Skip to main content

Anatomy of the Helicotrema and Cochlear Apex

  • Chapter
  • First Online:

Abstract

Scala vestibuli and scala tympani are connected at the cochlear apex via an opening known as the helicotrema. The apical portion of the cochlea has a complex and variable three-dimensional anatomy. Structural variations in the helicotrema area may contribute to functional differences in low-frequency hearing sensitivity among individuals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Jurado C, Marquardt T. The effect of the helicotrema on low-frequency loudness perception. J Acoust Soc Am. 2016;140:3799–809.

    Article  PubMed  Google Scholar 

  2. Cheatham MA, Dallos P. Inner hair cell response patterns: implications for low-frequency hearing. J Acoust Soc Am. 2001;110:2034–44.

    Article  CAS  PubMed  Google Scholar 

  3. Dallos P. Low-frequency auditory characteristics: species dependence. J Acoust Soc Am. 1970;48:489–99.

    Article  CAS  PubMed  Google Scholar 

  4. Marquardt T, Hensel J, Mrowinski D, Scholz G. Low-frequency characteristics of human and guinea pig cochleae. J Acoust Soc Am. 2007;121:3628–38.

    Article  PubMed  Google Scholar 

  5. Salt AN, Brown DJ, Hartsock JJ, Plontke SK. Displacements of the organ of Corti by gel injections into the cochlear apex. Hear Res. 2009;250:63–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nittrouer S, Tarr E, Bolster V, Caldwell-Tarr A, Moberly AC, Lowenstein JH. Very low-frequency signals support perceptual organization of implant-simulated speech for adults and children. Int J Audiol. 2014;53:270–84.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang T, Dorman MF, Spahr AJ. Information from the voice fundamental frequency (F0) region accounts for the majority of the benefit when acoustic stimulation is added to electric stimulation. Ear Hear. 2010;31:63–9.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Schick F. The helicotrema and the frequency resolution in the inner ear. Acta Acustica. 1994;80:463–70.

    Google Scholar 

  9. Kugler K, Wiegrebe L, Grothe B, Kössl M, Gürkov R, Krause E, et al. Low-frequency sound affects active micromechanics in the human inner ear. R Soc Open Sci. 2014;1:140166. https://doi.org/10.1098/rsos.140166.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kale S, Cervantes VM, Wu MR, Pisano DV, Sheth N, Olson ES. A novel perfusion-based method for cochlear implant electrode insertion. Hear Res. 2014;314:33–41.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pamulova L, Linder B, Rask-Andersen H. Innervation of the apical turn of the human cochlea: a light microscopic and transmission electron microscopic investigation. Otol Neurotol. 2006;27:270–5.

    Article  PubMed  Google Scholar 

  12. Wever EG. The width of the basilar membrane in man. Ann Otol Rhinol Laryngol. 1938;47:37–47.

    Article  Google Scholar 

Suggested Reading

  • Braum K, Böhnke F, Stark T. Three-dimensional representation of the human cochlea using micro-computed tomography data: presenting an anatomical model for further numerical calculations. Acta Otolaryngol. 2012;132:603–13.

    Article  Google Scholar 

  • Hilding AC. Studies on the otic labyrinth VII. The helicotrema and its relation to the dimensions of the basilar membrane and place theory of hearing. Ann Otol Rhinol Laryngol. 1955;64:278–90.

    Article  CAS  PubMed  Google Scholar 

  • Manoussaki D, Chadwick RS, Ketten DR, Arruda J, Dimitriadis EK, O’Malley JT. The influence of cochlear shape on low-frequency hearing. Proc Natl Acad Sci. 2008;105:6162–6.

    Article  PubMed  Google Scholar 

  • Mountain DC, Hubbard AE, Ketten DR, O’Malley T. The helicotrema: measurements and models. In: Gummer AW, Dalhoff E, Nowotny M, Scherer M, editors. Biophysics of the cochlea: from molecules to models. River Edge, NJ: World Scientific; 2003. p. 393–9.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wright, C.G., Roland, P.S. (2018). Anatomy of the Helicotrema and Cochlear Apex. In: Cochlear Anatomy via Microdissection with Clinical Implications. Springer, Cham. https://doi.org/10.1007/978-3-319-71222-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71222-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71221-5

  • Online ISBN: 978-3-319-71222-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics