Skip to main content

Pharmacokinetics and Pharmacodynamics of Chemotherapy Drugs in Neonates and Infants

  • Chapter
  • First Online:
Chemotherapy in Neonates and Infants

Abstract

To briefly recall, pharmacokinetics involves absorption of a drug, binding of the drug to plasma proteins, biotransformation of the drug, and its excretion. Basically, pharmacokinetics involves the way that the drug goes through after it enters the body, whereas pharmacodynamics involves what the drug does in the body, i.e., the mechanism of action of the drug [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schmidt CWP, Menezes FG. Drug therapy and interactions in pediatric oncology: a pocket guide. Switzerland: Springer; 2017.

    Book  Google Scholar 

  2. Lawrence CK, Smith PB. Dosing in neonates: special considerations in physiology and trial design. Pediatr Res. 2015;77:2–9.

    Article  Google Scholar 

  3. McLeod HL, Relling MV, Crom WR, et al. Disposition of antineoplastic drugs agents in the very young child. Br J Cancer Suppl. 1992;18:S23–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Milsap RL, Jusko WJ. Pharmacokinetics in the infant. Environ Health Perspect. 1994;102(11):107–10.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fernandez E, Perez R, Hernandez A, et al. Factors and mechanisms for pharmacokinetic differences between pediatric population and adults. Pharmaceutics. 2011;3(1):53–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stephenson T. How children’s responses to drugs differ from adults. Br J Clin Pharmacol. 2005;59(6):670–3.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Harvey RA, Mycek MJ. Farmacologia ilustrada. 5th ed. Porto Alegre: Artmed; 2013.

    Google Scholar 

  8. Piafsky KM. Disease-induced changes in the plasma binding of basic drugs. Clin Pharmacokinet. 1980;5(3):246–62.

    Article  CAS  PubMed  Google Scholar 

  9. De Almeida JRC. Farmacêuticos em Oncologia: uma nova realidade. 2nd ed. São Paulo: Atheneu; 2010.

    Google Scholar 

  10. Taketomo C, Hodding J, Kraus D. Pediatric & neonatal dosage handbook. 21st ed. Hudson: Lexicomp; 2014.

    Google Scholar 

  11. Gitzelmann-Cumarasamy N, Gitzelmann R, Wilson KJ, Kuenzle CC. Fetal and adult albumins are indistinguishable by immunological and physiochemical criteria. Proc Natl Acad Sci U S A. 1979;76(6):2960–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. McNamara PJ, Alcorn J. Protein binding predictions in infants. AAPS Pharm Sci. 2002;4(1):19–26.

    Article  Google Scholar 

  13. Amin SB. Effect of free fatty acids on bilirubin–albumin binding affinity and unbound bilirubin in premature infants. JPEN J Parenter Enteral Nutr. 2010;34(4):414–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Friis-Hansen BJ, Holiday M, Stapleton T, Wallace WM. Total body water in children. Pediatrics. 1951;7(3):321–7.

    CAS  PubMed  Google Scholar 

  15. Lodish H, Berk A, Zipursky SL, et al. Molecular cell biology. 4th ed. New York: W. H. Freeman; 2000.

    Google Scholar 

  16. Li Q, Shu Y. Role of solute carriers in response to anticancer drugs. Mol Cell Ther. 2014;2:15. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4452062.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lam J, Baello S, Iqbal M, et al. The ontogeny of P-glycoprotein in the developing human blood–brain barrier: implication for opioid toxicity in neonates. Pediatr Res. 2015;78:417–21.

    Article  CAS  PubMed  Google Scholar 

  18. Yanagida O, Kanai Y, Chairoungdua A, et al. Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta. 2001;1514(2):291–302.

    Article  CAS  PubMed  Google Scholar 

  19. Hahn D, Emoto C, Vinks AA, Fukuda T. Developmental changes in hepatic organic cation transporter OCT1 protein expression from neonates to children. Drug Metab Dispos. 2017;45(1):23–6.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Gow PJ, Ghabrial H, Smallwood RA, Morgan DJ, Ching MS. Neonatal hepatic drug elimination. Pharmacol Toxicol. 2001;88(1):3–15.

    Article  CAS  PubMed  Google Scholar 

  21. Polin RA, Abman SH, Rowitch D, Benitz WE. Fetal and neonatal physiology. 5th ed. Philadelphia: Elsevier; 2017.

    Google Scholar 

  22. Law V, Knox C, Djoumbou Y, et al. DrugBank 4.0: shedding new light on drug metabolism. https://www.drugbank.ca.

  23. Ligi I, Boubred F, Grandvuillemin I, Simeoni U. The neonatal kidney: implications for drug metabolism and elimination. Curr Drug Metab. 2013;14(2):174–7.

    CAS  PubMed  Google Scholar 

  24. Sulemanji M, Vakili K. Neonatal renal physiology. Semin Pediatr Surg. 2013;22(2013):195–8.

    Article  PubMed  Google Scholar 

  25. Boer DP, Rijke YB, Hop WC, et al. Reference values for serum creatinine in children younger than 1 year of age. Pediatr Nephrol. 2010;25(10):2107–13.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sato T, Takahashi N, Komatsu Y, et al. Urinary acidification in extremely low birth weight infants. Early Hum Dev. 2002;70(1-2):15–24.

    Article  CAS  PubMed  Google Scholar 

  27. Tayman C, Rayyan M, Allegaert K. Neonatal pharmacology: extensive interindividual variability despite limited size. J Pediatr Pharmacol Ther. 2011;16(3):170–84.

    PubMed  PubMed Central  Google Scholar 

  28. Brunton LL, Parker KL, Blumenthal DK, Bruxton ILO, editors. Goodman & Gilman: Manual de Farmacologia e Terapêutica. Porto Alegre: Artmed; 2010.

    Google Scholar 

  29. Kufe DW, Pollock RE, Weichselbaum RR, et al., editors. Holland-Frei cancer medicine. 6th ed. Hamilton: BC Decker; 2003.

    Google Scholar 

  30. Veal GJ, Errington J, Sastry J, et al. Adaptive dosing of anticancer drugs in neonates: facilitating evidence-based dosing regimens. Cancer Chemother Pharmacol. 2016;77:685–92. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819938.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Veal GJ, Errington J, Hayden J, et al. Carboplatin therapeutic monitoring in preterm and full-term neonates. Eur J Cancer. 2015;51(14):2022–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Penteado Schmidt, C.W. (2018). Pharmacokinetics and Pharmacodynamics of Chemotherapy Drugs in Neonates and Infants. In: Chemotherapy in Neonates and Infants. Springer, Cham. https://doi.org/10.1007/978-3-319-70591-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70591-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70590-3

  • Online ISBN: 978-3-319-70591-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics