Nat Prod Res (ahead-of-print):1–6

    Google Scholar 

  • Atwood TB, Connolly RM, Ritchie EG, Lovelock CE, Heithaus MR, Hays CG, Fourqurean JW, Macreadie PI (2015) Predators help protect carbon stocks in blue carbon ecosystems. Nat Clim Change 5:1038–1045

    Article  Google Scholar 

  • Baker-Austin C, Trinanes JA, Taylor NGH, Hartnell R, Siitonen A, Martinez-Urtaza J (2013) Emerging Vibrio risk at high latitudes in response to ocean warming. Nat Clim Change 3:73–77. https://doi.org/10.1038/nclimate1628

    Article  Google Scholar 

  • Barnabas AD (1992) Bacteria on and within leaf blade epidermal cells of the seagrass Thalassodendron ciliatum (Forssk.) Den Hartog. Aquat Bot 43:257–266

    Article  Google Scholar 

  • Barron C, Middelburg JJ, Duarte CM (2006) Phytoplankton trapped within seagrass (Posidonia oceanica) sediments are a nitrogen source: an in situ isotope labeling experiment. Limnol Oceanogr 51:1648–1653

    Article  CAS  Google Scholar 

  • Belofsky GN, Jensen PR, Fenical W (1999) Sansalvamide: a new cytotoxic cyclic depsipeptide produced by a marine fungus of the genus Fusarium. Tetrahedron Lett 40:2913–2916

    Article  CAS  Google Scholar 

  • Ben-Haim Y, Rosenberg E (2002) A novel Vibrio sp pathogen of the coral Pocillopora damicornis. Mar Biol 141:47–55

    Article  Google Scholar 

  • Berg G, Grube M, Schloter M, Smalla K (2014) Unraveling the plant microbiome: looking back and future perspectives. Front Microbiol 5:148. https://doi.org/10.3389/fmicb.2014.00148

    Article  PubMed  PubMed Central  Google Scholar 

  • Blaabjerg V, Finster K (1998) Sulphate reduction associated with roots and rhizomes of the marine macrophytes Zostera marina. Aquat Microb Ecol 15:311–314

    Article  Google Scholar 

  • Blaabjerg V, Mouritsen KN, Finster K (1998) Diel cycles of sulphate reduction rates in sediments of a Zostera marina bed (Denmark). Aquat Microb Ecol 15:97–102. https://doi.org/10.3354/ame015097

    Article  Google Scholar 

  • Blackburn TH, Nedwell DB, Wiebe WJ (1994) Active mineral cycling in a Jamaican seagrass sediment. Mar Ecol Prog Ser 110:233–239. https://doi.org/10.3354/meps110233

    Article  CAS  Google Scholar 

  • Blum LK, Mills AL (1991) Microbial growth and activity during the initial stages of seagrass decomposition. Mar Ecol Prog Ser 70:73–82. https://doi.org/10.3354/meps070073

    Article  Google Scholar 

  • Bockelmann AC, Tams V, Ploog J, Schubert PR, Reusch TB (2013) Quantitative PCR reveals strong spatial and temporal variation of the wasting disease pathogen, Labyrinthula zosterae in northern European eelgrass (Zostera marina) beds. PLOS One 8:e62169

    Google Scholar 

  • Bolan NS (1991) A critical review on the role of mycorrhizal fungi in the uptake of phosphorus by plants. Plant Soil 134:189–207

    Article  CAS  Google Scholar 

  • Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48

    Article  PubMed  CAS  Google Scholar 

  • Bongiorni L, Pusceddu A, Danovaro R (2005) Enzymatic activities of epiphytic and benthic thraustochytrids involved in organic matter degradation. Aquat Microb Ecol 41:299–305

    Article  Google Scholar 

  • Borum J, Pedersen O, Greve TM, Frankovich TA, Zieman JC, Fourqurean JW, Madden CJ (2005) The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. J Ecol 93:148–158

    Article  CAS  Google Scholar 

  • Boschker HTS, Wielemaker A, Schaub BEM, Holmer M (2000) Limited coupling of macrophyte production and bacterial carbon cycling in the sediments of Zostera spp. meadows. Mar Ecol Prog Ser 203:181–189

    Article  CAS  Google Scholar 

  • Brakel J, Werner FJ, Tams V, Reusch TB, Bockelmann A-C (2014) Current European Labyrinthula zosterae are not virulent and modulate seagrass (Zostera marina) defense gene expression. PLoS ONE 9:e92448

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brearley A, Walker D (1995) Isopod miners in the leaves of two Western Australian Posidonia species. Aquat Bot 52:163–181

    Article  Google Scholar 

  • Brodersen KE, Nielsen DA, Ralph PJ, Kuhl M (2015) Oxic microshield and local pH enhancement protects Zostera muelleri from sediment derived hydrogen sulphide. New Phytol 205:1264–1276. https://doi.org/10.1111/nph.13124

    Article  PubMed  CAS  Google Scholar 

  • Brown AC, McLachlan A (2010) The ecology of sandy shores. Elsevier Science, Amsterdam

    Google Scholar 

  • Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789

    Article  Google Scholar 

  • Burdige DJ (2007) Preservation of organic matter in marine sediments: controls, mechanisms, and an imbalance in sediment organic carbon budgets? Chem Rev 107:467–485

    Article  PubMed  CAS  Google Scholar 

  • Burge CA, Eakin CM, Friedman CS, Froelich B, Hershberger PK, Hofmann EE, Petes LE, Prager KC, Weil E, Willis BL, Ford SE, Harvell CD (2014) Climate change influences on marine infectious diseases: implications for management and society. In: Carlson CA, Giovannoni SJ (eds) Annual review of marine science, vol 6, pp 249–277. https://doi.org/10.1146/annurev-marine-010213-135029

  • Burkholder JM, Tomasko DA, Touchette BW (2007) Seagrasses and eutrophication. J Exp Mar Biol Ecol 350:46–72

    Article  Google Scholar 

  • Burreson EM, Stokes NA, Friedman CS (2000) Increased virulence in an introduced pathogen: Haplosporidium nelsoni (MSX) in the eastern oyster Crassostrea virginica. J Aquatic Animal Health 12:1–8. https://doi.org/10.1577/1548-8667(2000)012<0001:iviaip>2.0.co;2

  • Bushmann P, Ailstock S (2006) Antibacterial compounds in estuarine submersed aquatic plants. J Exp Mar Biol Ecol 331:41–50

    Article  Google Scholar 

  • Calleja ML, Marbà N, Duarte CM (2007) The relationship between seagrass (Posidonia oceanica) decline and sulfide porewater concentration in carbonate sediments. Estuar Coast Shelf Sci 73:583–588

    Article  Google Scholar 

  • Canfield DE (1989) Sufate reduction and oxic respiration in marine-sediments—implications for organic-carbon preservation in euxinic environments. Deep-Sea Res Art A-Oceanogr Res Papers 36:121–138. https://doi.org/10.1016/0198-0149(89)90022-8

    Article  CAS  Google Scholar 

  • Canfield D (1993) Organic matter oxidation in marine sediments. In: Wollast R, Mackenzie F, Chou L (eds) Interactions of C, N, P and S biogeochemical cycles and global change, vol 4. NATO ASI Series. Springer, Berlin, pp 333–363. https://doi.org/10.1007/978-3-642-76064-8_14

  • Canfield D, Thamdrup B, Kristensen E (2005) Aquatic geomicrobiology, vol 48. Elsevier Academic Press, London

    Google Scholar 

  • Capone D, Taylor BF (1977) Nitrogen fixation (acetylene reduction) in the phyllosphere of Thalassia testudinum. Mar Biol 40:19–28

    Article  CAS  Google Scholar 

  • Capone DG, Taylor BF (1980) Microbial nitrogen cycling in a seagrass community. Estuar Perspect Acad 153–161

    Google Scholar 

  • Capone DG (1982) Nitrogen fixation (acetylene reduction) by rhizosphere sediments of the eelgrass Zostera Marina. Mar Ecol Prog Ser 10:67–75

    Article  Google Scholar 

  • Capone DG (1983) Benthic nitrogen fixation. In: Carpenter EJ, Capone DG (eds) Nitrogen in the marine environment. Academic Press, New York, pp 105–137

    Chapter  Google Scholar 

  • Capone DG, Kiene RP (1988) Comparison of microbial dynamics in marine and freshwater sediments: contrasts in anaerobic carbon metabolism. Limnol Oceanogr 33:725–749

    CAS  Google Scholar 

  • Cariello L, Zanetti L, De Stefano S (1979) Phenolic compounds from marine phanerogames, Cymodocea nodosa and Posidonia oceanica. Comparitive Biochem Physiol 62B:159–161

    CAS  Google Scholar 

  • Carlson PR, Forrest J (1982) Uptake of dissolved sulfide by Spartina alterniflora: evidence from natural sulfur isotope abundance ratios. Science 216:633–635

    Article  PubMed  CAS  Google Scholar 

  • Carlson PR, Yarbro LA, Barber TR (1994) Relationship of sediment sulphide to mortality of Thalassia testudinum in Florida Bay. Bull Mar Sci 54:733–746

    Google Scholar 

  • Cavanaugh CM (1983) Symbiotic Chemoautotrophic bacteria in marine-invertebrates from sulfide-rich habitats. Nature 302:58–61. https://doi.org/10.1038/302058a0

    Article  CAS  Google Scholar 

  • Cebrián J, Duarte CM, Marbà N, Enríquez S (1997) Magnitude and fate of the production of four co-occurring Western Mediterranean seagrass species. Mar Ecol Prog Ser 155:29–44

    Article  Google Scholar 

  • Celdran D, Espinosa E, Sanchez-Amat A, Marín A (2012) Effects of epibiotic bacteria on leaf growth and epiphytes of the seagrass Posidonia oceanica. Mar Ecol Prog Ser 456:21–27

    Article  Google Scholar 

  • Chisholm ST, Coaker G, Day B, Staskwicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124:803–814

    Article  PubMed  CAS  Google Scholar 

  • Chung MH, Lee K-S (2008) Species composition of the epiphytic diatoms on the leaf tissues of three Zostera species distributed on the southern coast of Korea. Algae 23:75–81

    Article  Google Scholar 

  • Cifuentes A, Anton J, Benlloch S, Donnelly A, Herbert RA, Rodriguez-Valera F (2000) Prokaryotic diversity in Zostera noltii—colonized marine sediments. Appl Environ Microbiol 66:1715–1719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cock JM, Sterck L, Rouze P et al (2010) The Ectocarpus genome and the independent evolution of multicellularity in brown algae. Nature 465:617–621

    Article  PubMed  CAS  Google Scholar 

  • Cole LW, McGlathery KJ (2011) Nitrogen fixation in restored eelgrass meadows. Mar Ecol Prog Ser 448:235–246

    Article  CAS  Google Scholar 

  • Crump BC, Koch EW (2008) Attached bacterial populations shared by four species of aquatic angiosperms. Appl Environ Microbiol 74:5948–5957

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cuomo V, Pagano S, Pecorella MA, Parascandola P (1987) Evidence of the active role of ligno-cellulosic enzymes of marine fungi in degradation of Posidonia oceanica leaves. Biochem Syst Ecol 15:635–637. https://doi.org/10.1016/0305-1978(87)90035-4

    Article  CAS  Google Scholar 

  • Daehnick AE, Sullivan MJ, Moncreiff CA (1992) Primary production of the sand microflora in seagrass beds of Mississippi Sound. Bot Mar 35:131–139

    Article  Google Scholar 

  • Danovaro R, Fabiano M (1995) Seasonal and inter-annual variation of bacteria in a seagrass bed of the Mediterranean Sea: relationship with labile organic compounds and other environmental factors. Aquat Microb Ecol 9:17–26

    Article  Google Scholar 

  • Das S, Mangwani N (2015) Ocean acidification and marine microorganisms: responses and consequences. Oceanologia 57:349–361. https://doi.org/10.1016/j.oceano.2015.07.003

    Article  Google Scholar 

  • DeLong EF (1992) Archaea in coastal marine environments. Proc Natl Acad Sci USA 89:5685–5689

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • DeLong EF, Karl DM (2005) Genomic perspectives in microbial oceanography. Nature 437:336–342

    Article  PubMed  CAS  Google Scholar 

  • DeLong EF et al (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503

    Article  PubMed  CAS  Google Scholar 

  • Devarajan PT, Suryanarayanan TS, Geetha V (2002) Endophytic fungi associated with the tropical seagrass Halophila ovalis (Hydrocharitaceae). Indian J Mar Sci 31:73–74

    Google Scholar 

  • Devereux R (2005) Seagrass rhizosphere microbial communities. In coastal and estuarine studies: interactions between macro and microorganisms in marine sediments. Kristensen E, Haese RR, Kostka JE (eds) American Geophysical Union, pp 199–216. 1029/2010GB003848

    Google Scholar 

  • Donnelly AP, Herbert RA (1998) Bacterial interactions in the rhizosphere of seagrass communities in shallow coastal lagoons. J Appl Microbiol 85(1):151S–160S. https://doi.org/10.1111/j.1365-2672.1998.tb05294.x

    Article  PubMed  Google Scholar 

  • Duarte CM (2002) The future of seagrass meadows. Environ Conserv 29:192–206

    Article  Google Scholar 

  • Duarte CM, Holmer M, Marba N (2005) Plant-microbe interactions in seagrass meadows. In: Kristensen E, Haese R, Kostka J (eds) Interactions between macro- and microorganisms in marine sediments. American Geophysical Union, Washington, DC, pp P31–P60

    Chapter  Google Scholar 

  • Duarte CM, Merino M, Agawin NSR, Uri J, Fortes MD, Gallegos ME, Marbá N, Hemminga MA (1998) Root production and belowground seagrass biomass. Mar Ecol Prog Ser 171:97–108

    Article  Google Scholar 

  • Egan S, Harder T, Burke C, Steinberg P, Kjelleberg S, Thomas T (2013) The seaweed holobiont: understanding seaweed-bacteria interactions. FEMS Microbiol Rev 37:462–476

    Article  PubMed  CAS  Google Scholar 

  • Eloe-Fadrosh EA, Rasko DA (2013) The human microbiome: from symbiosis to pathogenesis. Annu Rev Med 64:145–163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Engel S, Jensen PR, Fenical W (2002) Chemical ecology of marine microbial defense. J Chem Ecol 28:1971–1985

    Article  PubMed  CAS  Google Scholar 

  • Engel S, Puglisi MP, Jensen PR, Fenical W (2006) Antimicrobial activities of extracts from tropical Atlantic marine plants against marine pathogens and sprophytes. Mar Biol 149:991–1002

    Article  Google Scholar 

  • Evrard V, Kiswara W, Bouma TJ, Middelburg JJ (2005) Nutrient dynamics of seagrass ecosystems: 15N evidence for the importance of particulate organic matter and root systems. Mar Ecol Prog Ser 295:49–55

    Article  CAS  Google Scholar 

  • Eyre BD, Ferguson AJP (2002) Comparison of carbon production and decomposition, benthic nutrient fluxes and denitrification in seagrass, phytoplankton, benthic microalgae- and macroalgae-dominated warm-temperate Australian lagoons. Mar Ecol Prog Ser 229:43–59

    Article  CAS  Google Scholar 

  • Eyre BD, Ferguson AJP, Webb A, Maher DT, Oakes JM (2011) Denitrification, N-fixation and nitrogen and phosphorus fluxes in different benthic habitats and their contribution to the nitrogen and phosphorus budgets of a shallow oligotrophic sub-tropical coastal system (southern Moreton Bay, Australia). Biogeochemistry 102:111–133

    Article  CAS  Google Scholar 

  • Falkowski PD, Fenchel T, DeLong EF (2008) The microbial engines that drive biogeochemical cycles. Science 320:1034–1038

    Article  PubMed  CAS  Google Scholar 

  • Fegan M, Hayward C (2004) Genetic diversity of bacterial plant pathogens. In: Gillings M, Holmes A (eds) Plant microbiology, pp 17–193. Taylor and Francis

    Google Scholar 

  • Fenchel T, King GM. Blackburn TH (2012) Bacterial biogeochemistry: the ecophysiology of mineral cycling, 3rd edn. Elsevier

    Google Scholar 

  • Fourqurean JW, Duarte CM, Kennedy H, Marbà N, Holmer M, Mateo MA, Apostolaki ET, Kendrick GA, Krause-Jensen D, McGlathery KJ, Serrano O (2012) Seagrass ecosystems as a globally significant carbon stock. Nat Geosci 5:505–509

    Article  CAS  Google Scholar 

  • Frankovich TA, Zieman JC (1994) Total epiphyte and epiphytic carbonate production on Thalassia testudinum across Florida bay. Bull Mar Sci 54:679–695

    Google Scholar 

  • Fuhrman JA, Ouverney CC (1998) Marine microbial diversity studied via 16S rRNA sequences: cloning results from coastal waters and counting native archaeawith fluorescent single cell probes. Aquat Ecol 32:3–15

    Article  CAS  Google Scholar 

  • Fuhrman JA, McCallum K, Davis AA (1992) Novel major archaebacterial group from marine plankton. Nature 356:148–149

    Article  PubMed  CAS  Google Scholar 

  • García R, Holmer M, Duarte CM, Marbà N (2013) Global warming enhances sulphide stress in a key seagrass species (NW Mediterranean). Glob Change Biol 19:3629–3639

    Article  Google Scholar 

  • Garcias-Bonet N, Arrieta JM, de Santana CN, Duarte CM, Marbà N (2012) Endophytic bacterial community of a Mediterranean marine angiosperm (Posidonia oceanica). Front Microbiol 342:1–16

    Google Scholar 

  • Garcias-Bonet N, Sherman TD, Duarte CM, Marbà N (2011) Distribution and pathogenicity of the protist Labyrinthula sp. in western Mediterranean seagrass meadows. Estuar Coasts 34:1161–1168

    Article  Google Scholar 

  • Gianinazzi –Pearson V (1996) Plant cell responses to arbruscula mycorrhizal fungi: getting to the roots of the symbiosis. Plant Cell 8:1871–1883

    Article  PubMed  PubMed Central  Google Scholar 

  • Gillings M, Holmes A (2004) Plant microbiology. Taylor and Francis

    Google Scholar 

  • Glud RN, Middelboe M (2004) Virus and bacteria dynamics of acoastal sediment: implications for benthic carbon cycling. Limnol Oceanogr 49:2073–2081

    Article  Google Scholar 

  • Goering JJ, Parker PI (1972) Nitrogen fixation by epiphytes on sea grasses. Limnol Oceanogr 17:320–323

    Article  CAS  Google Scholar 

  • Grantina-levina L, Kasparinskis R, Tabors G, Nikolajeva (2013) Features of saprophytic soil microorganism communities in conifer stands with or without heterobasidion annosum sensu lato infection: a special emphasis on Penicillium spp. Environ Experimental Biol 11:23–38

    Google Scholar 

  • Greve TM, Borum J, Pedersen O (2003) Meristematic oxygen variability in eelgrass (Zostera marina). Limnol Oceanogr 48:210–216

    Article  Google Scholar 

  • Guidi L et al (2016) Plankton networks driving carbon export in the oligotrophic ocean. Nature https://doi.org/10.1038/nature16942

  • Hamisi MI, Lyimo TJ, Muruke HS (2004) Cyanobacterial occurrence and diversity in seagrass meadows in Coastal Tanzania. Western Indian Ocean. J Mar Sci 3:113–122

    Google Scholar 

  • Hansen JW, Udy JW, DennisonWCand Lomstein BA (2000) Effect of the seagrass Zostera capricorni on sediment microbial processes. Mar Ecol Prog Ser 199:83–96

    Article  Google Scholar 

  • Harlin MM (1975) Epiphyte—host relationships in seagrass communities. Aquat Bot 1:125–131

    Article  Google Scholar 

  • Harrison PG (1982a) Control of microbial growth and of amphipod grazing by water-soluble compounds from leaves of Zostera marina. Mar Biol 67:225–230. https://doi.org/10.1007/bf00401288

    Article  Google Scholar 

  • Harrison PG (1982b) Control of microbial growth on eelgrass (Zostera marina L.: Spermatophyta) by leaf-derived metabolites. Hydrobiol Bull 16:115

    Article  Google Scholar 

  • Harvell C, Kim K, Burkholder J, Colwell R, Epstein PR, Grimes D, Hofmann E, Lipp E, Osterhaus A, Overstreet RM (1999) Emerging marine diseases–climate links and anthropogenic factors. Science 285:1505–1510

    Article  PubMed  CAS  Google Scholar 

  • Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162

    Article  PubMed  CAS  Google Scholar 

  • Hassenrück C, Hofmann LC, Bischof K, Ramette A (2015) Seagrass biofilm communities at a naturally CO2-rich vent. Environ Microb Rep 7:516–525

    Article  CAS  Google Scholar 

  • Hemminga MA (1998) The root/rhizome system of seagrasses: an asset and a burden. J Sea Res 39:183–196

    Article  Google Scholar 

  • Hemminga MA, Duarte CM (2000) Seagrass ecology. Cambridge University Press

    Google Scholar 

  • Hendriks IE, Olsen YS, Ramajo L, Basso L, Steckbauer A, Moore TS, Howard J, Duarte CM (2014) Photosynthetic activity buffers ocean acidification in seagrass meadows. Biogeosciences 11:333–346. https://doi.org/10.5194/bg-11-333-2014

    Article  CAS  Google Scholar 

  • Hendriks IE, Sintes T, Bouma TJ, Duarte CM (2008) Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Mar Ecol Prog Ser 356:163–173. https://doi.org/10.3354/meps07316

    Article  Google Scholar 

  • Herbert RA (1999) Nitrogen cycling in coastal marine ecosystems. FEMS Microbiol Rev 23:563–590

    Article  PubMed  CAS  Google Scholar 

  • Hoegh-Guldberg O, Bruno JF (2010) The impact of climate change on the world’s marine ecosystems. Science 328:1523–1528

    Article  PubMed  CAS  Google Scholar 

  • Holmer M, Laursen L (2002) Effect of shading of Zostera marina (eelgrass) on sulfur cycling in sediments with contrasting organic matter and sulfide pools. J Exp Mar Biol Ecol 270:25–37

    Article  CAS  Google Scholar 

  • Holmer M, Andersen FO, Nielsen SL, Boschker HTS (2001) The importance of mineralization based on sulfate reduction for nutrient regeneration in tropical seagrass sediments. Aquat Bot 71:1–17

    Article  CAS  Google Scholar 

  • Holmer M, Duarte CM, Marba N (2003) Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments. Biogeochemistry 66:223–239

    Article  CAS  Google Scholar 

  • Holmer M, Hasler-Sheetal H (2014) Sulfide intrusion in seagrasses assessed by stable sulphur isotopes—a synthesis of current results. Front Mar Sci. http://dx.doi.org/10.3389/fmars.2014.00064

  • Holmer M, Nielsen SL (1997) Sediment sulfur dynamics related to biomass-density patterns in Zostera marina (eelgrass) beds. Mar Ecol Prog Ser 146:163–171

    Article  CAS  Google Scholar 

  • Hough RA, Wetzel RG (1975) The release of dissolved organic carbon from submersed aquatic macrophytes: Diel, seasonal and community relationships. Verhandlungen Internationale Vereinigung Limnologie 19:939–948

    Google Scholar 

  • Howarth RW, Marino R (2006) Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving vies over three decades. Limnol Oceanogr 51:364–376

    Article  CAS  Google Scholar 

  • Huesemann MH, Skillman AD, Crecelius EA (2002) The inhibition of marine nitrification by ocean disposal of carbon dioxide. Mar Pollut Bull 44:142–148

    Article  PubMed  CAS  Google Scholar 

  • Huettel M, Webster IT (2001) Porewater flow in permeable sediments. In: Boudreau BP, Jørgensen BB (eds) The benthic boundary layer: transport processes and biogeochemistry, 1st edn. Oxford University Press, USA, pp 144–179

    Google Scholar 

  • Hyde KD, Jones EBG, Leano E, Pointing SB, Poonyth AD, Vrijmoed LLP (1998) Role of fungi in marine ecosystems. Biodivers Conserv 7:1147–1161

    Article  Google Scholar 

  • IPCC (2014) Part A: global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change. Climate change 2014: impacts, adaptation, and vulnerability. Cambridge, United Kingdom and New York, NY, USA

    Google Scholar 

  • Isaksen MF, Finster K (1996) Sulphate reduction in the root zone of the seagrass Zostera noltii on the intertidal flats of a coastal lagoon (Arcachon, France). Mar Ecol Prog Ser 137:187–194

    Article  CAS  Google Scholar 

  • Ivanova EP, Gorshkova NM, Sawabe T, Zhukova NV, Hayashi K, Kurilenko VV, Alexeeva Y, Buljan V, Nicolau DV, Mikhailov VV, Christen R (2004) Sulfitobacterdelicatus sp. nov. and Sulfitobacterdubius sp. nov., respectively from a starfish (Stellasterequestris) and seagrass (Zosteramarina). Int J Syst Evol Microbiol 54:475–480

    Article  PubMed  CAS  Google Scholar 

  • Jacobs RPWM, Noten TMPA (1980) The annual pattern of the diatoms in the epiphyton of eelgrass (Zostera marina L.) at Roscoff, France. Aquat Bot 8:355–370

    Article  Google Scholar 

  • Jensen PR, Jenkins KM, Porter D, Fenical W (1998) Evidence that a new antibiotic flavone glycoside chemically defends the sea grass Thalassia testudinum against zoosporic fungi. Appl Environ Microbiol 64:1490–1496

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jensen SI, Kuhl M, Glud RN, Jorgensen LB, Prieme A (2005) Oxic microzones and radial oxygen loss from roots of Zostera marina. Mar Ecol Prog Ser 293:49–58. https://doi.org/10.3354/meps293049

    Article  CAS  Google Scholar 

  • Jensen SI, Kühl M, Priemé A (2007) Different bacterial communities associated with the roots and bulk sediment of the seagrass Zostera marina. FEMS Microbiol Ecol 62:108–117

    Article  PubMed  CAS  Google Scholar 

  • Joint I, Doney SC, Karl DM (2011) Will ocean acidification affect marine microbes? The ISME J 5:1–7

    Article  PubMed  Google Scholar 

  • Jørgensen BB (1982) Mineralization of organic-matter in the sea bed—the role of sulfate reduction. Nature 296:643–645. https://doi.org/10.1038/296643a0

    Article  Google Scholar 

  • Josselyn M, Fonseca M, Niesen T, Larson R (1986) Biomass, production and decomposition of a deep water seagrass, Halophila decipiens Ostenf. Aquat Bot 25:47–61

    Article  Google Scholar 

  • Joye SB, Hollibaugh JT (1995) Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments. Science 270:623–625

    Article  CAS  Google Scholar 

  • Jurgens K, Massana R (2008) Protistan grazing on marine bacterioplankton. In: Kirchman DL (ed) Microbial ecology of the oceans. Wiley-Blackwell, New Jersey

    Google Scholar 

  • Kaldy JE, Eldridge PM, Cifuentes LA, Jones WB (2006) Utilization of DOC from seagrass rhizomes by sediment bacteria: 13C-tracer experiments and modeling. Mar Ecol Prog Ser 317:41–55

    Article  Google Scholar 

  • Kasai Y, Komatsu K, Shigemori H, Tsuda M, Mikami Y, Ji Kobayashi (2005) Cladionol A, a polyketide glycoside from marine-derived fungus Gliocladium species. J Nat Prod 68:777–779

    Article  PubMed  CAS  Google Scholar 

  • Kennedy H, Beggins J, Duarte CM, Fourqurean JW, Holmer M, Marbà N, Middelburg JJ (2010) Seagrass sediments as a global carbon sink: Isotopic constraints. Global Biogeochem Cycles 24:GB4026

    Article  CAS  Google Scholar 

  • Kilminster KL, Walker DI, Thompson PA, Raven JA (2006) Limited nutritional benefit to the seagrass Halophila ovalis, in culture, following sediment organic matter enrichment. Estuar Coastal Shelf Sci 68:675–685

    Article  Google Scholar 

  • Kirchman DL, Mazzella L, Alberte RS, Mitchell R (1984) Epiphytic bacterial production on Zostera marina. Marine Ecology Progress Series

    Google Scholar 

  • Kitidis V, Laverock B, McNeil CL, Beesley A, Cummings D, Tait K, Osborn M, Widdicombe S (2011) Impact of ocean acidification on benthic and water column ammonia oxidation. Geophys Res Lett 38:L21603

    Article  CAS  Google Scholar 

  • Koch MS, Schopmeyer SA, Holmer M, Madden CJ, Kyhn-Hansen C (2007a) Thalassia testudinum response to the interactive stressors hypersalinity, sulfide and hypoxia. Aquat Bot 87:104–110

    Article  CAS  Google Scholar 

  • Koch MS, Schopmeyer SA, Nielsen OI, Kyhn-Hansen C, Madden CJ (2007b) Conceptual model of seagrass die-off in Florida Bay: links to biogeochemical processes. J Exp Mar Biol Ecol 350:73–88. https://doi.org/10.1016/j.jembe.2007.05.031

    Article  CAS  Google Scholar 

  • Kristensen E, Penha-Lopes G, Delefosse M, Valdemarsen T, Quintana CO, Banta GT (2012) What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Mar Ecol Prog Ser 446:285–302. https://doi.org/10.3354/meps09506

    Article  Google Scholar 

  • Kuo J (1978) Morphology, anatomy and histochemistry of the Australian seagrasses of the genus Posidonia könig (Posidoniaceae). I. Leaf blade and leaf sheath of Posidonia australis Hook. F Aquatic Botany 5:171–190

    Article  Google Scholar 

  • Kuo J (1993) Root anatomy and rhizospheres ultrastructure in tropical seagrasses. Mar Freshw Res 44:75–84

    Google Scholar 

  • Kuo J, McComb AJ, Cambridge ML (1981) Ultrastructure of the seagrass rhizosphere. New Phytol 89:139–143

    Article  Google Scholar 

  • Kurilenko V, Ivanova E, Mikhailov V (2001) Zonal distribution of epiphytic microorganisms on the eelgrass Zostera marina. Microbiology 70:372–373

    Article  CAS  Google Scholar 

  • Küsel K, Karnholz A, Trinkwalter T, Devereux R, Acker G, Drake HL (2001) Physiological ecology of Clostridium glycolicum RD-1, an aerotolerant acetogen isolated from sea grass roots. Appl Environ Microbiol 67:4734–4741

    Article  PubMed  PubMed Central  Google Scholar 

  • Küsel K, Pinkart HC, Drake HL, Devereux R (1999) Acetogenic and sulfate-reducing bacteria inhabiting ther hizoplane and deep cortex cells of the seagrass Halodule wrightii. Appl Environ Microbiol 65:5117–5123

    PubMed  PubMed Central  Google Scholar 

  • Lamers LPM, Govers LL, Janssen ICJM, Geurts JJM, Van der Welle MEW, Van Katwijk MM, Van der Heide T, Roelofs JGM, Smolders AJP (2013) Sulfide as a soil phytotoxin-a review. Front Plant Sci 4. https://doi.org/10.3389/fpls.2013.00268

  • Lane AL, Kubanek J (2008) Secondary metabolite defenses against pathogens and biofoulers. In: Amslet CD (ed) Algal chemical ecology. Springer, Berlin, pp 229–243

    Google Scholar 

  • Laverock B, Kitidis V, Tait K, Gilbert JA, Osborn AM, Widdicombe S (2013) Bioturbation determines the response of benthic ammonia oxidising microorganisms to ocean acidification. Philos Transa R Soc B 368:20120441

    Article  CAS  Google Scholar 

  • Lavery PS, Mateo M-A, Serrano O, Rozaimi M (2013) Variability in the carbon storage of seagrass habitats and its implications for global estimates of blue carbon ecosystem service. PLoS One 8(9). https://doi.org/10.1371/journal.pone.0073748

  • Leander CA, Porter D (2001) The Labyrinthulomycota is comprised of three distinct lineages. Mycologia 93:459–464

    Article  Google Scholar 

  • Lee KS, Dunton KH (2000) Diurnal changes in pore water sulfide concentrations in the seagrass Thalassia testudinum beds: the effects of seagrasses on sulfide dynamics. J Exp Mar Biol Ecol 255:201–214. https://doi.org/10.1016/s0022-0981(00)00300-2

    Article  PubMed  CAS  Google Scholar 

  • Lepoint G, Jacquemart J, Bouquegneau JM, Demoulin V, Gobert S (2007) Field measurements of inorganic nitrogen uptake by epiflora components of the seagrass Posidonia oceanica (Monocotyledons, Posidoniaceae). J Phycol 4:208–218

    Article  CAS  Google Scholar 

  • Lesser MP, Fiore C, Slattery M, Zaneveld J (2016) Climate change stressors destabilize the microbiome of the Caribbean barrel sponge, Xestospongia muta. J Exp Mar Biol Ecol 475:11–18. https://doi.org/10.1016/j.jembe.2015.11.004

    Article  Google Scholar 

  • Ling J, Zhang Y, Wu M, Wang Y, Dong J, Jiang Y, Yang Q, Zeng S (2015) Fungal community successions in rhizosphere sediment of seagrasses Enhalus acoroides under PAHs stress. Int J Mol Sci 16:14039–14055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu J, Weinbauer MG, Maier C, Dai M, Gattuso J-P (2010) Effect of ocean acidification on microbial diversity and on microbe-driven biogeochemistry and ecosystem functioning. Aquat Microb Ecol 61:291–305

    Article  Google Scholar 

  • Lloyd KG et al (2013) Predominant archaea in marine sediments degrade detrital proteins. Nature 496:215–218

    Article  PubMed  CAS  Google Scholar 

  • Lobelle D, Kenyon EJ, Cook KJ, Bull JC (2013) Local competition and metapopulation processes drive long-term seagrass-epiphyte population dynamics. PLoS ONE 8(2):e57072

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Long MH, McGlathery KJ, Zieman JC, Berg P (2008) The role of organic acid exudates in liberating phosphorus from seagrass-vegetated carbonate sediments. Limnol Oceanogr 53(6):2616–2626. https://doi.org/10.4319/lo.2008.53.6.2616

    Article  CAS  Google Scholar 

  • López NI, Duarte CM, Vallespinós F, Romero J, Alcoverro T (1995) Bacterial activity in seagrass (Posidonia oceanica) sediments. J Experimental Biol Ecol 187:39–49

    Article  Google Scholar 

  • Lopez-Urrutia A, Moran XAG (2007) Resource limitation of bacterial production distorts the temperature dependence of oceanic carbon cycling. Ecology 88:817–822. https://doi.org/10.1890/06-1641

    Article  PubMed  Google Scholar 

  • Luna GM, Corinaldesi C, Dell’Anno A, Pusceddu A, Danovaro R (2013) Impact of aquaculture on benthic virus-prokaryote interactions in the Mediterranean Sea. Water Res 47:1156–1168

    Article  PubMed  CAS  Google Scholar 

  • Lyimo T, Hamisi M (2008) Cyanobacteria occurrence and nitrogen fixation rates in the seagrass meadows of the east coast of Zanzibar: comparisons of sites with and without seaweed farms. West Indian Ocean J Mar Sci 7:45–55

    Google Scholar 

  • Macreadie PI, Baird ME, Trevathan-Tackett SM, Larkum AWD, Ralph PJ (2014a) Quantifying and modelling the carbon sequestration capacity of seagrass meadows—a critical assessment. Mar Pollut Bull 83:430–439

    Article  PubMed  CAS  Google Scholar 

  • Macreadie PI, York PH, Sherman CDH (2014b) Resilience of Zostera muelleri seagrass to small-scale disturbances: the relative importance of asexual versus sexual recovery. Ecol Evol 4:450–461

    Article  PubMed  PubMed Central  Google Scholar 

  • Macreadie PI, Trevathan-Tackett SM, Skilbeck CG, Sanderman J, Curlevski N, Jacobsen G, Seymour JR (2015) Losses and recovery of organic carbon from a seagrass ecosystem following disturbance. In: Proceedings of the Royal Society B-Biological Sciences. In press (282)

    Google Scholar 

  • Madsen JD, Chambers PA, James WF, Koch EW, Westlake DF (2001) The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444:71–84. https://doi.org/10.1023/a:1017520800568

    Article  Google Scholar 

  • Maie N, Jaffé R, Miyoshi T, Childers DL (2006) Quantitative and qualitative aspects of dissolved organic carbon leached from senescent plants in an oligotrophic wetland. Biogeochemistry 78:285–314

    Article  CAS  Google Scholar 

  • Mann KH (1998) Production and use of detritus in various freshwater, estuarine, and coastal marine ecosystems. Limnol Oceanogr 33:910–930

    Google Scholar 

  • Marba N, Holmer M, Gacia E, Barron C (2006) Seagrass beds and coastal biogeochemistry, In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Berlin, pp 135–157

    Google Scholar 

  • Margulis L (1991) Symbiogenesis and symbionticism. In: Margulis RFE L (ed) Symbiosis as a source of evolutionary innovation: speciation and morphogenesis. MIT Press, Cambridge, pp 1–14

    Google Scholar 

  • Marhaeni B, Radjasa OK, Bengen DG, Kaswadji RF (2010) Screening of bacterial symbionts of seagrass Enhalus sp. against biofilm-forming bacteria. J Coastal Develop 13:126–132

    Google Scholar 

  • Mata JL, Cebrian J (2013) Fungal endophytes of the seagrasses Halodule wrightii and Thalassia testudinum in the north-central Gulf of Mexico. Bot Mar 56:541–545

    Article  Google Scholar 

  • Mateo MA, Cebrián J, Dunton K, Mutchler T (2006) Carbon flux in seagrass ecosystems. In: Larkum A, Orth R, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer-Verlag, Netherlands, pp 159–192

    Google Scholar 

  • Mateo MA, Cebrian J, Dunton K, Mutchler T (2007) Carbon flux in seagrass ecosystems. In: Larkum A, Orth RJ, Duarte C (eds) Seagrasses: biology, ecology and conservation. Springer, Berlin

    Google Scholar 

  • Mateo MA, Romero J, Perez M, Littler MM, Littler DS (1997) Dynamics of millenary organic deposits resulting from the growth of the Mediterranean seagrass Posidonia oceanica. Estuar Coast Shelf Sci 44:103–110

    Article  Google Scholar 

  • Ofek-Lalzar M, Sela N, Goldman-Voronov M, Green SJ, Hadar Y, Minz D (2014) Niche and host-associated functional signatures of the root surface microbiome. Nature Commun 5:49501–49509

    Google Scholar 

  • McFall-Ngai M (2014) Divining the essence of symbiosis: insights from the squid-vibrio model. PLoS Biol 12(2):e1001783. https://doi.org/10.1371/journal.pbio.1001783

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McGlathery KJ, Risgaard-Petersen N, Christensen PB (1998) Temporal and spatial variation in nitrogen fixation activity in the eelgrass Zostera marina rhizosphere. Mar Ecol Prog Ser 168:245–258

    Article  CAS  Google Scholar 

  • McGlathery KJ, Sundback K, Anderson IC (2007) Eutrophication in shallow coastal bays and lagoons: the role of plants in the coastal filter. Mar Ecol Prog Ser 348:1–18

    Article  CAS  Google Scholar 

  • McLeod E, Chmura GL, Bouillon S, Salm R, Bjork M, Duarte CM, Lovelock CE, Schlesinger WH, Silliman BR (2011) A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Front Ecol Environ 9:552–560. https://doi.org/10.1890/110004

    Article  Google Scholar 

  • Meyer-Reil LA, Koster M (2000) Eutrophication of marine waters: effects on benthic microbial communities. Mar Pollut Bull 41:255–263

    Article  CAS  Google Scholar 

  • Michael TS, Shin HW, Hanna R, Spafford DC (2008) A review of epiphyte community development: surface interactions and settlement on seagrass. J Environ Biol 29:629–638

    PubMed  Google Scholar 

  • Moffler MD, Durako MJ (1984) Axenic culture of Thalassia testudinum Banks Ex Konig (Hydrocharitaceae). Am J Bot 71:1455–1460

    Article  Google Scholar 

  • Moncreiff CA, Sullivan MJ (2001) Trophic importance of epiphytic algae in subtropical seagrass beds: evidence from multiple stable isotopte analyses. Mar Ecol Prog Ser 215:93–106

    Article  CAS  Google Scholar 

  • Moriarty DJW, Pollard PC (1982) Diel variation of bacterial productivity in seagrass (Zostera capricorni) beds measured by rate of thymidine incorporation into DNA. Mar Biol 72:165–173. https://doi.org/10.1007/bf00396917

    Article  Google Scholar 

  • Moriarty DJW, Boon PI, Hansen JA, Hunt WG, Poiner IR, Pollard PC, Skyring GW, White DC (1985) Microbial biomass and productivity in seagrass beds. Geomicrobiol J 4:21–51

    Article  PubMed  CAS  Google Scholar 

  • Moriarty DJW, Iverson RL, Pollard PC (1986a) Exudation of organic carbon by the seagrass Halodule wrightii Aschers. And its effect on bacterial growth in the sediment. J Exp Mar Biol Ecol 96:115–126

    Article  CAS  Google Scholar 

  • Moriarty DJW, Iverson RL, Pollard PC (1986b) Exudation of Organic-carbon by the seagrass Halodule wrightii aschers and its effect on bacterial-growth in the sediment. J Exp Mar Biol Ecol 96:115–126. https://doi.org/10.1016/0022-0981(86)90237-6

    Article  CAS  Google Scholar 

  • Mtui G, Nakamura Y (2008) Lignocellulosic enzymes from Flavodon flavus, a fungus isolated from Western Indian Ocean off the Coast of Dar es Salaam, Tanzania. Afr J Biotech 7:3066–3072

    CAS  Google Scholar 

  • Muehlstein L, Porter D, Short F (1988) Labyrinthula sp., a marine slime mold producing the symptoms of wasting disease in eelgrass, Zostera marina. Mar Biol 99:465–472

    Article  Google Scholar 

  • Muehlstein LK (1989) Perspectives on the wasting disease of eelgrass Zostera marina. Dis Aquat Organisms 7:211–221

    Article  Google Scholar 

  • Muehlstein LK, Porter D, Short FT (1991) Labyrinthula zosterae sp. nov., the causative agent of wasting disease of eelgrass, Zostera marina. Mycologia 83:180–191

    Article  Google Scholar 

  • Müller H, Berg C, Landa BB, Auerbach A, Moissl-Eichinger, Berg G (2015) Plant genotype-specific archaeal and bacterial endophytes but similar Bacillus antagonists colonize Mediterranean olive trees. Front Microbiol 6. https://doi.org/10.3389/fmicb.2015.00138

  • Munn CB (2006) Viruses as pathogens of marine organisms—from bacteria to whales. J Mar Biol Assoc U K 86:453–467

    Article  Google Scholar 

  • Neckles HA, Koepfler ET, Haas LW, Wetzel RL, Orth RJ (1994) Dynamics of epiphytic photoautotrophs and heterotrophs in Zostera marina (eelgrass) microcosms: responses to nutrient enrichment and grazing. Estuaries 17:597–605

    Article  Google Scholar 

  • Neckles HA, Wetzel RL, Orth RJ (1993) Relative effects of nutrient enrichment and grazing on epiphyte-macrophyte (Zostera marina L.) dynamics. Oecologia 93:285–295

    Article  PubMed  Google Scholar 

  • Neubauer ATA, Pedersen AGU, Finster K, Herbert RA, Donnelly AP, Viaroli P, Giordani G, de Wit R, Lomstein BA (2004) Benthic decomposition of Zostera marina roots: a controlled laboratory experiment. J Exp Mar Biol Ecol 313:105–124. https://doi.org/10.1016/j.jembe.2004.08.003

    Article  Google Scholar 

  • Neuhauser S, Kirchmair M, Gleason FH (2011) Ecological roles of the parasitic phytomyxids (plasmodiophorids) in marine ecosystems—a review. Mar Freshw Res 62:365–371

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Newsham KK (2011) A meta-anlysis of plant responses to dark septate root endophytes. New Phytol 190:783–793

