Skip to main content

Photosynthesis and Metabolism of Seagrasses

  • Chapter
  • First Online:
Book cover Seagrasses of Australia

Abstract

Seagrasses have a unique leaf morphology where the major site for chloroplasts is in the epidermal cells , stomata are absent and aerenchyma is present inside the epidermis. This means that the major site for photosynthesis is in the epidermis. Furthermore the lack of stomata means that the route for carbon uptake is via inorganic carbon (Ci) uptake across the vestigial cuticle and through the outer plasma membranes. Since the leaf may at times be in an unstirred situation diffusion through an unstirred layer outside the leaf may be a large obstacle to carbon uptake. The existence of a carbon concentrating mechanism is discussed, but its existence to date is not proven. Active bicarbonate uptake across the plasmalemma does not seem to operate; an external carbonic anhydrase and an extrusion of protons seem to play a role in enhancing CO2 uptake. There is some evidence that a C4 mechanism plays a role in carbon fixation but more evidence from “omics” is required. Photorespiration certainly occurs in seagrasses and an active xanthophyll cycle is present to cope with damaging high light, but both these biochemical mechanisms need further work. Finally, epiphytes pose a problem which impedes the uptake of Ci and modifies the light environment inside the leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel KM, Drew EA (1989) Carbon metabolism. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses. Elsevier Press, Amsterdam, pp 760–796

    Google Scholar 

  • Abal EG, Loneragan N, Bowen P, Perry CJ, Udy JW, Dennison WC (1994) Physiological and morphological responses of the seagrass Zostera capricorni Aschers. to light intensity. J Exp Mar Biol Ecol 178:113–29

    Google Scholar 

  • Alexandre A, Silva J, Buapet P, Björk M, Santos R (2012) Effects of CO2 enrichment on photosynthesis, growth, and nitrogen metabolism of the seagrass Zostera noltii. Ecol Evol 2:2620–2630

    Article  Google Scholar 

  • Andrews TJ, Abel KM (1979) Photosynthetic carbon metabolism in seagrasses. 14C labelling evidence for the C3 pathway. Plant Physiol 63:650–656

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Aubry S, Brown NJ, Hibberd JM (2011) The role of proteins in C3 plants prior to their recruitment into the C4 pathway. J Exp Bot 62:3049–3059

    Article  PubMed  CAS  Google Scholar 

  • Badger MR, von Caemmerer S, Ruuska S, Nakano H (2000) Electron flow to oxygen in higher plants and algae: Rates and control of direct photoreduction (Mehler reaction) and rubisco oxygenase. Philos Trans R Soc Lond B Biol Sci 355:1433–46

    Google Scholar 

  • Barnabas AD (1982) Fine structure of the leaf epidermis of Thalassodendron ciliatum (Forsk.) den Hartog. Aquat Bot 12:41–55

    Article  Google Scholar 

  • Beer S, Björk M (2000) Measuring rates of photosynthesis of two tropical seagrasses by pulse amplitude modulated (PAM) fluorometry. Aquat Bot 66:69–76

    Article  CAS  Google Scholar 

  • Beer S, Rehnberg J (1997) The acquisition of inorganic carbon by the seagrass Zostera marina. Aquat Bot 56:277–283

    Google Scholar 

  • Beer S, Shomer-Ilan A, Waisel Y (1980) Carbon Metabolism in Seagrasses II. Patterns of photosynthetic CO2 incorporation. J Exp Bot 31:1019–1026

    Article  CAS  Google Scholar 

  • Beer S, Björk M, Hellblom F, Axelsson L (2002) Inorganic carbon utilization in marine angiosperms (seagrasses). Funct Plant Biol 29:349–354

    Article  CAS  PubMed  Google Scholar 

  • Beer S, Mtolera M, Lyimo T, Bjork M (2006) The photosynthetic performance of the tropical seagrass Halophila ovalis in the upper intertidal. Aquat Bot 84:367–71

    Google Scholar 

  • Benedict CR, Scott JR (1976) Photosynthetic carbon metabolism of a marine grass. Plant Physiol 57(6):876–880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benedict CR, Wong WWL, Wong JHH (1980) Fractionation of the stable isotopes of inorganic carbon by seagrasses. Plant Physiol 65:512–517

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bite JS, Campbell SJ, McKenzie LJ, Coles RG (2007) Chlorophyll fluorescence measures of seagrasses Halophila ovalis and Zostera capricorni reveal differences in response to experimental shading. Mar Biol 152:405–414

    Article  CAS  Google Scholar 

  • Black CC Jr, Burris JA, Everson RG (1976) Influence of oxygen concentration on photosynthesis in marine plants. Aust J Pl Physiol 3:81–86

    Article  CAS  Google Scholar 

  • Borum J (1983) The quantitative role of macrophytes, epiphytes, and phytoplankton under different nutrient conditions in Roskilde Fjord, Denmark. In: Proceedings of the international symposium on aquatic macrophytes, Nijmegen, 18–23 Sept 1983, pp 35–40

    Google Scholar 

  • Borum J, Pedersen O, Greve TM, Frankovich TA, Zieman JC, Fourqurean JEt (2005) The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thalassia testudinum. J Ecol 93:148–158

    Article  CAS  Google Scholar 

  • Borum J, Pedersen O, Kotula L, Fraser MW, Statton J, Colmer TD, Kendrick GA (2016) Photosynthetic response to globally increasing CO2 of co-occurring temperate seagrass species. Plant Cell Environ 39:1240–1250

    Article  PubMed  CAS  Google Scholar 

  • Bowes G (2011) Single-cell C4 photosynthesis in aquatic plants. In: Raghavendra AS, Sage RF (eds) C4 photosynthesis and related CO2 concentrating mechanisms, vol 32. Advances in photosynthesis and respiration. Springer, Berlin, pp 63–80

    Chapter  Google Scholar 

  • Bowes G, Ogren W (1972) Oxygen inhibition and other properties of soybean ribulose 1,5-diphosphate carboxylase. J Biol Chem 47:2171–2176

    Google Scholar 

  • Bowes G, Rao SK, Estavillo GM, Reiskind JB (2002) C4 mechanisms in aquatic angiosperms: Comparisons with terrestrial C4 systems. Funct Plant Biol 29:379–392

    Google Scholar 

  • Brett CL, Donowitz M, Rao R (2005) Evolutionary origins of eukaryotic sodium-proton exchangers. Am J Physiol Cell Biol 288:C223–C239

    Article  CAS  Google Scholar 

  • Briggs GE (1959) Bicarbonate ions as a source of carbon dioxide for photosynthesis. J Exp Bot 10:1–16

    Article  Google Scholar 

  • Brodersen KE, Nielsen DA, Ralph PJ, Kühl M (2015a) Oxic microshield and local pH enhancement protects Zostera muelleri from sediment derived hydrogen sulphide. New Phytol 205:1264–1276

    Article  PubMed  CAS  Google Scholar 

  • Brodersen KE, Lichtenberg M, Paz L-C, Kühl M (2015b) Epiphyte-cover on seagrass (Zostera marina L.) leaves impedes plant performance and radial O2 loss from the below-ground tissue. Front Mar Sci 2:58. https://doi.org/10.3389/fmars.2015.00058

    Article  Google Scholar 

  • Brush MJ, Nixon S (2002) Direct measurements of light attenuation by epiphytes on eelgrass Zostera marina. Mar Ecol Prog Ser 238:73–79

    Article  Google Scholar 

  • Bryant KR, Tay HW, Pilditch CA, Lundquist CJ, Hunt HL (2007) The effect of seagrass (Zostera muelleri) on boundary-layer hydrodynamics in Whangapoua Estuary, New Zealand. J Res Coast SI50:668–672

    Google Scholar 

  • Buapet P, Rasmusson LM, Gullströ M, Björk M (2013) Photorespiration and carbon limitation determine productivity in temperate seagrasses. PLoS ONE 8:e83804. https://doi.org/10.1371/journal.pone.0083804

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Burnell OW, Connell SD, Irving AD, Watling BD, Russell BD (2014) Contemporary reliance on bicarbonate predicts increased growth of seagrass Amphibolis antarctica in a high-CO2 world. Conserv Physiol 2:cou052. https://doi.org/10.1093/conpjys/cou052

    Article  PubMed  PubMed Central  Google Scholar 

  • Burkholder JM, Tomasko DA, Touchette BW (2007) Seagrasses and eutrophication. J Exp Mar Biol Ecol 350:46–72

    Google Scholar 

  • Campbell SJ, Kerville SP, Coles RG, Short F (2008) Photosynthetic responses of subtidal seagrasses to a daily light cycle in Torres Strait: a comparative study. Cont Shelf Res 28:2275–2281

    Article  Google Scholar 

  • Carr H, Axelsson L (2008) Photosynthetic utilization of bicarbonate in Zostera marina is reduced by inhibitors of mitochondrial ATPase and electron transport. Plant Physiol 147:879–885

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chi S, Wu S, Yu J, Wang X, Tang X, Liu T (2014) Phylogeny of C4-photosynthetic enzymes based on algal transcriptomic and genomic data supports an archael/proteobacterial origin and multiple duplication for most C4-related genes. PLoS ONE 9:e110154. https://doi.org/10.1371/journal.pone.011054

    Article  PubMed  PubMed Central  Google Scholar 

  • Chung MH, Lee KS (2008) Species Composition of the epiphytic diatoms on the leaf tissues of three Zostera species distributed on the southern coast of Korea. Algae 23:75–81

    Article  Google Scholar 

  • Collier CJ, Lavery PS, Ralph PJ, Masini RJ (2009) Shade-induced response and recovery of the seagrass Posidonia sinuosa. J Exp Mar Biol Ecol 370:89–103

    Article  Google Scholar 

  • Cummings ME, Zimmerman RC (2003) Light harvesting and the package effect in the seagrasses Thalassia testudinum Banks ex König and Zostera marina L.: optical constraints on photoacclimation. Aquat Bot 75:261–271

    Article  Google Scholar 

  • Dattolo E, Gu J, Bayer PE, Mazzuca S, Serra IA, Spadafora A, Bernardo L, Natali L, Cavallini A, Procaccini G (2013) Acclimation to different depths by the marine angiosperm Posidonia oceanica: transcriptomic and proteomic profiles. Front Plant Sci 4:195

    Article  PubMed  PubMed Central  Google Scholar 

  • Dattolo E, Ruocco M, Brunet C, Lorenti M, Lauritano C, D’Esposito D, De Luca P, Sanges R, Mazzuca S, Procaccini G (2014) Response of the seagrass Posidonia oceanica to different light environments: Insights from a combined molecular and photo-physiological study. Mar Environ Res 101:225–236

    Article  PubMed  CAS  Google Scholar 

  • Davey PA, Pernice M, Sablok G, Larkum A, Lee HT, Edwards D, Lee HT, Golicz A, Dolferus R, Ralph R (2016) The emergence of molecular profiling and omics techniques in seagrass biology; furthering our understanding of seagrasses. Funct Integr Genomics 16:465–480

    Google Scholar 

  • Demir Y, Coşcun F, Buhan E, Demir N (2006) Non-cytosolic carbonic anhydrases from leaves and root of Posidonia oceanica (Lille.) Delile, 1813. Int J Agric Biol 4:554–559

    Google Scholar 

  • Dennison WC, Orth RJ, Moore KA, Stevenson JC, Carter V, Kollar S, Bergstrom PW, Batiuk RA (1993) Assessing water quality with submersed aquatic vegetation. Bioscience 43:86–94

    Article  Google Scholar 

  • Doubnerová V, Ryšlavá H (2011) What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Sci 180:575–583

    Article  PubMed  CAS  Google Scholar 

  • Downton WJS, Bishop DG, Larkum AWD, Osmond CB (1976) Oxygen inhibition of photosynthetic oxygen evolution in marine plants. Aust J Plant Physiol 3:73–79

    Article  Google Scholar 

  • Drew EA (1978) Factors affecting photosynthesis and its seasonal variation in the seagrasses Cymodocea nodosa (Ueria) Aschers and Posidonia oceanica (L) Dehle in the Mediterranean. J Exp Mar Biol Ecol 31:173–194

    Article  CAS  Google Scholar 

  • Dromgoole FI (1978) The effects of oxygen on dark respiration and apparent photosynthesis of marine macro-algae. Aquat Bot 4:281–297

    Article  Google Scholar 

  • Duarte CM (1991) Seagrass depth limits. Aquat Bot 40:363–377

    Article  Google Scholar 

  • Durako MJ (1993) Photosynthetic utilization of CO2 (aq) and HCO3 in Thalassia testudinum (Hydrocharitaceae). Mar Biol 115:373–380

    Article  Google Scholar 

  • Durako MJ (2007) Leaf optical properties and photosynthetic leaf absorptances in several Australian seagrasses. Aquat Bot 87:83–89

    Article  CAS  Google Scholar 

  • Enríquez S, Merino M, Iglesias-Prieto R (2002) Variations in the photosynthetic performance along the leaves of the tropical seagrass Thalassia testudinum. Mar Biol 140:891–900

    Article  CAS  Google Scholar 

  • Fernández JA, García-Sández MJ, Felle FH (1999) Physiological evidence for a proton pump and sodium exclusion mechanisms at the plasma membrane of the marine angiosperm Zostera marina L. J Exp Bot 50:1763–1768

    Google Scholar 

  • Fich EA, Segerson NA, Rose JKC (2016) The plant polyester cutin: biosynthesis, structures, and biological roles. Annu Rev Plant Biol 67:207–233

    Article  PubMed  CAS  Google Scholar 

  • Figueroa FL, Jiménez C, Viñegla B, Pérez-Rodríguez E, Aguilera J, Flores-Moya A, Altamirano M, Lebert M, Häder DP (2002) Effects of solar UV radiation on photosynthesis of the marine angiosperm Posidonia oceanica from southern Spain. Mar Ecol Prog Ser 230:59–70

    Article  Google Scholar 

  • Filion-Myklebust C, Norton TA (1981) Epidermis shedding in the brown seaweed Ascophyllum nodosum (L.) Le Jolis, and its ecological significance. Mar Biol Lett 2:45–51

    Google Scholar 

  • Frost-Christensen H, Sand-Jensen K (1992) The quantum efficiency of photosynthesis in macroalgae and submerged angiosperms. Oecologia 91:377–384

    Article  PubMed  CAS  Google Scholar 

  • Frost-Christensen H, Jørgensen LB, Floto F (2003) Species specificity of resistance on oxygen diffusion in their cuticular membranes from amphibious plants. Plant Cell Environ 26:561–569

    Article  Google Scholar 

  • Garciadeblás B, Haro R, Benito B (2007) Cloning of two SOS1 transporters from the seagrass Cymodocea nodosa. SOS1 transporters from Cymodocea and Arabadopsis mediate potassium uptake in bacteria. Plant Mol Biol 63:479–490

    Article  PubMed  CAS  Google Scholar 

  • García-Sánchez MJ, Jaime JP, Ramos A, Sanders D, Fernández JA (2000) Sodium-dependent nitrate transport at the plasma membrane of leaf cells of the marine higher plant Zostera marina L. Plant Physiol 122:879–885

    Article  PubMed  PubMed Central  Google Scholar 

  • Genazzio MA, Durako MJ (2015) Photochemical efficiency of Thalassia testudinum varies in response to repeated shading events and unpredictable weather. Mar Ecol Prog Ser 539:127–137

    Article  Google Scholar 

  • Greco M, Chiappetta A, Bruno L, Bitonti M (2013) Effects of light deficiency on genome methylation in Posidonia oceanica. Mar Ecol Prog Ser 473:103–114

    Article  CAS  Google Scholar 

  • Golicz AA, Schliep M, Lee HT, Larkum AWD, Dolferus R, Batley J, Chan CK, Sablok G, Ralph PJ Edwards, D (2015) Genome-wide survey of the seagrass Zostera muelleri suggests modification of the ethylene signalling network. J Exp Bot 66:1489–1498

    Google Scholar 

  • Greve TM, Borum J, Pedersen O (2003) Meristematic oxygen variability in eelgrass (Zostera marina). Limnol Oceanogr 48:210–216

    Article  Google Scholar 

  • Harlin MM (1973) Transfer of products between epiphytic marine algae and host plants. J Phycol 9:243–248

    CAS  Google Scholar 

  • Hellblom F, Axelsson L (2003) External HCO3 dehydration maintained by acid zones in the plasma membrane is an important component of the photosynthetic carbon uptake in Ruppia cirrhosa. Photosynth Res 77:173–181

    Article  PubMed  CAS  Google Scholar 

  • Hellblom F, Beer S, Björk M, Axelsson L (2001) A buffer sensitive in carbon utilization system in Zostera marina. Aquat Bot 69:55–62

    Article  CAS  Google Scholar 

  • Ho DT, Lowe S, Smith MJ, Schlosser P, Harvey M, Hill P (2006) Measurements of air-sea gas exchange at high wind speeds in the southern ocean: implications for global parameterization. Geophys Res Lett 33:L16611. https://doi.org/10.1029/206HC06817

    Article  Google Scholar 

  • Horn LE, Paling EI, van Keulen M (2009) Photosynthetic recovery of transplanted Posidonia sinuosa, Western Australia. Aquat Bot 90:149–156

    Article  Google Scholar 

  • Hu XP, Burdige DJ, Zimmerman RC (2012) delta C-13 is a signature of light availability and photosynthesis in seagrass. Limnol Oceanogr 57:441–448

    Article  CAS  Google Scholar 

  • Hughes RG, Johnson S, Smith ID (1991) The growth-patterns of some hydroids that are obligate epiphytes of seagrass Leaves. Hydrobiologia 216:205–210

    Article  Google Scholar 

  • James PL, Larkum AWD (1996) Photosynthetic inorganic carbon acquisition in Posidonia australis. Aquat Bot 55:149–157

    Article  CAS  Google Scholar 

  • Jiang XJ, Huang X-P, Zhang JP (2010) Effects of CO2 enrichment on photosynthesis, growth and biochemical composition of seagrass Thalassia hemprichii (Ehrenb.) Aschers. J Integr Plant Biol 52:904–913

    Article  PubMed  CAS  Google Scholar 

  • Keeley JE (1998) CAM photosynthesis in submerged aquatic plants. Bot Rev 64:121–175

    Article  Google Scholar 

  • Koch EW, Ackerman JD, Verduin J, van Keulen M (2006) Fluid dynamics in seagrass ecology—from molecules to ecosystems. In: Larkum AWD, Orth RL, Duarte CM (eds) Seagrasses: biology ecology and conservation. Springer, Berlin, pp 193–225

    Google Scholar 

  • Koch M, Bowes G, Ross C, Zhang X-H (2013) Climate change and ocean acidification effects on seagrasses and marine macroalgae. Clim Change Biol 19:103–132

    Article  Google Scholar 

  • Kong F, Li H, Sun P, Zhou Y, Mao Y (2014) De novo assembly and characterization of the trnscriptome of seagrass Zostera marina using Illumina paired-end sequencing. PLoS ONE 9(11):e11245. https://doi.org/10.1371/journal.pone.0112245

    Article  CAS  Google Scholar 

  • Kong F, Zhou Y, Sun P, Cao M, Li H, Mao Y (2016) Identification of light-harvesting chlorophyll a/b-binding protein genes of Zostera marina L. and their expression under different environmental conditions. J Ocean Univ Chin 15:152–162

    Google Scholar 

  • Koren K, Brodersen KE, Jakobsen SL, Kühl M (2015) Optical sensor nanoparticles in artificial sediments—a new tool to visualize O2 dynamics around the rhizome and roots of seagrasses. Environ Sci Technol 49:2286–2292

    Article  PubMed  CAS  Google Scholar 

  • Kuo J (1984) Structural aspects of apoplastic fungal hyphae in a marine angiosperm Zostera muelleri Irmisch ex Aschers. (Zosteraceae). Protoplasma 121:1–7

    Article  Google Scholar 

  • Kuo J, den Hartog C (2006) Seagrass morphology, anatomy and ultrastructure. In: Larkum AWD, Orth RJ, Duarte CM (eds) Seagrasses: biology, ecology and conservation. Springer, Berlin, pp 53–87

    Google Scholar 

  • Larkum AWD, den Hartog C (1989) Evolution and biogeography of seagrasses. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses: a treatise on the biology of seagrasses with special reference to the Australian region. Elsevier, Amsterdam, pp 112–156

    Google Scholar 

  • Larkum AWD, McComb AJ, Shepherd SA (1989a) Biology of seagrasses: a treatise on the biology of seagrasses with special reference to the Australasian region. Elsevier, Amsterdam

    Google Scholar 

  • Larkum AWD, Roberts G, Kuo J, Strother S (1989b) Gaseous movement in seagrasses. In: Larkum AWD, McComb AJ, Shepherd SA (eds) Biology of seagrasses: a treatise on the biology of seagrasses with special reference to the Australian region. Elsevier Pub Co., Amsterdam, pp 686–722, 814 pp

    Google Scholar 

  • Larkum AWD, Ralph ED, Drew EA (2006) Photosynthesis and metabolism at the cellular level. In: Larkum AWD, Orth JJ, Duarte CA (eds) Seagrasses: biology, ecology and their conservation. Springer, Berlin

    Google Scholar 

  • Larkum AWD, Davey PA, Kuo J, Ralph PJ, Raven JA (2017) Carbon-concentrating mechanisms in seagrasses. J Exp Bot. 68:3773–3784. https://doi.org/10.1093/jxb/erx206

  • Lee K-S, Park SR, Kim YK (2007) Effects of irradiance, temperature, and nutrients on growth dynamics of seagrasses: a review. J Exp Mar Biol Ecol 350:144–175

    Google Scholar 

  • Lethbridge RC, Borowitzka MA, Benjamin KJ (1988) The development of an artificial, Amphibolis-like seagrass of complex morphology and preliminary data on its colonization by epiphytes. Aquat Bot 31:153–168

    Article  Google Scholar 

  • Long MH, Berg P, McGlathery KJ, Zieman JC (2015) Sub-tropical seagrass ecosystem metabolism measured by eddy covariance. Mar Ecol Prog Ser 529:75–90

    Article  CAS  Google Scholar 

  • MacFarlane JJ, Raven JA (1985) External and internal transport in Lemanea: interactions with the kinetics of ribulose bisphosphate carboxylase. J Exp Bot 36:610–622

    Article  CAS  Google Scholar 

  • MacFarlane JJ, Raven JA (1989) Quantitative determination of the unstirred layer permeability and kinetic parameters of RUBISCO in Lemanea mamillosa. J Exp Bot 40:321–327

    Article  CAS  Google Scholar 

  • MacFarlane JJ, Raven JA (1990) C, N and P nutrition of Lemanea mamillosa (Kütz. (Batrachospermales, Rhodophyta) in the Dighty Burn, Angus, UK. Plant Cell Environ 13:1–13

    Article  CAS  Google Scholar 

  • MacFarlane JJ (1992) Permeability of the cuticle of Vallisneria spiralis to carbon dioxide and oxygen. Aquat Bot 43:129–35

    Google Scholar 

  • Maberly SC (1996) Diel, episodic and seasonal changes in pH and concentrations of inorganic carbon in a productive lake. Freshw Biol 35:579–598

    Google Scholar 

  • Marín-Guirao L, Ruiz JM, Sandoval-Gil JM, Bernardeau-Esteller J, Stinco CM, Meléndez-Martínez A (2013) Xanthophyll cycle-related photoprotective mechanism in the Mediterranean seagrasses Posidonia oceanica and Cymodocea nodosa under normal and stressful hypersaline conditions. Aquat Bot 109:14–24

    Article  CAS  Google Scholar 

  • Mass T, Genin A, Shavut U, Grinstein M, Tchernov D (2010) Flow enhances photosynthesis in marine benthic autotrophs increases the efflux of oxygen from the organism to water. Proc Natl Acad Sci U S A 107:2527–2531

    Article  PubMed  PubMed Central  Google Scholar 

  • Mazzuca S, Spadafora A, Filadoro D, Vannini C, Marsoni M, Cozza R, Bracale M, Pangaro T, Innocenti AM (2009) Seagrass light acclimation: 2-DE protein analysis in Posidonia leaves grown in chronic low light conditions. J Exp Mar Biol Ecol 374:113–122

    Article  CAS  Google Scholar 

  • Mazzuca S, Bjork M, Beer S, Felisberto P, Gobert S et al (2013) Establishing research strategies, methodologies and technologies to link genomics and proteomics to seagrass productivity, community metabolism, and ecosystem carbon fluxes. Front Plant Sci 4:38. https://doi.org/10.3389/fpls.2013.00038

    Article  PubMed  PubMed Central  Google Scholar 

  • McPherson ML, Zimmerman RC, Hill VJ (2015) Predicting carbon isotope discrimination in eelgrass (Zostera marina L.) from the environmental parameters—light, flow and [DIC]. Limnol Oceanogr 60:1875–1889

    Article  Google Scholar 

  • McRoy CP, Goering JJ (1974) Nutrient transfer between the seagrass Zostera marina and its epiphytes. Nature 248:173–174

    Article  CAS  Google Scholar 

  • Mercado JM, Niell FX, Silva J, Santos R (2003) Use of light and inorganic carbon acquisition by two morphotypes of Zostera noltii Hornem. J Exp Biol Ecol 297:71–84

    Article  CAS  Google Scholar 

  • Millhouse JV, Strother S (1986) Salt-stimulated bicarbonate-dependent photosynthesis in the marine angiosperm Zostera muelleri. J Exp Bot 37:965–976

    Article  CAS  Google Scholar 

  • Muramatsu Y, Harada A, Ohwaki Y, Kasahara Y, Takagi S, Fukuhara T (2002) Salt-tolerant ATPase activity in the plasma membrane of the marine angiosperm Zostera marina L. Plant Cell Physiol 43:1137–1145

    Article  PubMed  CAS  Google Scholar 

  • Nobel PS (2005) Physicochemical and environmental plant physiology, 3rd edn. Elsevier Academic Press, Amsterdam, p 567

    Google Scholar 

  • Olivé I, Vergara JJ, Perez-Llorens JL (2013) Photosynthetic and morphological photoacclimation of the seagrass Cymodocea nodosa to season, depth and leaf position. Mar Biol (Berlin) 160:285–297

    Google Scholar 

  • Olsen JL, Rouzé P, Verhelst B, Lin Y-C, Bayer T et al (2016) The genome of the seagrass Zostera marina reveals angiosperm adaptation to the sea. Nature 530:331–335

    Article  PubMed  CAS  Google Scholar 

  • Pak JY, Fukuhara T, Nitta Y (1995) Discrete subcellular location of membrane-bound ATPase activity in marine angiosperms and marine algae. Planta 196:15–22

    Article  PubMed  CAS  Google Scholar 

  • Pärnik TR, Bil KY, Kolmakov PV, Titlyanov EA (1992) Photosynthesis of the seagrass Thalassodendron ciliatum: leak morphology and carbon metabolism (Chap. 12). In: Atoll research bulletin, vol 376, 14 pp

    Google Scholar 

  • Pedersen O, Binzer T, Borum J (2004) Sulphide intrusion in eelgrass (Zostera marina L.). Plant Cell Environ 27:595–602

    Article  CAS  Google Scholar 

  • Pernice M, Schliep M, Szabo M, Rasheed M, Bryant C, York P, Chartrand K, Petrou K, Ralph P (2015) Development of a molecular biology tool kit to monitor dredging-related light stress in the seagrass Zostera muelleri ssp. Capricorni in Port Curtis Final Report

    Google Scholar 

  • Petrou K, Jimenez-Denness I, Chartrand K, McCormack C, Rasheed M, Ralph PJ (2013) Seasonal heterogeneity in the photophysiological response to air exposure in two tropical intertidal seagrass species. Mar Ecol Prog Ser 482:93–106

    Article  CAS  Google Scholar 

  • Pollard PC (1999) Measuring photosynthetic characteristics of the seagrass Syringodium isoetifolium: implications for in situ productivity estimates. NZ J Mar Freshwat Res 33:173–180

    Article  CAS  Google Scholar 

  • Price GD, Badger MR (1985) Inhibition by proton buffers of photosynthetic utilization of bicarbonate in Chara corallina. Aust J Biol Sci 12:257–267

    CAS  Google Scholar 

  • Ralph PJ, Polk SM, Moore KA, Orth RJ, Smith WO (2002) Operation of the xanthophyll cycle in the seagrass Zostera marina in response to variable irradiance. J Exp Mar Biol Ecol 271:189–207

    Article  CAS  Google Scholar 

  • Ralph PJ, Durako MJ, Enriquez S, Collier CJ, Doblin MA (2007) Impact of light limitation on seagrasses. J Exp Mar Biol Ecol 350:176–193

    Article  Google Scholar 

  • Raven JA (1984) Energetics and transport in aquatic plants. AR Liss, New York, p 587

    Google Scholar 

  • Raven JA (1996) Into the voids: the distribution, function, development and maintenance of gas spaces in plants. Ann Bot 78:137–142

    Article  Google Scholar 

  • Raven JA, Beardall J (2014) CO2 concentrating mechanisms and environmental change. Aquat Bot 118:24–37

    Article  CAS  Google Scholar 

  • Raven JA, Beardall J (2016) The ins and outs of CO2. J Exp Bot 67:1–13

    Article  PubMed  CAS  Google Scholar 

  • Raven JA, Hurd CL (2012) Ecophysiology of photosynthesis in macroalgae. Photosynth Res 113:105–112

    Article  PubMed  CAS  Google Scholar 

  • Raven JA, Johnston AM, Kübler JE, Korb R, McInroy SG, Handley LL, Scrimgeour CM, Walker DI, Beardall J, Vanderklift M, Fredriksen S, Dunton KH (2002) Mechanistic interpretation on carbon isotope by marine macroalgae and seagrasses. Funct Plant Biol 29:355–378

    Article  CAS  PubMed  Google Scholar 

  • Raven JA, Beardall J, Giordano M (2014) Energy costs of carbon dioxide concentrating mechanisms in aquatic organisms. Photosynth Res 121: 111–124

    Google Scholar 

  • Reiskind JB, Madsen TV, Ginkel LCv, Bowes G (1997) Evidence that inducible C4-type photosynthesis is a chloroplastic CO2-concentrating mechanism in Hydrilla, a submersed monocot. Plant Cell Environ 20:211–220

    Article  CAS  Google Scholar 

  • Rheuban JE, Berg P, McGlathery KJ (2014a) Multiple timescale processes drive ecosystem metabolism in eelgrass (Zostera marina) meadows. Mar Ecol Prog Ser 507:1–13

    Article  Google Scholar 

  • Rheuban JE, Berg P, McGlathery KJ (2014b) Ecosystem metabolism along a colonization gradient of eelgrass (Zostera marina) measured by eddy correlation. Limnol Oceanogr 59:1376–1387

    Article  CAS  Google Scholar 

  • Rubio L, Linares-Rueda A, García-Sández M, Fernández JA (2005) Physiological evidence for a sodium-dependent high-affinity phosphate and nitrate at the plasma membrane of leaf and root cells of Zostera marina L. J Exp Bot 56:613–620

    Article  PubMed  CAS  Google Scholar 

  • Rubio L, Belver A, Venema K, García-Sández M, Fernández JA (2011) Evidence for a sodium efflux mechanism in the leaf cells of Zostera marina L. J Mar Biol Ecol 402:56–64

    Article  CAS  Google Scholar 

  • Rubio L, Garcia D, Garcia-Sanchez MJ, Niell FX, Felle HH, Fernandez JJ (2017) Direct uptake of HCO3 in the marine angiosperm Posidonia marina (L.) Delile driven by a plasma membrane H+ economy. Plant Cell Environ 40:2820–2830

    Google Scholar 

  • Runcie JW, Gurgel CFD, McDermid KJ (2008) In situ photosynthetic rates of tropical marine macroalgae at their lower depth limit. Eur J Phycol 43:377–388

    Article  CAS  Google Scholar 

  • Runcie JW, Paulo D, Santos R, Sharon Y, Beer S, Silva J (2009) Photosynthetic responses of Haalophila stipulacea to a light gradient. I. In situ energy partitioning of non-photochemical quenching. Aquat Biol 7:143–52

    Google Scholar 

  • Saderne V, Fietzak P, Herman PMJ (2013) Extreme variations in pCO2 and pH in a macrophyte meadow of the Baltic Sea in summer: evidence of the effect of photosynthesis and local upwelling. PLoS ONE 8(4):2689. https://doi.org/10.1371/journal.pone.006289

    Article  Google Scholar 

  • Sand-Jensen K (1977) Effect of epiphytes on eelgrass photosynthesis. Aquat Bot 3:55–63

    Article  CAS  Google Scholar 

  • Schwarz AM, Bjork M, Buluda T, Mtolera M, Beer S (2000) Photosynthetic utilization of carbon and light by two tropical seagrass species as measured in situ. Mar Biol 137:755–761

    Article  CAS  Google Scholar 

  • Sculthorpe CD (1967) Biology of aquatic vascular plants. Edward Arnold, London

    Google Scholar 

  • Semesi IS, Beer S, Björk M (2009) Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow. Mar Ecol Prog Ser 382:41–47

    Article  CAS  Google Scholar 

  • Sharon Y (2010) Photophysiological adaptations and acclimations of the seagrass Halophila stipulacea to extreme light environments. Tel Aviv University

    Google Scholar 

  • Sharon Y, Levitan O, Spungin D, Berman-Frank I, Beer S (2011) Photoacclimation of the seagrass Halophila stipulacea to the dim irradiance at its 48-meter depth limit. Limnol Oceanogr 56, p 357

    Google Scholar 

  • Sieburth JM, Thomas CD (1973) Fouling on Eelgrass (Zostera marina L). J Phycol 9:46–50

    Article  Google Scholar 

  • Silva J, Barrote I, Costa MM, Albano S, Santos R (2013) Physiological responses of Zostera marina and Cymodocea nodosa to light-limitation stress. PLoS One 8(11):e81058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smith SA, Beaulieu JM, Donoghue MJ (2010) An uncorrelated relaxed-clock analysis suggests an earlier origin for flowering plants. Proc Natl Acad Sci U S A 107:5897–5902

    Article  PubMed  PubMed Central  Google Scholar 

  • Stepien CC (2015) Impacts of geography, taxonomy and functional group on inorganic carbon use patterns in marine macrophytes. J Ecol 103:1372–1383

    Article  CAS  Google Scholar 

  • Surif MB, Raven JA (1990) Photosynthetic gas exchange under emersed conditions in eulittoral and normally submersed members of the Fucales and the Laminariales interpretation in relation to carbon isotope ratio and nitrogen and water use efficiency. Oecologia (Berlin) 82:68–80

    Google Scholar 

  • Tansik AL, Fitt WK, Hopkinson BM (2015) External carbonic anhydrase in three Caribbean corals: quantification of activity and role in CO2 uptake. Coral Reefs 34:703–713

    Article  Google Scholar 

  • Uku J, Beer S, Björk S (2005) Buffer sensitivity of photosynthetic carbon utilization in eight tropical seagrasses. Mar Biol 147:1085–1090

    Article  Google Scholar 

  • Waghmode AP, Joshi GV (1983) Significance of phosphoglycollate phosphatase and 3-phosphoglycerate phosphatase in photosynthetic carbon assimilation in some marine plants [Ceriops, Lumnitzera, Aegiceras, Aeluropus, Halophila]. Photosynthetica 17:193–197

    CAS  Google Scholar 

  • Walker NA, Smith FA, Cathers IR (1980) Bicarbonate assimilation in freshwater charophytes and higher plants. I. Membrane transport of bicarbonate is not proven. J Membr Biol 57:51–58

    Article  CAS  Google Scholar 

  • Wheeler MCG, Tronconi MA, Drincovich MF, Andreo CS, Flügge U-I, Maurino VG (2005) A comprehensive analysis of the NADP-malic enzyme gene family of Arabidopsis. Plant Physiol 139(1):39–51

    Article  PubMed  CAS  Google Scholar 

  • Willis KJ, McElwain JC (2014) The evolution of plants, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Zimmerman RC, Kohrs DG, Steller DL, Alberte RS (1997) Impacts of CO2 enrichment on productivity and light requirements of eelgrass. Plant Physiol 115:599–607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony W. D. Larkum .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Larkum, A.W.D. et al. (2018). Photosynthesis and Metabolism of Seagrasses. In: Larkum, A., Kendrick, G., Ralph, P. (eds) Seagrasses of Australia. Springer, Cham. https://doi.org/10.1007/978-3-319-71354-0_11

Download citation

Publish with us

Policies and ethics