Skip to main content

Radiation Dose Reduction Strategies for Acute Abdominal and Pelvic CT

  • Chapter
  • First Online:
MDCT and MR Imaging of Acute Abdomen

Abstract

Since the inception of CT, its use in the emergency department (ED) has increased rapidly, raising concerns about potential risks of radiation exposure to patients, particularly the pediatric population. Therefore, radiologists should adhere to the ALARA principle, to ensure that imaging examinations are clinically indicated and to keep the radiation dose to a minimum. A substantial radiation dose reduction in abdominal and pelvic CT performed in emergency patients is achievable using the strategies described below while maintaining an acceptable level of diagnostic image quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Broder J, Warshauer DM. Increasing utilization of computed tomography in the adult emergency department, 2000-2005. Emerg Radiol. 2006;13(1):25–30.

    Article  Google Scholar 

  2. Broder J, Fordham LA, Warshauer DM. Increasing utilization of computed tomography in the pediatric emergency department, 2000-2006. Emerg Radiol. 2007;14(4):227–32.

    Article  Google Scholar 

  3. Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.

    Article  CAS  Google Scholar 

  4. Sodickson A. Strategies for reducing radiation exposure in multi-detector row CT. Radiol Clin N Am. 2012;50(1):1–14.

    Article  Google Scholar 

  5. McCollough CH, Chen GH, Kalender W, Leng S, Samei E, Taguchi K, et al. Achieving routine submillisievert CT scanning: report from the summit on management of radiation dose in CT. Radiology. 2012;264(2):567–80.

    Article  Google Scholar 

  6. Gans SL, Stoker J, Boermeester MA. Plain abdominal radiography in acute abdominal pain; past, present, and future. Int J Gen Med. 2012;5:525–33.

    PubMed  PubMed Central  Google Scholar 

  7. ACR Appropriateness Criteria®—American College of Radiology. 2017. https://www.acr.org/Quality-Safety/Appropriateness-Criteria.

  8. Rosenthal DI, Weilburg JB, Schultz T, Miller JC, Nixon V, Dreyer KJ, et al. Radiology order entry with decision support: initial clinical experience. J Am Coll Radiol. 2006;3(10):799–806.

    Article  Google Scholar 

  9. Sistrom CL, Dang PA, Weilburg JB, Dreyer KJ, Rosenthal DI, Thrall JH. Effect of computerized order entry with integrated decision support on the growth of outpatient procedure volumes: seven-year time series analysis. Radiology. 2009;251(1):147–55.

    Article  Google Scholar 

  10. Sodickson A, Opraseuth J, Ledbetter S. Outside imaging in emergency department transfer patients: CD import reduces rates of subsequent imaging utilization. Radiology. 2011;260(2):408–13.

    Article  Google Scholar 

  11. Chatoorgoon K, Huezo K, Rangel E, François N, Schweer L, Daugherty M, et al. Unnecessary imaging, not hospital distance, or transportation mode impacts delays in the transfer of injured children. Pediatr Emerg Care. 2010;26(7):481–6.

    Article  Google Scholar 

  12. Haley T, Ghaemmaghami V, Loftus T, Gerkin RD, Sterrett R, Ferrara JJ. Trauma: the impact of repeat imaging. Am J Surg. 2009;198(6):858–62.

    Article  Google Scholar 

  13. Emick DM, Carey TS, Charles AG, Shapiro ML. Repeat imaging in trauma transfers: a retrospective analysis of computed tomography scans repeated upon arrival to a level I trauma center. J Trauma Acute Care Surg. 2012;72(5):1255–62.

    Article  Google Scholar 

  14. Newgard CD, McConnell KJ, Hedges JR, Mullins RJ. The benefit of higher level of care transfer of injured patients from nontertiary hospital emergency departments. J Trauma. 2007;63(5):965–71.

    Article  Google Scholar 

  15. Gupta R, Greer SE, Martin ED. Inefficiencies in a rural trauma system: the burden of repeat imaging in interfacility transfers. J Trauma. 2010;69(2):253–5.

    Article  Google Scholar 

  16. Liepert AE, Cochran A. CT utilization in transferred trauma patients. J Surg Res. 2011;170(2):309–13.

    PubMed  Google Scholar 

  17. Laméris W, van Randen A, van Es HW, van Heesewijk JPM, van Ramshorst B, Bouma WH, et al. Imaging strategies for detection of urgent conditions in patients with acute abdominal pain: diagnostic accuracy study. BMJ. 2009;338:b2431.

    Article  Google Scholar 

  18. Sala E, Watson CJE, Beadsmoore C, Groot-Wassink T, Fanshawe TR, Smith JC, et al. A randomized, controlled trial of routine early abdominal computed tomography in patients presenting with non-specific acute abdominal pain. Clin Radiol. 2007;62(10):961–9.

    Article  CAS  Google Scholar 

  19. Yarmish GM, Smith MP, Rosen MP, Baker ME, Blake MA, Cash BD, et al. ACR appropriateness criteria right upper quadrant pain. J Am Coll Radiol. 2014;11(3):316–22.

    Article  Google Scholar 

  20. Smith MP, Katz DS, Lalani T, Carucci LR, Cash BD, Kim DH, et al. ACR appropriateness criteria® right lower quadrant pain--suspected appendicitis. Ultrasound Q. 2015;31(2):85–91.

    Article  Google Scholar 

  21. Ecanow JS, Gore RM. Evaluating patients with left upper quadrant pain. Radiol Clin N Am. 2015;53(6):1131–57.

    Article  Google Scholar 

  22. ACR Appropriateness Criteria® left lower quadrant pain—suspected diverticulitis. National guideline clearinghouse. 2017. https://www.guideline.gov/summaries/summary/48282.

  23. Vandermeer FQ, Wong-You-Cheong JJ. Imaging of acute pelvic pain. Clin Obstet Gynecol. 2009;52(1):2–20.

    Article  Google Scholar 

  24. Frush DP, Donnelly LF. Helical CT in children: technical considerations and body applications. Radiology. 1998;209(1):37–48.

    Article  CAS  Google Scholar 

  25. White KS. Invited article: helical/spiral CT scanning: a pediatric radiology perspective. Pediatr Radiol. 1996;26(1):5–14.

    Article  CAS  Google Scholar 

  26. Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol. 2001;176(2):289–96.

    Article  CAS  Google Scholar 

  27. Kellow ZS, MacInnes M, Kurzencwyg D, Rawal S, Jaffer R, Kovacina B, et al. The role of abdominal radiography in the evaluation of the nontrauma emergency patient. Radiology. 2008;248(3):887–93.

    Article  Google Scholar 

  28. Stoker J, van Randen A, Laméris W, Boermeester MA. Imaging patients with acute abdominal pain. Radiology. 2009;253(1):31–46.

    Article  Google Scholar 

  29. Pediatric radiology & imaging – Radiation safety – image gently. 2017. http://www.imagegently.org/.

  30. Mayo-Smith WW, Hara AK, Mahesh M, Sahani DV, Pavlicek W. How I do it: managing radiation dose in CT. Radiology. 2014;273(3):657–72.

    Article  Google Scholar 

  31. Huda W, Mettler FA. Volume CT dose index and dose-length product displayed during CT: what good are they? Radiology. 2011;258(1):236–42.

    Article  Google Scholar 

  32. Yu L, Li H, Fletcher JG, McCollough CH. Automatic selection of tube potential for radiation dose reduction in CT: a general strategy. Med Phys. 2010;37(1):234–43.

    Article  Google Scholar 

  33. Hough DM, Fletcher JG, Grant KL, Fidler JL, Yu L, Geske JR, et al. Lowering kilovoltage to reduce radiation dose in contrast-enhanced abdominal CT: initial assessment of a prototype automated kilovoltage selection tool. AJR Am J Roentgenol. 2012;199(5):1070–7.

    Article  Google Scholar 

  34. Winklehner A, Goetti R, Baumueller S, Karlo C, Schmidt B, Raupach R, et al. Automated attenuation-based tube potential selection for thoracoabdominal computed tomography angiography: improved dose effectiveness. Investig Radiol. 2011;46(12):767–73.

    Article  CAS  Google Scholar 

  35. Goetti R, Winklehner A, Gordic S, Baumueller S, Karlo CA, Frauenfelder T, et al. Automated attenuation-based kilovoltage selection: preliminary observations in patients after endovascular aneurysm repair of the abdominal aorta. AJR Am J Roentgenol. 2012;199(3):W380–5.

    Article  Google Scholar 

  36. Corwin MT, Chang M, Fananapazir G, Seibert A, Lamba R. Accuracy and radiation dose reduction of a limited abdominopelvic CT in the diagnosis of acute appendicitis. Abdom Imaging. 2015;40(5):1177–82.

    Article  Google Scholar 

  37. Broder JS, Hollingsworth CL, Miller CM, Meyer JL, Paulson EK. Prospective double-blinded study of abdominal-pelvic computed tomography guided by the region of tenderness: estimation of detection of acute pathology and radiation exposure reduction. Ann Emerg Med. 2010;56(2):126–34.

    Article  Google Scholar 

  38. Kim SH, Yoon J-H, Lee JH, Lim Y-J, Kim OH, Ryu JH, et al. Low-dose CT for patients with clinically suspected acute appendicitis: optimal strength of sinogram affirmed iterative reconstruction for image quality and diagnostic performance. Acta Radiol. 2015;56(8):899–907.

    Article  Google Scholar 

  39. Karabulut N, Kiroglu Y, Herek D, Kocak TB, Erdur B. Feasibility of low-dose unenhanced multi-detector CT in patients with suspected acute appendicitis: comparison with sonography. Clin Imaging. 2014;38(3):296–301.

    Article  Google Scholar 

  40. Remer EM, Herts BR, Primak A, Obuchowski NA, Greiwe A, Roesel DM, et al. Detection of urolithiasis: comparison of 100% tube exposure images reconstructed with filtered back projection and 50% tube exposure images reconstructed with sinogram-affirmed iterative reconstruction. Radiology. 2014;272(3):749–56.

    Article  Google Scholar 

  41. Poletti P-A, Platon A, Rutschmann OT, Schmidlin FR, Iselin CE, Becker CD. Low-dose versus standard-dose CT protocol in patients with clinically suspected renal colic. AJR Am J Roentgenol. 2007;188(4):927–33.

    Article  Google Scholar 

  42. Laqmani A, Veldhoen S, Dulz S, Derlin T, Behzadi C, Schmidt-Holtz J, et al. Reduced-dose abdominopelvic CT using hybrid iterative reconstruction in suspected left-sided colonic diverticulitis. Eur Radiol. 2016;26(1):216–24.

    Article  Google Scholar 

  43. Othman AE, Bongers MN, Zinsser D, Schabel C, Wichmann JL, Arshid R, et al. Evaluation of reduced-dose CT for acute non-traumatic abdominal pain: evaluation of diagnostic accuracy in comparison to standard-dose CT. Acta Radiol. 2017;13:028418511770315.

    Google Scholar 

  44. Padole A, Ali Khawaja RD, Kalra MK, Singh S. CT radiation dose and iterative reconstruction techniques. Am J Roentgenol. 2015;204(4):W384–92.

    Article  Google Scholar 

  45. Singh S, Kalra MK, Hsieh J, Licato PE, Do S, Pien HH, et al. Abdominal CT: comparison of adaptive statistical iterative and filtered back projection reconstruction techniques. Radiology. 2010;257(2):373–83.

    Article  Google Scholar 

  46. Singh S, Kalra MK, Do S, Thibault JB, Pien H, O’Connor OJ, et al. Comparison of hybrid and pure iterative reconstruction techniques with conventional filtered back projection: dose reduction potential in the abdomen. J Comput Assist Tomogr. 2012;36(3):347–53.

    Article  Google Scholar 

  47. Gervaise A, Naulet P, Beuret F, Henry C, Pernin M, Portron Y, et al. Low-dose CT with automatic tube current modulation, adaptive statistical iterative reconstruction, and low tube voltage for the diagnosis of renal colic: impact of body mass index. AJR Am J Roentgenol. 2014;202(3):553–60.

    Article  Google Scholar 

  48. Gervaise A, Osemont B, Louis M, Lecocq S, Teixeira P, Blum A. Standard dose versus low-dose abdominal and pelvic CT: comparison between filtered back projection versus adaptive iterative dose reduction 3D. Diagn Interv Imaging. 2014;95(1):47–53.

    Article  CAS  Google Scholar 

  49. McLaughlin PD, Murphy KP, Hayes SA, Carey K, Sammon J, Crush L, et al. Non-contrast CT at comparable dose to an abdominal radiograph in patients with acute renal colic; impact of iterative reconstruction on image quality and diagnostic performance. Insights Imaging. 2014;5(2):217–30.

    Article  CAS  Google Scholar 

  50. Pickhardt PJ, Lubner MG, Kim DH, Tang J, Ruma JA, del Rio AM, et al. Abdominal CT with model-based iterative reconstruction (MBIR): initial results of a prospective trial comparing ultralow-dose with standard-dose imaging. AJR Am J Roentgenol. 2012;199(6):1266–74.

    Article  Google Scholar 

  51. Yasaka K, Katsura M, Akahane M, Sato J, Matsuda I, Ohtomo K. Model-based iterative reconstruction for reduction of radiation dose in abdominopelvic CT: comparison to adaptive statistical iterative reconstruction. Springerplus. 2013;2(1):209.

    Article  Google Scholar 

  52. Modica MJ, Kanal KM, Gunn ML. The obese emergency patient: imaging challenges and solutions. Radiographics. 2011;31(3):811–23.

    Article  Google Scholar 

  53. Wichmann JL, Hardie AD, Schoepf UJ, Felmly LM, Perry JD, Varga-Szemes A, et al. Single- and dual-energy CT of the abdomen: comparison of radiation dose and image quality of 2nd and 3rd generation dual-source CT. Eur Radiol. 2017;27(2):642–50.

    Article  Google Scholar 

  54. Purysko AS, Primak AN, Baker ME, Obuchowski NA, Remer EM, John B, et al. Comparison of radiation dose and image quality from single-energy and dual-energy CT examinations in the same patients screened for hepatocellular carcinoma. Clin Radiol. 2014;69(12):e538–44.

    Article  CAS  Google Scholar 

  55. Dose index registry - American College of Radiology. 2017. https://www.acr.org/Quality-Safety/National-Radiology-Data-Registry/Dose-Index-Registry.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Savvas Nicolaou M.D., F.R.C.P.C .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shah, S., Khosa, F., Nicolaou, S. (2018). Radiation Dose Reduction Strategies for Acute Abdominal and Pelvic CT. In: Patlas, M., Katz, D., Scaglione, M. (eds) MDCT and MR Imaging of Acute Abdomen. Springer, Cham. https://doi.org/10.1007/978-3-319-70778-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70778-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70777-8

  • Online ISBN: 978-3-319-70778-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics