Skip to main content

Pharmacological Risk Assessment for Dental Implants

  • Chapter
  • First Online:
Mandibular Implant Prostheses
  • 1230 Accesses

Abstract

The process of osseointegration around dental implants is similar to the biological events occurring during bone repair and fracture healing. Therefore, bone metabolic activity plays a crucial role on the success of osseointegration, and dysregulation of bone metabolism can have a negative impact on bone healing and implant osseointegration. Accordingly, it could be hypothesized that drugs interfering with healing and bone metabolism could affect osseointegration and implant survival. Looking into the relationship between pharmacology, osseointegration, and dental implant drugs can open the door for new pharmacological innovations to improve implant success and avoid unnecessary complications, and it is also of special interest because most implant patients are elder adults that are often polymedicated. In this commentary we discuss the discoveries made by us as well as by other researchers regarding the effect of several drugs on bone, osseointegration, and implant survival. Of particular interest is the growing evidence showing that commonly used drugs such as nonsteroidal anti-inflammatories, serotonin reuptake inhibitors, and proton pump inhibitors could lead to implant failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Misch CE. Dental implant prosthetics: Elsevier Health Sciences; 2014.

    Google Scholar 

  2. Takanashi Y, Penrod JR, Lund JP, Feine JS. A cost comparison of mandibular two-implant overdenture and conventional denture treatment. J Prosthet Dent. 2004;92(2):199.

    Article  Google Scholar 

  3. Bonsignore LA, Anderson JR, Lee Z, Goldberg VM, Greenfield EM. Adherent lipopolysaccharide inhibits the osseointegration of orthopedic implants by impairing osteoblast differentiation. Bone. 2013;52(1):93–101.

    Article  PubMed  Google Scholar 

  4. Hadjidakis DJ, Androulakis II. Bone remodeling. Ann N Y Acad Sci. 2006;1092(1):385–96.

    Article  PubMed  Google Scholar 

  5. Liu B, Anderson G, Mittmann N, To T, Axcell T, Shear N. Use of selective serotonin-reuptake inhibitors or tricyclic antidepressants and risk of hip fractures in elderly people. Lancet. 1998;351(9112):1303–7.

    Article  PubMed  Google Scholar 

  6. Wu X, Al-Abedalla K, Rastikerdar E, Nader SA, Daniel N, Nicolau B, et al. Selective serotonin reuptake inhibitors and the risk of osseointegrated implant failure: a cohort study. J Dent Res. 2014;93(11):1054–61. https://doi.org/10.1177/0022034514549378.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Schwan S, Hallberg P. SSRIs, bone mineral density, and risk of fractures—a review. Eur Neuropsychopharmacol. 2009;19(10):683–92.

    Article  PubMed  Google Scholar 

  8. Nutt DJ, Forshall S, Bell C, Rich A, Sandford J, Nash J, et al. Mechanisms of action of selective serotonin reuptake inhibitors in the treatment of psychiatric disorders. Eur Neuropsychopharmacol. 1999;9:S81–S6.

    Article  PubMed  Google Scholar 

  9. Tsapakis E, Gamie Z, Tran G, Adshead S, Lampard A, Mantalaris A, et al. The adverse skeletal effects of selective serotonin reuptake inhibitors. Eur Psychiatry. 2012;27(3):156–69.

    Article  PubMed  Google Scholar 

  10. Gustafsson B, Thommesen L, Stunes AK, Tommeras K, Westbroek I, Waldum H, et al. Serotonin and fluoxetine modulate bone cell function in vitro. J Cell Biochem. 2006;98(1):139–51.

    Article  PubMed  Google Scholar 

  11. Young SN. How to increase serotonin in the human brain without drugs. J Psychiatry Neurosci. 2007;32(6):394.

    PubMed  PubMed Central  Google Scholar 

  12. Diem SJ, Blackwell TL, Stone KL, Yaffe K, Haney EM, Bliziotes MM, et al. Use of antidepressants and rates of hip bone loss in older women: the study of osteoporotic fractures. Arch Intern Med. 2007;167(12):1240.

    Article  PubMed  Google Scholar 

  13. Yadav VK, Ryu J-H, Suda N, Tanaka KF, Gingrich JA, Schütz G, et al. Lrp5 controls bone formation by inhibiting serotonin synthesis in the duodenum. Cell. 2008;135(5):825–37.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Battaglino R, Fu J, Späte U, Ersoy U, Joe M, Sedaghat L, et al. Serotonin regulates osteoclast differentiation through its transporter. J Bone Miner Res. 2004;19(9):1420–31.

    Article  PubMed  Google Scholar 

  15. Verdel BM, Souverein PC, Egberts TC, Van Staa TP, Leufkens HG, de Vries F. Use of antidepressant drugs and risk of osteoporotic and non-osteoporotic fractures. Bone. 2010;47(3):604–9.

    Article  PubMed  Google Scholar 

  16. Tamimi I, Ojea T, Sanchez-Siles JM, Rojas F, Martin I, Gormaz I, et al. Acetylcholinesterase inhibitors and the risk of hip fracture in Alzheimer’s disease patients: a case-control study. J Bone Miner Res. 2012;27(7):1518–27.

    Article  PubMed  Google Scholar 

  17. Eimar H, Perez Lara A, Tamimi I, Márquez Sánchez P, Gormaz Talavera I, Rojas Tomba F, et al. Acetylcholinesterase inhibitors and healing of hip fracture in Alzheimer’s disease patients: a retrospective cohort study. J Musculoskelet Neuronal Interact. 2013;

    Google Scholar 

  18. Pohanka M. Acetylcholinesterase inhibitors: a patent review (2008–present). Expert Opin Ther Pat. 2012;22(8):871–86.

    Article  PubMed  Google Scholar 

  19. Massoud F, Gauthier S. Update on the pharmacological treatment of Alzheimer’s disease. Curr Neuropharmacol. 2010;8(1):69–80.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Taylor D, Paton C, Kapur S. The Maudsley prescribing guidelines in psychiatry: Wiley; 2015.

    Google Scholar 

  21. Genever P, Birch M, Brown E, Skerry T. Osteoblast-derived acetylcholinesterase: a novel mediator of cell-matrix interactions in bone? Bone. 1999;24(4):297–303.

    Article  PubMed  Google Scholar 

  22. Sato T, Abe T, Chida D, Nakamoto N, Hori N, Kokabu S, et al. Functional role of acetylcholine and the expression of cholinergic receptors and components in osteoblasts. FEBS Lett. 2010;584(4):817–24.

    Article  PubMed  Google Scholar 

  23. En-Nosse M, Hartmann S, Trinkaus K, Alt V, Stigler B, Heiss C, et al. Expression of non-neuronal cholinergic system in osteoblast-like cells and its involvement in osteogenesis. Cell Tissue Res. 2009;338(2):203–15.

    Article  PubMed  Google Scholar 

  24. Tresguerres IF, Clemente C, Blanco L, Khraisat A, Tamimi F, Tresguerres JA. Effects of local melatonin application on implant osseointegration. Clin Implant Dent Relat Res. 2012;14(3):395–9.

    Article  PubMed  Google Scholar 

  25. Tresguerres IF, Tamimi F, Eimar H, Barralet JE, Prieto S, Torres J, et al. Melatonin dietary supplement as an anti-aging therapy for age-related bone loss. Rejuvenation Res. 2014;17(4):341–6.

    Article  PubMed  Google Scholar 

  26. Roth JA, Kim B-G, Lin W-L, Cho M-I. Melatonin promotes osteoblast differentiation and bone formation. J Biol Chem. 1999;274(31):22041–7.

    Article  PubMed  Google Scholar 

  27. Halıcı M, Öner M, Güney A, Canöz Ö, Narin F, Halıcı C. Melatonin promotes fracture healing in the rat model. Eklem Hastalik Cerrahisi. 2010;21(3):172–7.

    PubMed  Google Scholar 

  28. Cardinali DP, Pévet P. Basic aspects of melatonin action. Sleep Med Rev. 1998;2(3):175–90.

    Article  PubMed  Google Scholar 

  29. Cardinali DP, Ladizesky MG, Boggio V, Cutrera RA, Mautalen C. Melatonin effects on bone: experimental facts and clinical perspectives. J Pineal Res. 2003;34(2):81–7.

    Article  PubMed  Google Scholar 

  30. Conti A, Conconi S, Hertens E, Skwarlo-Sonta K, Markowska M, Maestroni GJ. Evidence for melatonin synthesis in mouse and human bone marrow cells. J Pineal Res. 2000;28(4):193–202.

    Article  PubMed  Google Scholar 

  31. Slominski RM, Reiter RJ, Schlabritz-Loutsevitch N, Ostrom RS, Slominski AT. Melatonin membrane receptors in peripheral tissues: distribution and functions. Mol Cell Endocrinol. 2012;351(2):152–66.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Koyama H, Nakade O, Takada Y, Kaku T, Lau KHW. Melatonin at pharmacologic doses increases bone mass by suppressing resorption through down-regulation of the RANKL-mediated osteoclast formation and activation. J Bone Miner Res. 2002;17(7):1219–29.

    Article  PubMed  Google Scholar 

  33. Ostrowska Z, Kos-Kudla B, Swietochowska E, Marek B, Kajdaniuk D, Ciesielska-Kopacz N. Influence of pinealectomy and long-term melatonin administration on GH-IGF-I axis function in male rats. Neuroendocrinol Lett. 2001;22(4):255–62.

    PubMed  Google Scholar 

  34. Forsling ML, Wheeler M, Williams A. The effect of melatonin administration on pituitary hormone secretion in man. Clin Endocrinol. 1999;51(5):637–42.

    Article  Google Scholar 

  35. Lusardi P, Piazza E, Fogari R. Cardiovascular effects of melatonin in hypertensive patients well controlled by nifedipine: a 24-hour study. Br J Clin Pharmacol. 2000;49(5):423–7.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gómez-Moreno G, Guardia J, Ferrera M, Cutando A, Reiter R. Melatonin in diseases of the oral cavity. Oral Dis. 2010;16(3):242–7.

    Article  PubMed  Google Scholar 

  37. Paulis L, Pechanova O, Zicha J, Barta A, Gardlik R, Celec P, et al. Melatonin interactions with blood pressure and vascular function during l-NAME-induced hypertension. J Pineal Res. 2010;48(2):102–8.

    Article  PubMed  Google Scholar 

  38. Hakanson DO, Bergstrom WH. Pineal and adrenal effects on calcium homeostasis in the rat. Pediatr Res. 1990;27(6):571–3.

    Article  PubMed  Google Scholar 

  39. Valsamis HA, Arora SK, Labban B, McFarlane SI. Antiepileptic drugs and bone metabolism. Nutr Metab. 2006;3(1):1.

    Article  Google Scholar 

  40. Lennox WG. Epilepsy and related disorders. Boston: Little, Brown; 1960.

    Google Scholar 

  41. Rogawski MA, Porter RJ. Antiepileptic drugs: pharmacological mechanisms and clinical efficacy with consideration of promising developmental stage compounds. Pharmacol Rev. 1990;42(3):223–86.

    PubMed  Google Scholar 

  42. Kruse R. Osteopathies in antiepileptic long-term therapy (preliminary report). Monatsschrift fur Kinderheilkunde. 1968;116(6):378–81.

    PubMed  Google Scholar 

  43. Vestergaard P, Rejnmark L, Mosekilde L. Fracture risk associated with use of antiepileptic drugs. Epilepsia. 2004;45(11):1330–7.

    Article  PubMed  Google Scholar 

  44. Hunter J, Maxwell J, Stewart D, Parsons V, Williams R. Altered calcium metabolism in epileptic children on anticonvulsants. Br Med J. 1971;4(5781):202–4.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Valmadrid C, Voorhees C, Litt B, Schneyer CR. Practice patterns of neurologists regarding bone and mineral effects of antiepileptic drug therapy. Arch Neurol. 2001;58(9):1369–74.

    Article  PubMed  Google Scholar 

  46. Petty SJ, O’brien T, Wark J. Anti-epileptic medication and bone health. Osteoporos Int. 2007;18(2):129–42.

    Article  PubMed  Google Scholar 

  47. Hahn TJ, Hendin BA, Scharp CR, Boisseau VC, Haddad JG Jr. Serum 25-hydroxycalciferol levels and bone mass in children on chronic anticonvulsant therapy. N Engl J Med. 1975;292(11):550–4.

    Article  Google Scholar 

  48. Kinjo M, Setoguchi S, Schneeweiss S, Solomon DH. Bone mineral density in subjects using central nervous system-active medications. Am J Med. 2005;118(12):1414. e7–e12.

    Article  PubMed  Google Scholar 

  49. Daniell HW. Hypogonadism in men consuming sustained-action oral opioids. J Pain. 2002;3(5):377–84.

    Article  PubMed  Google Scholar 

  50. Vestergaard P, Rejnmark L, Mosekilde L. Fracture risk associated with the use of morphine and opiates. J Intern Med. 2006;260(1):76–87.

    Article  PubMed  Google Scholar 

  51. Vestergaard P. Pain-relief medication and risk of fractures. Curr Drug Saf. 2008;3(3):199–203.

    Article  PubMed  Google Scholar 

  52. Vestergaard P, Hermann P, Jensen J-E, Eiken P, Mosekilde L. Effects of paracetamol, non-steroidal anti-inflammatory drugs, acetylsalicylic acid, and opioids on bone mineral density and risk of fracture: results of the Danish Osteoporosis Prevention Study (DOPS). Osteoporos Int. 2012;23(4):1255–65.

    Article  PubMed  Google Scholar 

  53. Ong KL, Cheung BM, Man YB, Lau CP, Lam KS. Prevalence, awareness, treatment, and control of hypertension among United States adults 1999–2004. Hypertension. 2007;49(1):69–75.

    Article  PubMed  Google Scholar 

  54. Wu X, Al-Abedalla K, Eimar H, Arekunnath Madathil S, Abi-Nader S, Daniel NG, et al. Antihypertensive medications and the survival rate of osseointegrated dental implants: a cohort study. Clin Implant Dent Relat Res. 2016;18(6):1171–82.

    Article  PubMed  Google Scholar 

  55. Morrison MD, Tamimi F. Oral tori are associated with local mechanical and systemic factors: a case-control study. J Maxillofac Oral Surg. 2013;71(1):14–22.

    Article  Google Scholar 

  56. Torres García-Denche J, Wu X, Martinez PP, Eimar H, Ikbal DJA, Hernández G, et al. Membranes over the lateral window in sinus augmentation procedures: a two-arm and split-mouth randomized clinical trials. J Clin Periodontol. 2013;40(11):1043–51.

    Article  Google Scholar 

  57. Yang S, Nguyen ND, Center JR, Eisman JA, Nguyen TV. Association between beta-blocker use and fracture risk: the Dubbo Osteoporosis Epidemiology Study. Bone. 2011;48(3):451–5.

    Article  PubMed  Google Scholar 

  58. Togari A, Arai M. Pharmacological topics of bone metabolism: the physiological function of the sympathetic nervous system in modulating bone resorption. J Pharmacol Sci. 2008;106(4):542–6.

    Article  PubMed  Google Scholar 

  59. Pierroz DD, Bonnet N, Bianchi EN, Bouxsein ML, Baldock PA, Rizzoli R, et al. Deletion of β-adrenergic receptor 1, 2, or both leads to different bone phenotypes and response to mechanical stimulation. J Bone Miner Res. 2012;27(6):1252–62.

    Article  PubMed  Google Scholar 

  60. Levasseur R, Dargent-Molina P, Sabatier JP, Marcelli C, Bréart G. Beta-blocker use, bone mineral density, and fracture risk in older women: results from the epidemiologie de l'ostéoporose prospective study. J Am Geriatr Soc. 2005;53(3):550–2.

    Article  PubMed  Google Scholar 

  61. Al-Subaie AE, Laurenti M, Abdallah MN, Tamimi I, Yaghoubi F, Eimar H, et al. Propranolol enhances bone healing and implant osseointegration in rats tibiae. J Clin Periodontol. 2016;43(12):1160–70.

    Article  PubMed  Google Scholar 

  62. Perez-Castrillon JL, Justo I, Sanz-Cantalapiedra A, Pueyo C, Hernandez G, Dueñas A. Effect of the antihypertensive treatment on the bone mineral density and osteoporotic fracture. Curr Hypertens Rev. 2005;1(1):61–6.

    Article  Google Scholar 

  63. Moore RE, Smith CK, Bailey CS, Voelkel EF, Tashjian AH. Characterization of beta-adrenergic receptors on rat and human osteoblast-like cells and demonstration that beta-receptor agonists can stimulate bone resorption in organ culture. Bone Miner. 1993;23(3):301–15.

    Article  PubMed  Google Scholar 

  64. Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, et al. Leptin regulates bone formation via the sympathetic nervous system. Cell. 2002;111(3):305–17.

    Article  PubMed  Google Scholar 

  65. Schlienger RG, Kraenzlin ME, Jick SS, Meier CR. Use of β-blockers and risk of fractures. JAMA. 2004;292(11):1326–32.

    Article  PubMed  Google Scholar 

  66. Ma Y, Nyman JS, Tao H, Moss HH, Yang X, Elefteriou F. β2-Adrenergic receptor signaling in osteoblasts contributes to the catabolic effect of glucocorticoids on bone. Endocrinology. 2011;152(4):1412–22.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Bouxsein M, Devlin M, Glatt V, Dhillon H, Pierroz D, Ferrari SL. Mice lacking β-adrenergic receptors have increased bone mass but are not protected from deleterious skeletal effects of ovariectomy. Endocrinology. 2009;150(1):144–52.

    Article  PubMed  Google Scholar 

  68. Kondo H, Togari A. Continuous treatment with a low-dose β-agonist reduces bone mass by increasing bone resorption without suppressing bone formation. Calcif Tissue Int. 2011;88(1):23–32.

    Article  PubMed  Google Scholar 

  69. Minkowitz B, Boskey AL, Lane JM, Pearlman HS, Vigorita VJ. Effects of propranolol on bone metabolism in the rat. J Orthop Res. 1991;9(6):869–75.

    Article  PubMed  Google Scholar 

  70. Cherruau M, Facchinetti P, Baroukh B, Saffar J. Chemical sympathectomy impairs bone resorption in rats: a role for the sympathetic system on bone metabolism. Bone. 1999;25(5):545–51.

    Article  PubMed  Google Scholar 

  71. Aung K, Htay T. Thiazide diuretics and the risk of hip fracture. Cochrane Database Syst Rev. 2011;(10):CD005185.

    Google Scholar 

  72. Sigurdsson G, Franzson L. Increased bone mineral density in a population-based group of 70-year-old women on thiazide diuretics, independent of parathyroid hormone levels. J Intern Med. 2001;250(1):51–6.

    Article  PubMed  Google Scholar 

  73. Wasnich R, Davis J, Ross P, Vogel J. Effect of thiazide on rates of bone mineral loss: a longitudinal study. BMJ. 1990;301(6764):1303–5.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Bazzini C, Vezzoli V, Sironi C, Dossena S, Ravasio A, De Biasi S, et al. Thiazide-sensitive NaCl-cotransporter in the intestine possible role of hydrochlorothiazide in the intestinal Ca2+ uptake. J Biol Chem. 2005;280(20):19902–10.

    Article  PubMed  Google Scholar 

  75. Bolland M, Ames R, Horne A, Orr-Walker B, Gamble G, Reid I. The effect of treatment with a thiazide diuretic for 4 years on bone density in normal postmenopausal women. Osteoporos Int. 2007;18(4):479–86.

    Article  PubMed  Google Scholar 

  76. Barry E, Gesek F, Kaplan M, Hebert S, Friedman P. Expression of the sodium-chloride cotransporter in osteoblast-like cells: effect of thiazide diuretics. Am J Phys Cell Phys. 1997;272(1):C109–C16.

    Article  Google Scholar 

  77. Aubin R, Menard P, Lajeunesse D. Selective effect of thiazides on the human osteoblast-like cell line MG-63. Kidney Int. 1996;50(5):1476–82.

    Article  PubMed  Google Scholar 

  78. Dvorak MM, De Joussineau C, Carter DH, Pisitkun T, Knepper MA, Gamba G, et al. Thiazide diuretics directly induce osteoblast differentiation and mineralized nodule formation by interacting with a sodium chloride co-transporter in bone. J Am Soc Nephrol. 2007;18(9):2509–16.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Lynn H, Kwok T, Wong S, Woo J, Leung P. Angiotensin converting enzyme inhibitor use is associated with higher bone mineral density in elderly Chinese. Bone. 2006;38(4):584–8.

    Article  PubMed  Google Scholar 

  80. Rejnmark L, Vestergaard P, Mosekilde L. Treatment with beta-blockers, ACE inhibitors, and calcium-channel blockers is associated with a reduced fracture risk: a nationwide case–control study. J Hypertens. 2006;24(3):581–9.

    Article  PubMed  Google Scholar 

  81. Shimizu H, Nakagami H, Osako MK, Nakagami F, Kunugiza Y, Tomita T, et al. Prevention of osteoporosis by angiotensin-converting enzyme inhibitor in spontaneous hypertensive rats. Hypertens Res. 2009;32(9):786–90.

    Article  PubMed  Google Scholar 

  82. Ma L, Ji J, Ji H, Yu X, Ding L, Liu K, et al. Telmisartan alleviates rosiglitazone-induced bone loss in ovariectomized spontaneous hypertensive rats. Bone. 2010;47(1):5–11.

    Article  PubMed  Google Scholar 

  83. Kwok T, Leung J, Zhang Y, Bauer D, Ensrud K, Barrett-Connor E, et al. Does the use of ACE inhibitors or angiotensin receptor blockers affect bone loss in older men? Osteoporos Int. 2012;23(8):2159–67.

    Article  PubMed  Google Scholar 

  84. Nakagami H, Osako MK, Morishita R. Potential effect of angiotensin II receptor blockade in adipose tissue and bone. Curr Pharm Des. 2013;19(17):3049–53.

    Article  PubMed  Google Scholar 

  85. Ghosh M, Majumdar SR. Antihypertensive medications, bone mineral density, and fractures: a review of old cardiac drugs that provides new insights into osteoporosis. Endocrine. 2014;46(3):397–405.

    Article  PubMed  Google Scholar 

  86. Shimizu H, Nakagami H, Osako MK, Hanayama R, Kunugiza Y, Kizawa T, et al. Angiotensin II accelerates osteoporosis by activating osteoclasts. FASEB J. 2008;22(7):2465–75.

    Article  PubMed  Google Scholar 

  87. Wiens M, Etminan M, Gill S, Takkouche B. Effects of antihypertensive drug treatments on fracture outcomes: a meta-analysis of observational studies. J Intern Med. 2006;260(4):350–62.

    Article  PubMed  Google Scholar 

  88. Grant FD, Mandel SJ, Brown EM, Williams GH, Seely EW. Interrelationships between the renin-angiotensin-aldosterone and calcium homeostatic systems. J Clin Endocrinol Metabol. 1992;75(4):988–92.

    Google Scholar 

  89. Solomon DH, Mogun H, Garneau K, Fischer MA. Risk of fractures in older adults using antihypertensive medications. J Bone Miner Res. 2011;26(7):1561–7.

    Article  PubMed  Google Scholar 

  90. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA. 2003;289(19):2560–71.

    Article  PubMed  Google Scholar 

  91. Kang KY, Kang Y, Kim M, Kim Y, Yi H, Kim J, et al. The effects of antihypertensive drugs on bone mineral density in ovariectomized mice. J Korean Med Sci. 2013;28(8):1139–44.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Kolli V, Stechschulte LA, Dowling AR, Rahman S, Czernik PJ, Lecka-Czernik B. Partial agonist, telmisartan, maintains PPARγ serine 112 phosphorylation, and does not affect osteoblast differentiation and bone mass. PLoS One. 2014;9(5):e96323.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Zhao X, J-x W, Y-f F, Z-x W, Zhang Y, Shi L, et al. Systemic treatment with telmisartan improves femur fracture healing in mice. PLoS One. 2014;9(3):e92085.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Donmez BO, Ozdemir S, Sarikanat M, Yaras N, Koc P, Demir N, et al. Effect of angiotensin II type 1 receptor blocker on osteoporotic rat femurs. Pharmacol Rep. 2012;64(4):878–88.

    Article  PubMed  Google Scholar 

  95. Rajkumar D, Faitelson A, Gudyrev O, Dubrovin G, Pokrovski M, Ivanov A. Comparative evaluation of enalapril and losartan in pharmacological correction of experimental osteoporosis and fractures of its background. J Osteoporos. 2013;2013

    Google Scholar 

  96. Kosaka N, Uchii M. Effect of benidipine hydrochloride, a dihydropyridine-type calcium antagonist, on the function of mouse osteoblastic cells. Calcif Tissue Int. 1998;62(6):554–6.

    Article  PubMed  Google Scholar 

  97. Gradosova I, Zivna H, Palicka V, Hubena S, Svejkovska K, Zivny P. Protective effect of amlodipine on rat bone tissue after orchidectomy. Pharmacology. 2012;89(1–2):37–43.

    Article  PubMed  Google Scholar 

  98. Ushijima K, Liu Y, Maekawa T, Ishikawa E, Motosugi Y, Ando H, et al. Protective effect of amlodipine against osteoporosis in stroke-prone spontaneously hypertensive rats. Eur J Pharmacol. 2010;635(1):227–30.

    Article  PubMed  Google Scholar 

  99. Himori N, Taira N. Differential effects of the calcium-antagonistic vasodilators, nifedipine and verapamil, on the tracheal musculature and vasculature of the dog. Br J Pharmacol. 1980;68(4):595–7.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ay SA, Karaman M, Cakar M, Balta S, Arslan E, Bulucu F, et al. Amlodipine increases vitamin D levels more than valsartan in newly diagnosed hypertensive patients: pointing to an additional effect on bone metabolism or a novel marker of inflammation? Ren Fail. 2013;35(5):691–6.

    Article  PubMed  Google Scholar 

  101. Padwal R, Majumdar SR, Johnson JA, Varney J, McAlister FA. A systematic review of drug therapy to delay or prevent type 2 diabetes. Diabetes Care. 2005;28(3):736–44.

    Article  PubMed  Google Scholar 

  102. Vestergaard P, Rejnmark L, Mosekilde L. Relative fracture risk in patients with diabetes mellitus, and the impact of insulin and oral antidiabetic medication on relative fracture risk. Diabetologia. 2005;48(7):1292–9.

    Article  PubMed  Google Scholar 

  103. Gao Y, Li Y, Xue J, Jia Y, Hu J. Effect of the anti-diabetic drug metformin on bone mass in ovariectomized rats. Eur J Pharmacol. 2010;635(1):231–6.

    Article  PubMed  Google Scholar 

  104. Cortizo AM, Sedlinsky C, McCarthy AD, Blanco A, Schurman L. Osteogenic actions of the anti-diabetic drug metformin on osteoblasts in culture. Eur J Pharmacol. 2006;536(1):38–46.

    Article  PubMed  Google Scholar 

  105. Kanazawa I, Yamaguchi T, Yano S, Yamauchi M, Sugimoto T. Metformin enhances the differentiation and mineralization of osteoblastic MC3T3-E1 cells via AMP kinase activation as well as eNOS and BMP-2 expression. Biochem Biophys Res Commun. 2008;375(3):414–9.

    Article  PubMed  Google Scholar 

  106. Nuche-Berenguer B, Moreno P, Esbrit P, Dapía S, Caeiro JR, Cancelas J, et al. Effect of GLP-1 treatment on bone turnover in normal, type 2 diabetic, and insulin-resistant states. Calcif Tissue Int. 2009;84(6):453–61.

    Article  PubMed  Google Scholar 

  107. Sanz C, Vazquez P, Blazquez C, Barrio P, Alvarez MDM, Blazquez E. Signaling and biological effects of glucagon-like peptide 1 on the differentiation of mesenchymal stem cells from human bone marrow. Am J Physiol Endocrinol Metab. 2010;298(3):E634–E43.