    Article  PubMed  CAS  Google Scholar 

  • Nielsen JT, Liesack W, Finster K (1999a) Desulfovibrio zosterae sp. nov., a new sulfate reducer isolated from surface-sterilized roots of the seagrass Zostera marina. Int J Syst Bacteriol 49:859–865

    Article  PubMed  CAS  Google Scholar 

  • Nielsen LB, Finster K, Welsh DT, Donelly A, Herbert RA, de Wit R, Lomstein BA (2001) Sulphate reduction and nitrogen fixation rates associated with roots, rhizomes and sediments from Zostera noltii and Spartina maritima meadows. Environ Microbiol 3:63–71. https://doi.org/10.1046/j.1462-2920.2001.00160.x

    Article  PubMed  CAS  Google Scholar 

  • Nielsen LP, Risgaard-Petersen N, Fossing H, Christensen PB, Sayama M (2010) Electric currents couple spatially separated biogeochemical processes in marine sediment. Nature 463:1071–1074

    Article  PubMed  CAS  Google Scholar 

  • Nielsen SL, Thingstrup I, Wigand C (1999b) Apparent lack of vesicular-arbuscular mycorrhiza (VAM) in the seagrasses Zostera marina L. and Thalassia testudinum Banks ex Konig. Aquat Bot 63:261–266

    Article  Google Scholar 

  • Novak R (1984) A study in ultra-ecology: microorganisms on the seagrass Posidonia oceanica (L.) DELILE. Mar Ecol 5:143–190

    Article  Google Scholar 

  • O’Donohue MJ, Moriarty DJW, McRae IC (1991) Nitrogen fixation in sediments and the rhizosphere of the seagrass Zostera Capricornia. Microb Ecol 22:53–64

    Article  PubMed  Google Scholar 

  • Olsen YS, Potouroglou M, Garcias-Bonet N, Duarte CM (2015) Warming reduces pathogen pressure on a climate-vulnerable seagrass species. Estuar Coast 38:659–667. https://doi.org/10.1007/s12237-014-9847-9

    Article  Google Scholar 

  • Ottosen LDM, Risgaard-Petersen N, Nielsen LP (1999) Direct and indirect measurements of nitrification and denitrification in the rhizosphere of aquatic macrophytes. Aquat Microb Ecol 19:81–91

    Article  Google Scholar 

  • Panno L, Bruno M, Voyron S, Anastasi A, Gnavi G, Miserere L, Varese GC (2013) Diversity, ecological role and potential biotechnological applications of marine fungi associated to the seagrass Posidonia oceanica. New Biotechnol 30:685–694

    Article  CAS  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42. https://doi.org/10.1038/nature01286

    Article  PubMed  CAS  Google Scholar 

  • Patriqnin D, Knowles R (1972) Nitrogen fixation in the rhizosphere of marine angiosperms. Mar Biol 16:49–58

    Article  Google Scholar 

  • Patriquin DG (1972) The origin of nitrogen and phosphorous for growth of the marine angiosperm Thalassia testudinum. Mar Biol 15:35–46

    Article  CAS  Google Scholar 

  • Pawlik JR (1993) Marine invertebrate chemical defenses. Chem Rev 93(5):1911–1922

    Article  CAS  Google Scholar 

  • Pedersen MO, Serrano O, Mateo MA, Holmer M (2011) Temperature effects on decomposition of a Posidonia oceanica mat. Aquat Microb Ecol 65:169–182. https://doi.org/10.3354/ame01543

    Article  Google Scholar 

  • Pedersen O, Borum J, Duarte CM, Fortes MD (1998) Oxygen dynamics in the rhizosphere of Cymodocea rotundata. Mar Ecol Prog Ser 169:283–288

    Article  CAS  Google Scholar 

  • Peduzzi P, Herndl GJ (1991) Decomposition and significance of seagrass leaf litter (Cymodocea nodosa) for the microbial food web in coastal waters (Gulf of Trieste, northern Adriatic Sea). Mar Ecol Prog Ser 71(2):163–174

    Article  Google Scholar 

  • Peoples MB, Herridge DF, Ladha JK (1995) Biological nitrogen fixation: an efficient source of nitrogen for sustainable agricultural production. Plant Soil 174:3–28

    Article  CAS  Google Scholar 

  • Pereg LL, Lipkin Y, Sar N (1994) Different niches of the Halophila stipulacea seagrass bed harbour distinct populations of nitrogen fixing bacteria. Mar Biol 119:327–333

    Article  CAS  Google Scholar 

  • Perez M, Invers O, Ruiz JM, Frederiksen MS, Holmer M (2007) Physiological responses of the seagrass Posidonia oceanica to elevated organic matter content in sediments: an experimental assessment. J Exp Mar Biol Ecol 344:149–160

    Article  CAS  Google Scholar 

  • Pernice M, Meibom A, Van Den Heuvel A, Kopp C, Domart-Coulon I, Hoegh-Guldberg O, Dove S (2012) A single-cell view of ammonium assimilation in coral–dinoflagellate symbiosis. ISME J 6:1314–1324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pfeffer C, Larsen S, Song J, Dong M, Besenbacher F, Meyer RL, Kjeldsen KU, Schreiber L, Gorby YA, El-Naggar MY, Leung KM, Schramm A, Risgaard-Petersen N, Nielsen LP (2012) Filamentous bacteria transport electrons over centimetre distances. Nature 491:218–221. https://doi.org/10.1038/nature11586

    Article  PubMed  CAS  Google Scholar 

  • Pinckney JL, Micheli F (1998) Microalgae on seagrass mimics: does epiphyte community structure differ from live seagrasses? J Exp Mar Biol Ecol 221:59–70

    Article  Google Scholar 

  • Pirozynski KA, Dalpé Y (1989) Geological history of the Glomaceae, with particular reference to mycorrhizal symbiosis. Symbiosis 7:1–36

    Google Scholar 

  • Pollard PC, Moriarty DJW (1991) Organic carbon decomposition, primary and bacterial productivity, and sulfate reduction in tropical seagrass beds of the Gulf of Carpentaria, Australia. Mar Ecol Prog Ser 69(1–2):149–159. https://doi.org/10.3354/meps069149

    Article  CAS  Google Scholar 

  • Porter D (1990) Phylum labyrinthulomycota. In: Handbook of protoctista. Jones and Bartlett, pp 388–398

    Google Scholar 

  • Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948

    Article  Google Scholar 

  • Puglisi MP, Engel S, Jensen PR, Fenical W (2007) Antimicrobial activities of extracts from Indo-Pacific marine plants against marine pathogens and saprophytes. Mar Biol 150:531–540

    Article  Google Scholar 

  • Raghukumar C, D’Souza TM, Thorn RG, Reddy CA (1999) Lignin-modifying enzymes of Flavodon flavus, a basidiomycete isolated from a coastal marine environment. Appl Environ Microbiol 65:2103–2111

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ralph PJ, Short FT (2002) Impact fo the wasting disease pathogen, Labyrinthula zosterae, on the photobiology of eelgrass Zostera marina. Mar Ecol Prog Ser 226:265–271

    Article  Google Scholar 

  • Ravn H, Pedersen MF, Borum J, Andary C, Anthoni U, Christophersen C, Nielsen PH (1994) Seasonal variation and distribution of two phenolic compounds, rosmarinic acid and caffeic acid, in leaves and roots-rhizomes of eelgrass (Zostera marina L.). Ophelia 40:51–61

    Article  Google Scholar 

  • Remy W, Taylor TN, Hass H, Kerp H (1994) Four hundred million year old vesicular arbuscular mycorrhizae. Proc Nat Acad USA 91:11841–11843

    Article  CAS  Google Scholar 

  • Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ Microbiol 8:2068–2073

    Article  PubMed  CAS  Google Scholar 

  • Revsbech NP, Jørgensen BB, Blackburn TH (1980) Oxygen in the sea bottom measured with a microelectrode. Science 207:1355–1356

    Article  CAS  Google Scholar 

  • Risgaard-Petersen N, Dalsgaard T, Rysgaard S, Christensen PB, Borum J, McGlathery K, Nielsen LP (1998) Nitrogen balance of a temperate eelgrass Zostera marina bed. Mar Ecol Prog Ser 174:281–291

    Article  CAS  Google Scholar 

  • Risgaard-Petersen N, Ottosen LDM (2000) Nitrogen cycling in two temperate Zostera marina beds: seasonal variation. Mar Ecol Prog Ser 198:93–107

    Article  Google Scholar 

  • Robblee M, Barber T, Carlson P Jr, Durako M, Fourqurean J, Muehlstein L, Porter D, Yarbro L, Zieman R, Zieman J (1991) Mass mortality of the tropical seagrass Thalassia testudinum in Florida Bay (USA). Mar Ecol Prog Ser 71:297–299

    Article  Google Scholar 

  • Rohwer F, Seguritan V, Azam F, Knowlton N (2002) Diversity and distribution of coral-associated bacteria. Mar Ecol Prog Ser 243:1–10

    Article  Google Scholar 

  • Romero J, Lee KS, Perez M, Mateo MA, Alcoverro T (2006) Nutrient dynamics in seagrass ecosystems. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: Biology, ecology and conservation. Springer, Berlin, pp 227–254

    Google Scholar 

  • Rosenblueth M, Martinez-Romeroa E (2006) Bacterial endophytes and their interactions with hosts. Mol Plant Microbe Interact 8:827–837

    Article  CAS  Google Scholar 

  • Ross C, Puglisi MP, Paul VJ (2008) Antifungal defenses of seagrasses from the Indian River Lagoon, Florida. Aquat Bot 88:134–141

    Article  CAS  Google Scholar 

  • Rosselló-Mora R, Thamdrup B, Schäfer H, Weller R, Amann R (1999) The response of the microbial community of marine sediments to organic carbon input under anaerobic conditions. Syst Appl Microbiol 22:237–248

    Article  PubMed  Google Scholar 

  • Rysgaard S, Christensen PB, Nielsen LP (1995) Seasonal variation in nitrification and denitrification in estuarine sediment colonized by benthic microalgae and bioturbating infauna. Mar Ecol Prog Ser 126:111–121

    Article  CAS  Google Scholar 

  • Sakayaroj J, Preedanon S, Supaphon O, Jones EBG, Phongpaichit S (2010) Phylogenetic diversity of endophyte assemblages associated with the tropical seagrass Enhalus acoroides in Thailand. Fungal Divers 42:27–45

    Article  Google Scholar 

  • Sala MM, Aparicio FL, Balague V, Boras JA, Borrull E, Cardelus C, Cros L, Gomes A, Lopez-Sanz A, Malits A, Martinez RA, Mestre M, Movilla J, Sarmento H, Vazquez-Dominguez E, Vaque D, Pinhassi J, Calbet A, Calvo E, Gasol JM, Pelejero C, Marrase C (2016) Contrasting effects of ocean acidification on the microbial food web under different trophic conditions. ICES J Mar Sci 73(3):670–679

    Article  Google Scholar 

  • Sand Jensen K (1977) Effects of epiphytes on eelgrass photosynthesis. Aquat Bot 3:55–63

    Article  CAS  Google Scholar 

  • Sarmento H, Montoya JM, Vazquez-Dominguez E, Vaque D, Gasol JM (2010) Warming effects on marine microbial food web processes: how far can we go when it comes to predictions? Philos Trans R Soc B-Biol Sci 365:2137–2149. https://doi.org/10.1098/rstb.2010.0045

    Article  Google Scholar 

  • Sathe V, Raghukumar S (1991) Fungi and their biomass in detritus of the seagrass Thalassia hemprichii (Ehrenberg) Acherson. Bot Mar 34:271–277

    Article  Google Scholar 

  • Schulz B, Boyle C (2006) What are endophytes? In Microbial Root Endophytes. In: Sieber TN (ed) Soil biology, vol 9. Springer, Berlin

    Google Scholar 

  • Semesi IS, Beer S, Bjork M (2009) Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow. Mar Ecol Prog Ser 382:41–47. https://doi.org/10.3354/meps07973

    Article  CAS  Google Scholar 

  • Seymour JR (2014) A sea of microbes: the diversity and activity of marine microorganisms. Microbiol Aust 35:183–187

    Google Scholar 

  • Shiba T, Shioi Y, Takamiya K-I, Sutton DC, Wilkinson CR (1991) Distribution and physiology of aerobic bacteria containing bacteriochlorophyll a on the east and west coasts of Australia. Appl Environ Microbiol 57:295–300

    PubMed  PubMed Central  CAS  Google Scholar 

  • Shieh W, Yang J (1997) Denitrification in the rhizosphere of the two seagrasses Thalassia hemprichii (Ehrenb.) Aschers and Halodule uninervis (Forsk.) Aschers. J Exp Mar Biol Ecol 218:229–241

    Article  CAS  Google Scholar 

  • Shieh WY, Chen AL, Chiu HH (2000) Vibrio aerogenes sp nov., a facultatively anaerobic marine bacterium that ferment glucose with gas production. Int J Syst Evol Microbiol 50:321–329

    Article  PubMed  CAS  Google Scholar 

  • Shoemaker G, Wyllie-Echeverria S (2013) Occurrence of rhizomal endophytes in three temperate northeast pacific seagrasses. Aquat Bot 111:71–73

    Article  Google Scholar 

  • Short FT, Koch EW, Creed JC, Magalhaes KM, Fernandez E, Gaeckle JL (2006) SeagrassNet monitoring across the Americas: case studies of seagrass decline. Mar Ecol Evol Perspect 27(4):277–289. https://doi.org/10.1111/j.1439-0485.2006.00095.x

    Article  Google Scholar 

  • Short FT, Neckles HA (1999) The effects of global climate change on seagrasses. Aquat Bot 63(3–4):169–196

    Article  Google Scholar 

  • Shreiner AB, Kao JY, Young VB (2015) The gut microbiome in health and in disease. Current Opinion Gastroentorology 31:69–75

    Article  CAS  Google Scholar 

  • Smith GW, Hayasaka SS, Thayer GW (1979) Root surface area measurements of Zostera marina and Halodule wrightii. Bot Mar 22:347–358

    Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis. Academic Press, London

    Google Scholar 

  • Soetaert K, Hofmann AF, Middelburg JJ, Meysman FJR, Greenwood J (2007) The effect of biogeochemical processes on pH. Mar Chem 105:30–51

    Article  CAS  Google Scholar 

  • Sogin ML et al (2006) Microbial diversity in the deep sea and the underexplored ‘rare biosphere’. Proc Natl Acad Sci USA 103:12115–12120

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Stapel J, Aarts TL, van Duynhoven BHM, de Groot JD, van den Hoogen PHW, Hemminga MA (1996) Nutrient uptake by leaves and roots of the seagrass Thalassia hemprichii in the Spermonde Archipelago, Indonesia. Mar Ecol Prog Ser 134:195–206

    Article  Google Scholar 

  • Statton J, Cambridge ML, Dixon KW (2013) Aquaculture of Posidonia australis seedlings for seagrass restoration programs: effect of sediment type and organic enrichment on growth. Restor Ecol 250–259

    Google Scholar 

  • Sullivan BK, Sherman TD, Damare VS, Lilje O, Gleason FH (2013) Potential roles of Labyrinthula spp. in global seagrass population declines. Fungal Ecol 6:328–338

    Article  Google Scholar 

  • Supaphon P, Phongpaichit S, Rukachaisirikul V, Sakayaroj J (2013) Antimicrobial potential of endophytic fungi derived from three seagrass species: Cymodocea serrulata, Halophila ovalis and Thalassia hemprichii. PLoS ONE 8:e72520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Suttle CA (2007) Marine viruses—major players in the global ecosystem. Nat Rev Microbiol 5:801–812. 6

    Google Scholar 

  • Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol Mol Biol Rev 71:295–347

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Terrados J, Duarte CM, Kamp-Nielsen L, Agawin NSR, Gacia E, Lacap D, Fortes MD, Borum J, Lubanski M, Greve T (1999) Are seagrass growth and survival constrained by the reducing conditions of the sediment. Aquat Bot 65:175–197

    Article  Google Scholar 

  • Thomas F, Giblin AE, Cardon ZG, Sievert SM (2014) Rhizosphere heterogeneity shapes abundance and activity of sulfur-oxidizing bacteria in vegetated salt marsh sediments. Front Microbiol 5. https://doi.org/10.3389/fmicb.2014.00309

  • Thomson JA, Burkholder DA, Heithaus MR, Fourqurean JW, Fraser MW, Statton J, Kendrick GA (2015) Extreme temperatures, foundation species, and abrupt ecosystem change: an example from an iconic seagrass ecosystem. Glob Change Biol 21:1463–1474

    Article  Google Scholar 

  • Torta L, Lo Piccolo S, Piazza G, Burruano S, Colombo P, Ottonello D, Perrone R, Di Maida G, Pirrotta M, Tomasello A (2015) Lulwoana sp., a dark septate endophyte in roots of Posidonia oceanica (L.) Delile seagrass. Plant Biol 17:505–511

    Article  PubMed  CAS  Google Scholar 

  • Touchette BW, Burkholder JM (2000) Review of nitrogen and phosphorus metabolism in seagrasses. J Exp Mar Biol Ecol 250:133–167

    Article  PubMed  CAS  Google Scholar 

  • Tout JA, Siboni N, Messer LF, Garren M, Stocker R, Webster NS, Ralph PJ, Seymour JR (2015) Increased seawater temperature increases the abundance and alters the structure of natural Vibrio populations associated with the coral Pocillopora damicornis. Front Microbiol http://dx.doi.org/10.3389/fmicb.2015.00432

  • Trevathan-Tackett SM, Macreadie P, Ralph P, Seymour J (2014) Detachment and flow cytometric quantification of seagrass-associated bacteria. J Microbiol Methods 102:23–25

    Article  PubMed  Google Scholar 

  • Trevathan-Tackett SM, Lane AL, Bishop N, Ross C (2015) Metabolites derived from the tropical seagrass Thalassia testudinum are bioactive against pathogenic Labyrinthula sp. Aquat Bot 122:1–8

    Article  CAS  Google Scholar 

  • Trias R, Garcia-Lledo A, Sanchez N, Lopez-Jurado JL et al (2012) Abundance and composition of epiphytic bacterial and archaeal ammonia oxidizers of marine red and brown macroalgae. Appl Environ Microbiol 78:318–325

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Uku J, Björk M, Bergman B, Díez B (2007) Characterization and comparison of prokaryotic epiphytes associated with three east African seagrasses. J Phycol 43:768–779

    Article  CAS  Google Scholar 

  • Unsworth RKF, Collier CJ, Waycott M, Mckenzie LJ, Cullen-Unsworth LC (2015) A framework for the resilience of seagrass ecosystems. Mar Pollut Bull (in press)

    Google Scholar 

  • van der Heide T, Govers LL, de Fouw J, Olff H, van der Geest M, van Katwijk MM, Piersma T, van de Koppel J, Silliman BR, Smolders AJP, van Gils JA (2012) A three-stage symbiosis forms the foundation of seagrass ecosystems. Science 336:1432–1434

    Article  PubMed  CAS  Google Scholar 

  • Van Etten JL, Graves MV, Muller DG, Boland W, Delaroque N (2002) Phycodnaviridae-large DNA algal viruses. Arch Virol 147:1479–1516

    Article  PubMed  CAS  Google Scholar 

  • van Montfrans J, Wetzel RL, Orth RJ (1984) Epiphyte-grazer relationships in seagrass meadows: consequences for seagrass growth and production. Estuaries 7:289–309

    Article  Google Scholar 

  • Vandenkoornhuyse P, Quaiser A, Duhamel M, Le Van A, Dufresne A (2015) The importance of the microbiome of the plant holobiont. New Phytol 206:1196–1206

    Article  PubMed  Google Scholar 

  • Vega Thurber R, Willner-Hall D, Rodriguez-Mueller B, Desnues C, Edwards RA, Angly F et al (2009) Metagenomic analysis of stressed coral holobionts. Environ Microbiol 11:2148–2163

    Article  PubMed  CAS  Google Scholar 

  • Venkatachalam A, Thirunavukkarasu N, Suryanarayanan TS (2015) Distribution and diversity of endophytes in seagrasses. Fungal Ecol 13:60–65

    Article  Google Scholar 

  • Vergeer LHT, den Hartog C (1994) Omnipresence of Labyrinthulaceae in seagrasses. Aquat Bot 48(1):1–20. https://doi.org/10.1016/0304-3770(94)90070-1

    Article  Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    Article  CAS  Google Scholar 

  • Vichkovitten T, Holmer M (2004) Contribution of plant carbohydrates to sedimentary carbon mineralization. Org Geochem 35(9):1053–1066. https://doi.org/10.1016/j.orggeochem.2004.04.007

    Article  CAS  Google Scholar 

  • Vohník M, Borovec O, Župan I, Vondrášek D, Petrtýl M, Sudová R (2015) Anatomically and morphologically unique dark septate endophytic association in the roots of the Mediterranean endemic seagrass Posidonia oceanica. Mycorrhiza 25:663–672

    Article  PubMed  Google Scholar 

  • Vonk JA, Middelburg JJ, Stapel J, Bouma TJ (2008) Dissolved organic nitrogen uptake by seagrasses. Limnol Oceanogr 53:542–548

    Article  CAS  Google Scholar 

  • Wahbeh MI, Mahasneh AM (1984) Heterotrophic bacteria attached to leaves, rhizomes and roots of three seagrass species from Aqaba (Jordan). Aquat Bot 20:87–96

    Article  Google Scholar 

  • Wahbeh MI, Mahasneh AM (1985) Some aspects of decomposition of leaf litter of the seagrass Halophila stipulacea from the gulf of Aqaba (Jordan). Aquat Bot 21:237–244

    Article  Google Scholar 

  • Wainwright M, Lederberg J (1992) History of microbiology, vol 2 of Encyclopedia of Microbiology. Academic Press

    Google Scholar 

  • Walker AK, Campbell J (2009) First records of the seagrass parasite Plasmodiophora diplantherae from the northcentral Gulf of Mexico. Gulf Caribb Res 21:63–65

    Article  Google Scholar 

  • Wang Y, Zhang R, Zheng Q, Deng Y, Van Nostrand JD, Zhou J, Jiao N (2016) Bacterioplankton community resilience to ocean acidification: evidence from microbial network analysis. ICES J Mar Sci 73:865–875

    Article  Google Scholar 

  • Weidner S, Arnold W, Stackebrandt E, Pühler A (2000) Phylogenetic analysis of bacterial communities associated with leaves of the seagrass Halophila stipulacea by a culture-independent small-subunit RNA gene approach. Microb Ecol 39:22–31

    Article  PubMed  CAS  Google Scholar 

  • Welsh DT (2000) Nitrogen fixation in seagrass meadows: regulation, plant-bacteria interactions and significance to primary productivity. Ecol Lett 3:58–71

    Article  Google Scholar 

  • Welsh DT, Bourgues S, de Wit R, Auby I (1997) Effect of plant photosynthesis, carbon sources and ammonium availability on nitrogen fixation rates in the rhizosphere of Zostera noltii. Aquat Microb Ecol 12:285–290

    Article  Google Scholar 

  • Welsh DT, Bourgues S, deWit R, Herbert RA (1996) Seasonal variations in nitrogen-fixation (acetylene reduction) and sulphate-reduction rates in the rhizosphere of Zostera noltii: Nitrogen fixation by sulphate reducing bacteria. Mar Biol 125:619–628

    Article  CAS  Google Scholar 

  • Welsh DT, Castadelli G, Bartoli M, Poli D, Careri M, de-Wit R, Viaroli P (2001) Denitrification in an intertidal seagrass meadow, a comparison of 15 N-isotope and acetylene-block techniques: dissimilatory nitrate reduction to ammonia as a source of N2O. Mar Biol 139:1029–1036

    Article  CAS  Google Scholar 

  • Welsh DT, Marco B, Nizzoli D, Castaldelli G, Riuo SA, Viaroli P (2000) Denitrification, nitrogen fixation, community primary productivity, and inorganic-N and Oxygen fluxes in an intertidal Zostera noltii meadow. Mar Ecol Prog Ser 208:65–77

    Article  Google Scholar 

  • Wetzel RG, Penhale PA (1979) Transport of carbon and excretion of dissolved organic carbon by leaves and roots/rhizomes in seagrasses and their epiphytes. Aquat Bot 6:149–158. https://doi.org/10.1016/0304-3770(79)90058-5

    Article  CAS  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majorty. Proc Natl Acad Sci USA 95:6578–6583

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Wilhelm SW, Suttle CA (1999) Viruses and nutrient cycles in the sea. Bioscience 49:781–788

    Article  Google Scholar 

  • Williams CJ, Boyer JN, Jochem FJ (2009) Microbial activity and carbon, nitrogen, and phosphorus content in a subtropical seagrass estuary (Florida Bay): evidence for limited bacterial use of seagrass production. Mar Biol 156:341–353

    Article  CAS  Google Scholar 

  • Wilson W (1998) Isolation of Endophytes from seagrasses from Bermuda. University of New Brunswick, pp 4–69

    Google Scholar 

  • Yoon J, Oku N, Matsuda S, Kasai H, Yokota A (2007) Pelagicoccus croceus sp nov., a novel marine member of the family Puniceicoccaceae within the phylum ‘Verrucomicrobia’ isolated from seagrass. Int J Syst Evol Microbiol 2874–2880

    Google Scholar 

  • Zapata O, McMillan C (1979) Phenolic acids in seagrasses. Aquat Bot 7:307–317

    Article  CAS  Google Scholar 

  • Zhang F, Pita L, Erwin PM, Abaid S, Lopez-Legentil S, Hill RT (2014) Symbiotic archaea in marine sponges show stability and host specificity in community structure and ammonia oxidation functionality. FEMS Microbiol Ecol 90:699–707

    Article  PubMed  CAS  Google Scholar 

  • Ziegler S, Benner R (1999) Dissolved organic carbon cycling in a subtropical seagrass-dominated lagoon. Mar Ecol Prog Ser 180:149–160

    Article  Google Scholar 

  • Zieman J, Macko S, Mills A (1984) Role of seagrasses and mangroves in estuarine food webs: temporal and spatial changes in stable isotope composition and amino acid content during decomposition. Bull Mar Sci 35:380–392

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Seymour .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seymour, J.R., Laverock, B., Nielsen, D.A., Trevathan-Tackett, S.M., Macreadie, P.I. (2018). The Microbiology of Seagrasses. In: Larkum, A., Kendrick, G., Ralph, P. (eds) Seagrasses of Australia. Springer, Cham. https://doi.org/10.1007/978-3-319-71354-0_12

Download citation

Publish with us

Policies and ethics