    Article  PubMed  Google Scholar 

  108. Yamada C, Yamada Y, Tsukiyama K, Yamada K, Udagawa N, Takahashi N, et al. The murine glucagon-like peptide-1 receptor is essential for control of bone resorption. Endocrinology. 2008;149(2):574–9.

    Article  PubMed  Google Scholar 

  109. Toft-Nielsen M-B, Madsbad S, Holst J. Determinants of the effectiveness of glucagon-like peptide-1 in type 2 diabetes. J Clin Endocrinol Metabol. 2001;86(8):3853–60.

    Article  Google Scholar 

  110. Valverde I, Morales M, Clemente F, López-Delgado MI, Delgado E, Perea A, et al. Glucagon-like peptide 1: a potent glycogenic hormone. FEBS Lett. 1994;349(2):313–6.

    Article  PubMed  Google Scholar 

  111. Crespel A, De Boisvilliers F, Gros L, Kervran A. Effects of glucagon and glucagon-like peptide-1-(7-36) amide on C cells from rat thyroid and medullary thyroid carcinoma CA-77 cell line. Endocrinology. 1996;137(9):3674–80.

    Article  PubMed  Google Scholar 

  112. Lamari Y, Boissard C, Moukhtar M, Jullienne A, Rosselin G, Garel J-M. Expression of glucagon-like peptide 1 receptor in a murine C cell line regulation of calcitonin gene by glucagon-like peptide 1. FEBS Lett. 1996;393(2–3):248–52.

    Article  PubMed  Google Scholar 

  113. Monami M, Dicembrini I, Antenore A, Mannucci E. Dipeptidyl peptidase-4 inhibitors and bone fractures: a meta-analysis of randomized clinical trials. Diabetes Care. 2011;34(11):2474–6.

    Article  PubMed  PubMed Central  Google Scholar 

  114. McIntosh CH, Demuth H-U, Pospisilik JA, Pederson R. Dipeptidyl peptidase IV inhibitors: how do they work as new antidiabetic agents? Regul Pept. 2005;128(2):159–65.

    Article  PubMed  Google Scholar 

  115. Monami M, Dicembrini I, Antenore A, Mannucci E. Dipeptidyl peptidase-4 inhibitors and bone fractures: a meta-analysis of randomized clinical trials. Diabetes Care. 2011; 34: 2474–2476. Diabetes Care. 2014;37(1):312.

    Article  Google Scholar 

  116. Nuche-Berenguer B, Moreno P, Portal-Nuñez S, Dapía S, Esbrit P, Villanueva-Peñacarrillo ML. Exendin-4 exerts osteogenic actions in insulin-resistant and type 2 diabetic states. Regul Pept. 2010;159(1):61–6.

    Article  PubMed  Google Scholar 

  117. Baggio LL, Drucker DJ. Biology of incretins: GLP-1 and GIP. Gastroenterology. 2007;132(6):2131–57.

    Article  PubMed  Google Scholar 

  118. Seino Y, Fukushima M, Yabe D. GIP and GLP-1, the two incretin hormones: similarities and differences. J Diabetes Invest. 2010;1(1–2):8–23.

    Article  Google Scholar 

  119. Grey A. Thiazolidinedione-induced skeletal fragility–mechanisms and implications. Diabetes Obes Metab. 2009;11(4):275–84.

    Article  PubMed  Google Scholar 

  120. Yaturu S, Bryant B, Jain SK. Thiazolidinedione treatment decreases bone mineral density in type 2 diabetic men. Diabetes Care. 2007;30(6):1574–6.

    Article  PubMed  Google Scholar 

  121. Kahn SE, Zinman B, Lachin JM, Haffner SM, Herman WH, Holman RR, et al. Rosiglitazone-associated fractures in type 2 diabetes an analysis from a diabetes outcome progression trial (ADOPT). Diabetes Care. 2008;31(5):845–51.

    Article  PubMed  Google Scholar 

  122. Home PD, Pocock SJ, Beck-Nielsen H, Curtis PS, Gomis R, Hanefeld M, et al. Rosiglitazone evaluated for cardiovascular outcomes in oral agent combination therapy for type 2 diabetes (RECORD): a multicentre, randomised, open-label trial. Lancet. 2009;373(9681):2125–35.

    Article  PubMed  Google Scholar 

  123. Lecka-Czernik B. Bone loss in diabetes: use of antidiabetic thiazolidinediones and secondary osteoporosis. Curr Osteoporos Rep. 2010;8(4):178–84.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Schwartz AV, Sellmeyer DE, Vittinghoff E, Palermo L, Lecka-Czernik B, Feingold KR, et al. Thiazolidinedione use and bone loss in older diabetic adults. J Clin Endocrinol Metabol. 2006;91(9):3349–54.

    Article  Google Scholar 

  125. Lecka-Czernik B. PPARs in bone: the role in bone cell differentiation and regulation of energy metabolism. Curr Osteoporos Rep. 2010;8(2):84–90.

    Article  PubMed  Google Scholar 

  126. Rzonca S, Suva L, Gaddy D, Montague D, Lecka-Czernik B. Bone is a target for the antidiabetic compound rosiglitazone. Endocrinology. 2004;145(1):401–6.

    Article  PubMed  Google Scholar 

  127. Lazarenko OP, Rzonca SO, Hogue WR, Swain FL, Suva LJ, Lecka-Czernik B. Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology. 2007;148(6):2669–80.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Wan Y, Chong L-W, Evans RM. PPAR-γ regulates osteoclastogenesis in mice. Nat Med. 2007;13(12):1496–503.

    Article  PubMed  Google Scholar 

  129. Ali AA, Weinstein RS, Stewart SA, Parfitt AM, Manolagas SC, Jilka RL. Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology. 2005;146(3):1226–35.

    Article  PubMed  Google Scholar 

  130. Sorocéanu MA, Miao D, Bai X-Y, Su H, Goltzman D, Karaplis AC. Rosiglitazone impacts negatively on bone by promoting osteoblast/osteocyte apoptosis. J Endocrinol. 2004;183(1):203–16.

    Article  PubMed  Google Scholar 

  131. Grey A, Bolland M, Gamble G, Wattie D, Horne A, Davidson J, et al. The peroxisome proliferator-activated receptor-γ agonist rosiglitazone decreases bone formation and bone mineral density in healthy postmenopausal women: a randomized, controlled trial. J Clin Endocrinol Metabol. 2007;92(4):1305–10.

    Article  Google Scholar 

  132. Glintborg D, Andersen M, Hagen C, Heickendorff L, Hermann AP. Association of pioglitazone treatment with decreased bone mineral density in obese premenopausal patients with polycystic ovary syndrome: a randomized, placebo-controlled trial. J Clin Endocrinol Metabol. 2008;93(5):1696–701.

    Article  Google Scholar 

  133. Berberoglu Z, Gursoy A, Bayraktar N, Yazici AC, Bascil Tutuncu N, Guvener Demirag N. Rosiglitazone decreases serum bone-specific alkaline phosphatase activity in postmenopausal diabetic women. J Clin Endocrinol Metabol. 2007;92(9):3523–30.

    Article  Google Scholar 

  134. Keller J, Schinke T. The role of the gastrointestinal tract in calcium homeostasis and bone remodeling. Osteoporos Int. 2013;24(11):2737–48.

    Article  PubMed  Google Scholar 

  135. Wright MJ, Proctor DD, Insogna KL, Kerstetter JE. Proton pump-inhibiting drugs, calcium homeostasis, and bone health. Nutr Rev. 2008;66(2):103–8.

    Article  PubMed  Google Scholar 

  136. Al Subaie A, Emami E, Tamimi I, Laurenti M, Eimar H, Tamimi F. Systemic administration of omeprazole interferes with bone healing & implant osseointegration: an in vivo study on rat tibiae. J Clin Periodontol. 2016;

    Google Scholar 

  137. Wu X, Al-Abedalla K, Abi-Nader S, Daniel NG, Nicolau B, Tamimi F. Proton pump inhibitors and the risk of osseointegrated dental implant failure: a cohort study. Clin Implant Dent Relat Res. 2016;

    Google Scholar 

  138. Lodato F, Azzaroli F, Turco L, Mazzella N, Buonfiglioli F, Zoli M, et al. Adverse effects of proton pump inhibitors. Best Pract Res Clin Gastroenterol. 2010;24(2):193–201.

    Article  PubMed  Google Scholar 

  139. McCarthy DM. Adverse effects of proton pump inhibitor drugs: clues and conclusions. Curr Opin Gastroenterol. 2010;26(6):624–31.

    Article  PubMed  Google Scholar 

  140. Jacobson BC, Ferris TG, Shea TL, Mahlis EM, Lee TH, Wang TC. Who is using chronic acid suppression therapy and why&quest. Am J Gastroenterol. 2003;98(1):51–8.

    Article  PubMed  Google Scholar 

  141. Ye X, Liu H, Wu C, Qin Y, Zang J, Gao Q, et al. Proton pump inhibitors therapy and risk of hip fracture: a systematic review and meta-analysis. Eur J Gastroenterol Hepatol. 2011;23(9):794–800.

    Article  PubMed  Google Scholar 

  142. Stedman C, Barclay M. Review article: comparison of the pharmacokinetics, acid suppression and efficacy of proton pump inhibitors. Aliment Pharmacol Ther. 2000;14(8):963–78.

    Article  PubMed  Google Scholar 

  143. Yang Y-X. Chronic proton pump inhibitor therapy and calcium metabolism. Curr Gastroenterol Rep. 2012;14(6):473–9.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Ngamruengphong S, Leontiadis GI, Radhi S, Dentino A, Nugent K. Proton pump inhibitors and risk of fracture: a systematic review and meta-analysis of observational studies. Am J Gastroenterol. 2011;106(7):1209–18.

    Article  PubMed  Google Scholar 

  145. Costa-Rodrigues J, Reis S, Teixeira S, Lopes S, Fernandes MH. Dose-dependent inhibitory effects of proton pump inhibitors on human osteoclastic and osteoblastic cell activity. FEBS J. 2013;280(20):5052–64.

    Article  PubMed  Google Scholar 

  146. Narisawa S, Harmey D, Yadav MC, O'Neill WC, Hoylaerts MF, Millán JL. Novel inhibitors of alkaline phosphatase suppress vascular smooth muscle cell calcification. J Bone Miner Res. 2007;22(11):1700–10.

    Article  PubMed  Google Scholar 

  147. Delomenède M, Buchet R, Mebarek S. Lansoprazole is an uncompetitive inhibitor of tissue-nonspecific alkaline phosphatase. Acta Biochim Pol. 2009;56(2):301.

    PubMed  Google Scholar 

  148. Roberts S, Narisawa S, Harmey D, Millán JL, Farquharson C. Functional involvement of PHOSPHO1 in matrix vesicle–mediated skeletal mineralization. J Bone Miner Res. 2007;22(4):617–27.

    Article  PubMed  Google Scholar 

  149. O’Connell MB, Madden DM, Murray AM, Heaney RP, Kerzner LJ. Effects of proton pump inhibitors on calcium carbonate absorption in women: a randomized crossover trial. Am J Med. 2005;118(7):778–81.

    Article  PubMed  Google Scholar 

  150. Abrahamsen B, Vestergaard P. Proton pump inhibitor use and fracture risk—effect modification by histamine H1 receptor blockade. Observational case–control study using National Prescription Data. Bone. 2013;57(1):269–71.

    Article  PubMed  Google Scholar 

  151. Charles JF, Nakamura MC. Bone and the innate immune system. Curr Osteoporos Rep. 2014;12(1):1–8.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Schett G, David J-P. The multiple faces of autoimmune-mediated bone loss. Nat Rev Endocrinol. 2010;6(12):698–706.

    Article  PubMed  Google Scholar 

  153. Usuda N, Arai H, Sasaki H, Hanai T, Nagata T, Muramatsu T, et al. Differential subcellular localization of neural isoforms of the catalytic subunit of calmodulin-dependent protein phosphatase (calcineurin) in central nervous system neurons: immunohistochemistry on Formalin-fixed paraffin sections employing antigen retrieval by microwave irradiation. J Histochem Cytochem. 1996;44(1):13–8.

    Article  PubMed  Google Scholar 

  154. Norris CM, Kadish I, Blalock EM, Chen K-C, Thibault V, Porter NM, et al. Calcineurin triggers reactive/inflammatory processes in astrocytes and is upregulated in aging and Alzheimer’s models. J Neurosci. 2005;25(18):4649–58.

    Article  PubMed  PubMed Central  Google Scholar 

  155. Aramburu J, Rao A, Klee CB. Calcineurin: from structure to function. Curr Top Cell Regul. 2001;36:237–95.

    Article  Google Scholar 

  156. Sun L, Blair HC, Peng Y, Zaidi N, Adebanjo OA, Wu XB, et al. Calcineurin regulates bone formation by the osteoblast. Proc Natl Acad Sci U S A. 2005;102(47):17130–5.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Klee C, Draetta G, Hubbard M, Meister A. Advances in enzymology and related areas of molecular biology. Adv Enzymol Relat Areas Mol Biol. 1988;61:149–200.

    PubMed  Google Scholar 

  158. Naesens M, Kuypers DR, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol. 2009;4(2):481–508.

    PubMed  Google Scholar 

  159. Katz IA, Epstein S. Perspectives: posttransplantation bone disease. J Bone Miner Res. 1992;7(2):123–6.

    Article  PubMed  Google Scholar 

  160. Rodino MA, Shane E. Osteoporosis after organ transplantation. Am J Med. 1998;104(5):459–69.

    Article  PubMed  Google Scholar 

  161. Sprague SM. Mechanism of transplantation-associated bone loss. Pediatr Nephrol. 2000;14(7):650–3.

    Article  PubMed  Google Scholar 

  162. Sprague SM, Josephson MA. Bone disease after kidney transplantation. In:Seminars in nephrology: Elsevier; 2004.

    Google Scholar 

  163. Winslow MM, Pan M, Starbuck M, Gallo EM, Deng L, Karsenty G, et al. Calcineurin/NFAT signaling in osteoblasts regulates bone mass. Dev Cell. 2006;10(6):771–82.

    Article  PubMed  Google Scholar 

  164. Laupacis A, Keown P, Ulan R, McKenzie N, Stiller C. Cyclosporin A: a powerful immunosuppressant. Can Med Assoc J. 1982;126(9):1041.

    PubMed  PubMed Central  Google Scholar 

  165. Cantrell DA, Smith KA. The interleukin-2 T-cell system: a new cell growth model. Science. 1984;224(4655):1312–6.

    Article  PubMed  Google Scholar 

  166. El Hadary AA, Yassin HH, Mekhemer ST, Holmes JC, Grootveld M. Evaluation of the effect of ozonated plant oils on the quality of osseointegration of dental implants under the influence of cyclosporin a: an in vivo study. J Oral Implantol. 2011;37(2):247–57.

    Article  PubMed  Google Scholar 

  167. Schlosberg M, Movsowitz C, Epstein S, Ismail F, Fallon M, Thomas S. The effect of cyclosporin A administration and its withdrawal on bone mineral metabolism in the rat. Endocrinology. 1989;124(5):2179–84.

    Article  PubMed  Google Scholar 

  168. Av C, Wysolmerski J, Simpson C, Mitnick MA, Gundberg C, Kliger A, et al. Posttransplant bone disease: evidence for a high bone resorption state. Transplantation. 2000;70(12):1722–8.

    Article  Google Scholar 

  169. Sakakura CE, Lopes B, Margonar R, Queiroz TP, Nociti F, Marcantonio E. Cyclosporine-A and bone density around titanium implants: a histometric study in rabbits. J Osseointegr. 2011;3:25–9.

    Google Scholar 

  170. Sakakura CE, Margonar R, Holzhausen M, Nociti FH Jr, Alba RC Jr, Marcantonio E Jr. Influence of cyclosporin A therapy on bone healing around titanium implants: a histometric and biomechanic study in rabbits. J Periodontol. 2003;74(7):976–81.

    Article  PubMed  Google Scholar 

  171. Duarte PM, Nogueira Filho GR, Sallum EA, Toledo S, Sallum AW, Nociti FH Jr. The effect of an immunosuppressive therapy and its withdrawal on bone healing around titanium implants. A histometric study in rabbits. J Periodontol. 2001;72(10):1391–7.

    Article  PubMed  Google Scholar 

  172. Sakakura CE, Marcantonio E, Wenzel A, Scaf G. Influence of cyclosporin A on quality of bone around integrated dental implants: a radiographic study in rabbits. Clin Oral Implants Res. 2007;18(1):34–9.

    Article  PubMed  Google Scholar 

  173. Al Subaie AE, Eimar H, Abdallah MN, Durand R, Feine J, Tamimi F, et al. Anti-VEGFs hinder bone healing and implant osseointegration in rat tibiae. J Clin Periodontol. 2015;42(7):688–96.

    Article  PubMed  Google Scholar 

  174. Zhang L, Zhang L, Lan X, Xu M, Mao Z, Lv H, et al. Improvement in angiogenesis and osteogenesis with modified cannulated screws combined with VEGF/PLGA/fibrin glue in femoral neck fractures. J Mater Sci Mater Med. 2014;25(4):1165–72.

    Article  PubMed  Google Scholar 

  175. Senger DR, Galli SJ, Dvorak AM, Perruzzi CA, Harvey VS, Dvorak HF. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science. 1983;219(4587):983–5.

    Article  PubMed  Google Scholar 

  176. Cui Q, Dighe AS, Irvine J, James N. Combined angiogenic and osteogenic factor delivery for bone regenerative engineering. Curr Pharm Des. 2013;19(19):3374–83.

    Article  PubMed  Google Scholar 

  177. Semeraro F, Morescalchi F, Parmeggiani F, Arcidiacono B, Costagliola C. Systemic adverse drug reactions secondary to anti-VEGF intravitreal injection in patients with neovascular age-related macular degeneration. Curr Vasc Pharmacol. 2011;9(5):629–46.

    Article  PubMed  Google Scholar 

  178. Bauman G, Charette M, Reid R, Sathya J, TRGG of Cancer. Radiopharmaceuticals for the palliation of painful bone metastases—a systematic review. Radiother Oncol. 2005;75(3):258. E1-. E13

    Article  PubMed  Google Scholar 

  179. Bruland ØS, Nilsson S, Fisher DR, Larsen RH. High-linear energy transfer irradiation targeted to skeletal metastases by the α-emitter 223Ra: adjuvant or alternative to conventional modalities? Clin Cancer Res 2006;12(20):6250s–7s.

    Google Scholar 

  180. Henriksen G, Breistøl K, Bruland ØS, Fodstad Ø, Larsen RH. Significant antitumor effect from bone-seeking, α-particle-emitting 223Ra demonstrated in an experimental skeletal metastases model. Cancer Res. 2002;62(11):3120–5.

    PubMed  Google Scholar 

  181. Sartor O, Coleman R, Nilsson S, Heinrich D, Helle SI, O'Sullivan JM, et al. Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: results from a phase 3, double-blind, randomised trial. Lancet Oncol. 2014;15(7):738–46.

    Article  PubMed  Google Scholar 

  182. Lønning PE, Geisler J, Krag LE, Erikstein B, Bremnes Y, Hagen AI, et al. Effects of exemestane administered for 2 years versus placebo on bone mineral density, bone biomarkers, and plasma lipids in patients with surgically resected early breast cancer. J Clin Oncol. 2005;23(22):5126–37.

    Article  PubMed  Google Scholar 

  183. Coleman RE, Banks LM, Girgis SI, Kilburn LS, Vrdoljak E, Fox J, et al. Skeletal effects of exemestane on bone-mineral density, bone biomarkers, and fracture incidence in postmenopausal women with early breast cancer participating in the Intergroup Exemestane Study (IES): a randomised controlled study. Lancet Oncol. 2007;8(2):119–27.

    Article  PubMed  Google Scholar 

  184. McCloskey E. Effects of third-generation aromatase inhibitors on bone. Eur J Cancer. 2006;42(8):1044–51.

    Article  PubMed  Google Scholar 

  185. Coombes R, Kilburn L, Snowdon C, Paridaens R, Coleman R, Jones S, et al. Survival and safety of exemestane versus tamoxifen after 2–3 years’ tamoxifen treatment (Intergroup Exemestane Study): a randomised controlled trial. Lancet. 2007;369(9561):559–70.

    Article  PubMed  Google Scholar 

  186. Heaney RP, Recker RR, Saville PD. Menopausal changes in bone remodeling. J Lab Clin Med. 1978;92(6):964–70.

    PubMed  Google Scholar 

  187. López BC, Esteve CG, Pérez MGS. Dental treatment considerations in the chemotherapy patient. J Clin Exp Dent. 2011;3(1):31–42.

    Article  Google Scholar 

  188. Kovács AF. Influence of chemotherapy on endosteal implant survival and success in oral cancer patients. Int J Oral Maxillofac Surg. 2001;30(2):144–7.

    Article  PubMed  Google Scholar 

  189. Alia B, Bashir A, Tanira M. Anti-inflammatory, antipyretic, and analgesic effects of Lawsonia inermis L.(henna) in rats. Pharmacology. 1995;51(6):356–63.

    Article  Google Scholar 

  190. Chuang P-Y, Shen S-H, Yang T-Y, Huang T-W, Huang K-C. Non-steroidal anti-inflammatory drugs and the risk of a second hip fracture: a propensity-score matching study. BMC Musculoskelet Disord. 2016;17(1):1.

    Article  Google Scholar 

  191. Konstantinidis I, N Papageorgiou S, Kyrgidis A, Tzellos G, Kouvelas D. Effect of non-steroidal anti-inflammatory drugs on bone turnover: an evidence-based review. Rev Recent Clin Trials. 2013;8(1):48–60.

    Article  PubMed  Google Scholar 

  192. Griffin MR. Epidemiology of nonsteroidal anti-inflammatory drug–associated gastrointestinal injury. Am J Med. 1998;104(3):23S–9S.

    Article  PubMed  Google Scholar 

  193. Harder AT, An YH. The mechanisms of the inhibitory effects of nonsteroidal anti-inflammatory drugs on bone healing: a concise review. J Clin Pharmacol. 2003;43(8):807–15.

    Article  PubMed  Google Scholar 

  194. Wheeler P, Batt M. Do non-steroidal anti-inflammatory drugs adversely affect stress fracture healing? A short review. Br J Sports Med. 2005;39(2):65–9.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Su B, O'Connor JP. NSAID therapy effects on healing of bone, tendon, and the enthesis. J Appl Physiol. 2013;115(6):892–9.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Wittenberg JM, Wittenberg RH. Release of prostaglandins from bone and muscle after femoral osteotomy in rats. Acta Orthop Scand. 1991;62(6):577–81.

    Article  PubMed  Google Scholar 

  197. Kawaguchi H, Pilbeam CC, Harrison JR, Raisz LG. The role of prostaglandins in the regulation of bone metabolism. Clin Orthop Relat Res. 1995;313:36–46.

    Google Scholar 

  198. Raisz L, Martin T. Prostaglandins in bone and mineral metabolism. Bone Miner Res. 1984;2:286–310.

    Google Scholar 

  199. Sostres C, Gargallo CJ, Arroyo MT, Lanas A. Adverse effects of non-steroidal anti-inflammatory drugs (NSAIDs, aspirin and coxibs) on upper gastrointestinal tract. Best Pract Res Clin Gastroenterol. 2010;24(2):121–32.

    Article  PubMed  Google Scholar 

  200. Ribeiro FV, Nociti FH Jr, Sallum EA, Casati MZ. Effect of aluminum oxide-blasted implant surface on the bone healing around implants in rats submitted to continuous administration of selective cyclooxygenase-2 inhibitors. Int J Oral Maxillofac Implants. 2009;24(2)

    Google Scholar 

  201. Pablos AB, Ramalho SA, König B Jr, Furuse C, de Araújo VC, Cury PR. Effect of meloxicam and diclofenac sodium on peri-implant bone healing in rats. J Periodontol. 2008;79(2):300–6.

    Article  PubMed  Google Scholar 

  202. Ouanounou A, Hassanpour S, Glogauer M. The influence of systemic medications on osseointegration of dental implants. J Can Dent Assoc. 2016;82(g7):1488–2159.

    Google Scholar 

  203. Henneicke H, Gasparini SJ, Brennan-Speranza TC, Zhou H, Seibel MJ. Glucocorticoids and bone: local effects and systemic implications. Trends Endocrinol Metab. 2014;25(4):197–211.

    Article  PubMed  Google Scholar 

  204. O’Brien CA, Jia D, Plotkin LI, Bellido T, Powers CC, Stewart SA, et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology. 2004;145(4):1835–41.

    Article  PubMed  Google Scholar 

  205. Amiche M, Albaum J, Tadrous M, Pechlivanoglou P, Lévesque L, Adachi J, et al. Fracture risk in oral glucocorticoid users: a Bayesian meta-regression leveraging control arms of osteoporosis clinical trials. Osteoporos Int. 2016;27(5):1709–18.

    Article  PubMed  Google Scholar 

  206. Weinstein RS, Chen J-R, Powers CC, Stewart SA, Landes RD, Bellido T, et al. Promotion of osteoclast survival and antagonism of bisphosphonate-induced osteoclast apoptosis by glucocorticoids. J Clin Invest. 2002;109(8):1041–8.

    Article  PubMed  PubMed Central  Google Scholar 

  207. Mazziotti G, Canalis E, Giustina A. Drug-induced osteoporosis: mechanisms and clinical implications. Am J Med. 2010;123(10):877–84.

    Article  PubMed  Google Scholar 

  208. Weinstein RS, Jia D, Powers CC, Stewart SA, Jilka RL, Parfitt AM, et al. The skeletal effects of glucocorticoid excess override those of orchidectomy in mice. Endocrinology. 2004;145(4):1980–7.

    Article  PubMed  Google Scholar 

  209. Smith RA, Berger R, Dodson TB. Risk factors associated with dental implants in healthy and medically compromised patients. Int J Oral Maxillofac Implants. 1992;7(3)

    Google Scholar 

  210. Cranin A. Endosteal implants in a patient with corticosteroid dependence. J Oral Implantol. 1991;17(4):414.

    PubMed  Google Scholar 

  211. Bencharit S, Reside GJ, Howard-Williams EL. Complex prosthodontic treatment with dental implants for a patient with polymyalgia rheumatica: a clinical report. Int J Oral Maxillofac Implants. 2010;25(6)

    Google Scholar 

  212. Werner S, Tessler J, Guglielmotti M, Cabrini R. Effect of dexamethasone on osseointegration: a preliminary experimental study. J Oral Implantol. 1995;22(3–4):216–9.

    Google Scholar 

  213. LeBlanc ES, Janowsky J, Chan BK, Nelson HD. Hormone replacement therapy and cognition: systematic review and meta-analysis. JAMA. 2001;285(11):1489–99.

    Article  PubMed  Google Scholar 

  214. Ardawi M-S, Sibiany A, Bakhsh T, Qari M, Maimani A. High prevalence of vitamin D deficiency among healthy Saudi Arabian men: relationship to bone mineral density, parathyroid hormone, bone turnover markers, and lifestyle factors. Osteoporos Int. 2012;23(2):675–86.

    Article  PubMed  Google Scholar 

  215. Nachiappan AC, Metwalli ZA, Hailey BS, Patel RA, Ostrowski ML, Wynne DM. The thyroid: review of imaging features and biopsy techniques with radiologic-pathologic correlation. Radiographics. 2014;34(2):276–93.

    Article  PubMed  Google Scholar 

  216. Bassett JD, Williams GR. The molecular actions of thyroid hormone in bone. Trends Endocrinol Metab. 2003;14(8):356–64.

    Article  PubMed  Google Scholar 

  217. Weiss RE, Refetoff S. Effect of thyroid hormone on growth: lessons from the syndrome of resistance to thyroid hormone. Endocrinol Metab Clin N Am. 1996;25(3):719–30.

    Article  Google Scholar 

  218. Stevens DA, Hasserjian RP, Robson H, Siebler T, Shalet SM, Williams GR. Thyroid hormones regulate hypertrophic chondrocyte differentiation and expression of parathyroid hormone-related peptide and its receptor during endochondral bone formation. J Bone Miner Res. 2000;15(12):2431–42.

    Article  PubMed  Google Scholar 

  219. Milne M, Quail JM, Rosen CJ, Baran DT. Insulin-like growth factor binding proteins in femoral and vertebral bone marrow stromal cells: expression and regulation by thyroid hormone and dexamethasone. J Cell Biochem. 2001;81(2):229–40.

    Article  PubMed  Google Scholar 

  220. Tsukiyama K, Yamada Y, Yamada C, Harada N, Kawasaki Y, Ogura M, et al. Gastric inhibitory polypeptide as an endogenous factor promoting new bone formation after food ingestion. Mol Endocrinol. 2006;20(7):1644–51.

    Article  PubMed  Google Scholar 

  221. Finkelstein JS, Hayes A, Hunzelman JL, Wyland JJ, Lee H, Neer RM. The effects of parathyroid hormone, alendronate, or both in men with osteoporosis. N Engl J Med. 2003;349(13):1216–26.

    Article  PubMed  Google Scholar 

  222. Henriksen DB, Alexandersen P, Bjarnason NH, Vilsbøll T, Hartmann B, Henriksen EE, et al. Role of gastrointestinal hormones in postprandial reduction of bone resorption. J Bone Miner Res. 2003;18(12):2180–9.

    Article  PubMed  Google Scholar 

  223. Gault VA, Irwin N, Green BD, McCluskey JT, Greer B, Bailey CJ, et al. Chemical ablation of gastric inhibitory polypeptide receptor action by daily (Pro3) GIP administration improves glucose tolerance and ameliorates insulin resistance and abnormalities of islet structure in obesity-related diabetes. Diabetes. 2005;54(8):2436–46.

    Article  PubMed  Google Scholar 

  224. Bollag RJ, Zhong Q, Ding K, Phillips P, Zhong L, Qin F, et al. Glucose-dependent insulinotropic peptide is an integrative hormone with osteotropic effects. Mol Cell Endocrinol. 2001;177(1):35–41.

    Article  PubMed  Google Scholar 

  225. Syed F, Khosla S. Mechanisms of sex steroid effects on bone. Biochem Biophys Res Commun. 2005;328(3):688–96.

    Article  PubMed  Google Scholar 

  226. Adinoff AD, Hollister JR. Steroid-induced fractures and bone loss in patients with asthma. N Engl J Med. 1983;309(5):265–8.

    Article  PubMed  Google Scholar 

  227. Liu J, Zhao H, Ning G, Zhao Y, Chen Y, Zhang Z, et al. Relationships between the changes of serum levels of OPG and RANKL with age, menopause, bone biochemical markers and bone mineral density in Chinese women aged 20-75. Calcif Tissue Int. 2005;76(1):1–6.

    Article  PubMed  Google Scholar 

  228. Cauley JA, Seeley DG, Ensrud K, Ettinger B, Black D, Cummings SR. Estrogen replacement therapy and fractures in older women. Ann Intern Med. 1995;122(1):9–16.

    Article  PubMed  Google Scholar 

  229. Lane NE, Haupt D, Kimmel DB, Modin G, Kinney JH. Early estrogen replacement therapy reverses the rapid loss of trabecular bone volume and prevents further deterioration of connectivity in the rat. J Bone Miner Res. 1999;14(2):206–14.

    Article  PubMed  Google Scholar 

  230. Ettinger B, Genant HK, Cann CE. Long-term estrogen replacement therapy prevents bone loss and fractures. Ann Intern Med. 1985;102(3):319–24.

    Article  PubMed  Google Scholar 

  231. Lindsay R. Sex steroids in the pathogenesis and prevention of osteoporosis. In:Osteoporosis: etiology, diagnosis and management. New York: Raven Press; 1988. p. 333–58.

    Google Scholar 

  232. Ronderos M, Jacobs DR, Himes JH, Pihlstrom BL. Associations of periodontal disease with femoral bone mineral density and estrogen replacement therapy: cross-sectional evaluation of US adults from NHANES III. J Clin Periodontol. 2000;27(10):778–86.

    Article  PubMed  Google Scholar 

  233. Riggs BL, Parfitt AM. Drugs used to treat osteoporosis: the critical need for a uniform nomenclature based on their action on bone remodeling. J Bone Miner Res. 2005;20(2):177–84.

    Article  PubMed  Google Scholar 

  234. Consensus A. Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. Am J Med. 1993;94(6):646–50.

    Article  Google Scholar 

  235. Ellegaard M, Jørgensen N, Schwarz P. Parathyroid hormone and bone healing. Calcif Tissue Int. 2010;87(1):1–13.

    Article  PubMed  Google Scholar 

  236. Silva BC, Bilezikian JP. Parathyroid hormone: anabolic and catabolic actions on the skeleton. Curr Opin Pharmacol. 2015;22:41–50.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Iwaniec U, Moore K, Rivera M, Myers S, Vanegas S, Wronski T. A comparative study of the bone-restorative efficacy of anabolic agents in aged ovariectomized rats. Osteoporos Int. 2007;18(3):351–62.

    Article  PubMed  Google Scholar 

  238. Kanzawa M, Sugimoto T, Kanatani M, Chihara K. Involvement of osteoprotegerin/osteoclastogenesis inhibitory factor in the stimulation of osteoclast formation by parathyroid hormone in mouse bone cells. Eur J Endocrinol. 2000;142(6):661–4.

    Article  PubMed  Google Scholar 

  239. Neer RM, Arnaud CD, Zanchetta JR, Prince R, Gaich GA, Reginster J-Y, et al. Effect of parathyroid hormone (1-34) on fractures and bone mineral density in postmenopausal women with osteoporosis. N Engl J Med. 2001;344(19):1434–41.

    Article  PubMed  Google Scholar 

  240. Shirota T, Tashiro M, Ohno K, Yamaguchi A. Effect of intermittent parathyroid hormone (1-34) treatment on the bone response after placement of titanium implants into the tibia of ovariectomized rats. J Oral Maxillofac Surg. 2003;61(4):471–80.

    Article  PubMed  Google Scholar 

  241. Eddy D, Cummings S, Dawson-Hughes B, Johnston C, Lindsay R, Melton L. Guidelines for the prevention, diagnosis and treatment of osteoporosis: cost-effectiveness analysis and review of the evidence. Osteoporos Int. 1998;8(Suppl. 4):1–88.

    Google Scholar 

  242. Nieves JW, Komar L, Cosman F, Lindsay R. Calcium potentiates the effect of estrogen and calcitonin on bone mass: review and analysis. Am J Clin Nutr. 1998;67(1):18–24.

    Article  PubMed  Google Scholar 

  243. Knopp JA, Diner BM, Blitz M, Lyritis GP, Rowe BH. Calcitonin for treating acute pain of osteoporotic vertebral compression fractures: a systematic review of randomized, controlled trials. Osteoporos Int. 2005;16(10):1281–90.

    Article  PubMed  Google Scholar 

  244. Fleisch H. Bisphosphonates in bone disease: from the laboratory to the patient: Academic; 2000.

    Google Scholar 

  245. Russell RG, Mühlbauer R, Bisaz S, Williams D, Fleisch H. The influence of pyrophosphate, condensed phosphates, phosphonates and other phosphate compounds on the dissolution of hydroxyapatitein vitro and on bone resorption induced by parathyroid hormone in tissue culture and in thyroparathyroidectomised rats. Calcif Tissue Res. 1970;6(1):183–96.

    Article  PubMed  Google Scholar 

  246. Rogers MJ. New insights into the molecular mechanisms of action of bisphosphonates. Curr Pharm Des. 2003;9(32):2643–58.

    Article  PubMed  Google Scholar 

  247. Landesberg R, Cozin M, Cremers S, Woo V, Kousteni S, Sinha S, et al. Inhibition of oral mucosal cell wound healing by bisphosphonates. J Oral Maxillofac Surg. 2008;66(5):839–47.

    Article  PubMed  PubMed Central  Google Scholar 

  248. Vescovi P, Nammour S. Bisphosphonate-Related Osteonecrosis of the Jaw (BRONJ) therapy. A critical review. Minerva Stomatol. 2010;59(4):181–203, 4–13

    PubMed  Google Scholar 

  249. Yoneda T, Hagino H, Sugimoto T, Ohta H, Takahashi S, Soen S, et al. Bisphosphonate-related osteonecrosis of the jaw: position paper from the allied task force committee of Japanese Society for Bone and Mineral Research, Japan Osteoporosis Society, Japanese Society of Periodontology, Japanese Society for Oral and Maxillofacial Radiology, and Japanese Society of Oral and Maxillofacial Surgeons. J Bone Miner Metab. 2010;28(4):365–83.

    Article  PubMed  Google Scholar 

  250. Lazarovici TS, Yahalom R, Taicher S, Schwartz-Arad D, Peleg O, Yarom N. Bisphosphonate-related osteonecrosis of the jaw associated with dental implants. J Oral Maxillofac Surg. 2010;68(4):790–6.

    Article  PubMed  Google Scholar 

  251. Van Bezooijen RL, Roelen BA, Visser A, Van Der Wee-pals L, De Wilt E, Karperien M, et al. Sclerostin is an osteocyte-expressed negative regulator of bone formation, but not a classical BMP antagonist. J Exp Med. 2004;199(6):805–14.

    Article  PubMed  PubMed Central  Google Scholar 

  252. Li X, Zhang Y, Kang H, Liu W, Liu P, Zhang J, et al. Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J Biol Chem. 2005;280(20):19883–7.

    Article  PubMed  Google Scholar 

  253. van Bezooijen RL, ten Dijke P, Papapoulos SE, Löwik CW. SOST/sclerostin, an osteocyte-derived negative regulator of bone formation. Cytokine Growth Factor Rev. 2005;16(3):319–27.

    Article  PubMed  Google Scholar 

  254. Durrington P. Dyslipidaemia. Lancet. 2003;362(9385):717–31.

    Article  PubMed  Google Scholar 

  255. Pedersen T. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Atheroscler Suppl. 2004;5(3):81–7.

    Article  PubMed  Google Scholar 

  256. Bagger Y, Rasmussen HB, Alexandersen P, Werge T, Christiansen C, Tanko L, et al. Links between cardiovascular disease and osteoporosis in postmenopausal women: serum lipids or atherosclerosis per se? Osteoporos Int. 2007;18(4):505–12.

    Article  PubMed  Google Scholar 

  257. Luisetto G, Camozzi V. Statins, fracture risk, and bone remodeling. J Endocrinol Investig. 2008;32(4 Suppl):32–7.

    Google Scholar 

  258. Tsartsalis AN, Dokos C, Kaiafa GD, Tsartsalis DN, Kattamis A, Hatzitolios AI, et al. Statins, bone formation and osteoporosis: hope or hype. Hormones (Athens). 2012;11(2):126–39.

    Article  Google Scholar 

  259. van Staa T-P, Wegman S, de Vries F, Leufkens B, Cooper C. Use of statins and risk of fractures. JAMA. 2001;285(14):1850–5.

    Article  PubMed  Google Scholar 

  260. Mundy G, Garrett R, Harris S, Chan J, Chen D, Rossini G, et al. Stimulation of bone formation in vitro and in rodents by statins. Science. 1999;286(5446):1946–9.

    Article  PubMed  Google Scholar 

  261. Ayukawa Y, Okamura A, Koyano K. Simvastatin promotes osteogenesis around titanium implants. Clin Oral Implants Res. 2004;15(3):346–50.

    Article  PubMed  Google Scholar 

  262. Du Z, Chen J, Yan F, Xiao Y. Effects of Simvastatin on bone healing around titanium implants in osteoporotic rats. Clin Oral Implants Res. 2009;20(2):145–50.

    Article  PubMed  Google Scholar 

  263. Canonica GW, Blaiss M. Antihistaminic, anti-inflammatory, and antiallergic properties of the nonsedating second-generation antihistamine desloratadine: a review of the evidence. World Allergy Organ J. 2011;4(2):47–53.

    Article  PubMed  PubMed Central  Google Scholar 

  264. Gebhard JS, Johnston-Jones K, Kody MH, Kabo JM, Meals RA. Effects of antihistamines on joint stiffness and bone healing after periarticular fracture. J Hand Surg. 1993;18(6):1080–5.

    Article  Google Scholar 

  265. Fitzpatrick L, Buzas E, Gagne T, Nagy A, Horvath C, Ferencz V, et al. Targeted deletion of histidine decarboxylase gene in mice increases bone formation and protects against ovariectomy-induced bone loss. Proc Natl Acad Sci. 2003;100(10):6027–32.

    Article  PubMed  PubMed Central  Google Scholar 

  266. Kinjo M, Setoguchi S, Solomon DH. Antihistamine therapy and bone mineral density: analysis in a population-based US sample. Am J Med. 2008;121(12):1085–91.

    Article  PubMed  PubMed Central  Google Scholar 

  267. Lesclous P, Guez D, Baroukh B, Vignery A, Saffar J. Histamine participates in the early phase of trabecular bone loss in ovariectomized rats. Bone. 2004;34(1):91–9.

    Article  PubMed  Google Scholar 

  268. Deyama Y, Kikuiri T, Ohnishi G-i, Feng Y-G, Takeyama S, Hatta M, et al. Histamine stimulates production of osteoclast differentiation factor/receptor activator of nuclear factor-κB ligand by osteoblasts. Biochem Biophys Res Commun. 2002;298(2):240–6.

    Article  PubMed  Google Scholar 

  269. Arnsten JH, Freeman R, Howard AA, Floris-Moore M, Lo Y, Klein RS. Decreased bone mineral density and increased fracture risk in aging men with or at risk for HIV infection. AIDS (London, England). 2007;21(5):617.

    Article  Google Scholar 

  270. Carpenter CC, Cooper DA, Fischl MA, Gatell JM, Gazzard BG, Hammer SM, et al. Antiretroviral therapy in adults: updated recommendations of the International AIDS Society–USA Panel. JAMA. 2000;283(3):381–90.

    Article  PubMed  Google Scholar 

  271. Tebas P, Powderly WG, Claxton S, Marin D, Tantisiriwat W, Teitelbaum SL, et al. Accelerated bone mineral loss in HIV-infected patients receiving potent antiretroviral therapy. AIDS (London, England). 2000;14(4):F63.

    Article  Google Scholar 

  272. Brown TT, McComsey GA, King MS, Qaqish RB, Bernstein BM, da Silva BA. Loss of bone mineral density after antiretroviral therapy initiation, independent of antiretroviral regimen. J Acquir Immune Defic Syndr. 2009;51(5):554–61.

    Article  PubMed  Google Scholar 

  273. Ofotokun I, Weitzmann MN. HIV-1 infection and antiretroviral therapies: risk factors for osteoporosis and bone fracture. Curr Opin Endocrinol Diabetes Obes. 2010;17(6):523.

    Article  PubMed  PubMed Central  Google Scholar 

  274. Beard EL Jr. The American Society of Health System Pharmacists. JONAS Healthc Law Ethics Regul. 2001;3(3):78–9.

    Article  PubMed  Google Scholar 

  275. Simann M, Schneider V, Le Blanc S, Dotterweich J, Zehe V, Krug M, et al. Heparin affects human bone marrow stromal cell fate: promoting osteogenic and reducing adipogenic differentiation and conversion. Bone. 2015;78:102–13.

    Article  PubMed  Google Scholar 

  276. Irie A, Takami M, Kubo H, Sekino-Suzuki N, Kasahara K, Sanai Y. Heparin enhances osteoclastic bone resorption by inhibiting osteoprotegerin activity. Bone. 2007;41(2):165–74.

    Article  PubMed  Google Scholar 

  277. Barbour LA, Kick SD, Steiner JF, LoVerde ME, Heddleston LN, Lear JL, et al. A prospective study of heparin-induced osteoporosis in pregnancy using bone densitometry. Am J Obstet Gynecol. 1994;170(3):862–9.

    Article  PubMed  Google Scholar 

  278. Dahlman TC, Sjöberg HE, Ringertz H. Bone mineral density during long-term prophylaxis with heparin in pregnancy. Am J Obstet Gynecol. 1994;170(5):1315–20.

    Article  PubMed  Google Scholar 

  279. Douketis J, Ginsberg J, Burrows R, Duku E, Webber C, Brill-Edwards P. The effects of long-term heparin therapy during pregnancy on bone density. A prospective matched cohort study. Thromb Haemost. 1996;75(2):254–7.

    PubMed  Google Scholar 

  280. Siegal D, Yudin J, Kaatz S, Douketis JD, Lim W, Spyropoulos AC. Periprocedural heparin bridging in patients receiving vitamin K antagonists: systematic review and meta-analysis of bleeding and thromboembolic rates. Circulation. 2012;126(13):1630–9.

    Article  PubMed  Google Scholar 

  281. Mukherjee S. Alcoholism and its effects on the central nervous system. Curr Neurovasc Res. 2013;10(3):256–62.

    Article  PubMed  Google Scholar 

  282. Klein RF, Fausti KA, Carlos AS. Ethanol inhibits human osteoblastic cell proliferation. Alcohol Clin Exp Res. 1996;20(3):572–8.

    Article  PubMed  Google Scholar 

  283. Dai J, Lin D, Zhang J, Habib P, Smith P, Murtha J, et al. Chronic alcohol ingestion induces osteoclastogenesis and bone loss through IL-6 in mice. J Clin Invest. 2000;106(7):887–95.

    Article  PubMed  PubMed Central  Google Scholar 

  284. Koo S, Bruno König J, Mizusaki CI, Sérgio Allegrini J, Yoshimoto M, Carbonari MJ. Effects of alcohol consumption on osseointegration of titanium implants in rabbits. Implant Dent. 2004;13(3):232–7.

    Article  PubMed  Google Scholar 

  285. Alissa R, Oliver RJ. Influence of prognostic risk indicators on osseointegrated dental implant failure: a matched case-control analysis. J Oral Implantol. 2012;38(1):51–61.

    Article  PubMed  Google Scholar 

  286. Friedlander AH, Marder SR, Pisegna JR, Yagiela JA. Alcohol abuse and dependence: psychopathology, medical management and dental implications. J Am Dent Assoc. 2003;134(6):731–40.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faleh Tamimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wu, X., Tamimi, F. (2018). Pharmacological Risk Assessment for Dental Implants. In: Emami, E., Feine, J. (eds) Mandibular Implant Prostheses. Springer, Cham. https://doi.org/10.1007/978-3-319-71181-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71181-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71179-9

  • Online ISBN: 978-3-319-71181-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics