Skip to main content

Materials

  • Chapter
  • First Online:
  • 939 Accesses

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSCOMPUTAT))

Abstract

High strength/density ratio and toughness, ease of manufacture, long term performance, joinability by riveting and welding, and recyclability, justify the long period of preeminence of aluminum as the main material for structures of aircraft, Merati [1]. Facing competition from composite fiber reinforced plastics, aluminum producers are trying to reduce weight and improve performance developing new alloys. In parallel, joining techniques as laser beam welding (LBW) or friction stir welding (FSW) originate integral structures, with manufacturing weight and part count advantages vis a vis traditional riveting. The dominance of Al was challenged with the Boeing 787 with increased use of titanium alloys and almost 50% by weight of aircraft structure constructed from composites, and by Airbus with even more 53% of structure composites weight in the A350 XWB.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Merati, Materials replacement for aging aircraft, in Corrosion Fatigue and Environmentally Assisted Cracking in Aging Military Vehicles, RTO AGARDograph AG-AVT-140, pp. 24.1–24.22 (2011)

    Google Scholar 

  2. F.C. Campbell, Structural composite materials. ASM Int. (2010)

    Google Scholar 

  3. J. Hinrichsen, C. Bautista, The challenge of reducing both airframe weight and manufacturing cost. Air Space Europe 3(3/4), 119–121 (2001)

    Article  Google Scholar 

  4. M. Weiland, Low cost manufacturing and assembly of composite and hybrid structures. Skyline 18, 9 (2016)

    Google Scholar 

  5. S.M.O. Tavares, P.P. Camanho, P.M.S.T. de Castro, Materials selection for airframes: assessment based on the specific fatigue behavior, in Structural Connections for Lightweight Metallic Structures eds. by P. Moreira, L. da Silva, P. de Castro (Springer, 2012), pp. 239–261

    Google Scholar 

  6. B. Smith, The Boeing 777. Advanc. Mater. Proc. 41–44 (2003)

    Google Scholar 

  7. J.C. Williams, E.A. Starke Jr., Progress in structural materials for aerospace systems. Acta Materialia 51, 5775–5799 (2003)

    Article  Google Scholar 

  8. UK Ministry of Defence–MoD, Defence standard 00-970 part 1 section 3, leaflet 34 ’fatigue–material selection’ issue 5 (2007)

    Google Scholar 

  9. A. Tzamtzis, A.T. Kermanidis, Improvement of fatigue crack growth resistance by controlled overaging in 2024–T3 aluminium alloy. Fatigue Fract. Eng. Mater. Struct. 37, 751–763 (2014)

    Article  Google Scholar 

  10. Y. Jin, P. Cai, Q.B. Tian, C.Y. Liang, D.J. Ke, G. Wang, T. Zhai, An experimental methodology for quantitative characterization of multi-site fatigue crack nucleation in high-strength al alloys. Fatigue Fract. Eng. Mater. Struct. 39, 696–711 (2016)

    Article  Google Scholar 

  11. J.C. Newman Jr., K.F. Walker, M. Liao, Fatigue crack growth in 7249–T76511 aluminium alloy under constant amplitude and spectrum loading. Fatigue Fract. Eng. Mater. Struct. 38, 528–539 (2015)

    Article  Google Scholar 

  12. United States Air Force-USAF, Structures Bulletin EZ-SB-13-001 (Product form, and Process Substitution Guidelines for Metallic Components, Material, 2013)

    Google Scholar 

  13. J. Ramsden, The geriatric jet problem. Flight Int. 112, 1201–1204 (1977)

    Google Scholar 

  14. UK Department of Trade Accidents Investigation Branch, Boeing 707 321C G-BEBP: Report on the Accident Near Lusaka International Airport, Zambia, on 14 May 1977 (1979)

    Google Scholar 

  15. E.A. Starke Jr., J.T. Staley, Application of modern aluminum alloys to aircraft. Prog. Aerospace Sci. 32, 131–172 (1996)

    Article  Google Scholar 

  16. N.E. Prasad, A. Gokhale, R.J.H. Wanhill, Aluminum-Lithium Alloys: Processing, Properties, and Applications (Elsevier, Butterworth-Heinemann, Oxford, UK, 2014)

    Google Scholar 

  17. P.M.G.P. Moreira, A.M.P. de Jesus, M.A.V. de Figueiredo, M. Windisch, G. Sinnema, P.M.S.T. de Castro, Fatigue and fracture behaviour of friction stir welded Aluminium-Lithium 2195. Theor. Appl. Fract. Mech. 60, 1–9 (2012)

    Article  Google Scholar 

  18. S.M.O. Tavares, J.F. dos Santos, P.M.S.T. de Castro, Friction stir welded joints of Al-Li alloys for aeronautical applications: butt-joints and tailor welded blanks. Theor. Appl. Fract. Mech. 65, 8–13 (2013)

    Article  Google Scholar 

  19. O. Hatamleh, A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints. Int. J. Fatigue 31, 974–988 (2009)

    Article  Google Scholar 

  20. M. Papadopoulos, S. Tavares, M. Pacchione, S. Pantelakis, Mechanical behaviour of AA 2024 friction stir overlap welds. Int. J. Struct. Integr. 4(1), 108–120 (2013)

    Article  Google Scholar 

  21. F.F. Duarte, V.I.V. Infante, P.M.G. Moreira, M. de Freitas, P.M.S.T. de Castro, The effect of welding direction in the fatigue life of aluminium FS welded lap joints. Int. J. Struct. Integr. 6(6), 775–786 (2015)

    Article  Google Scholar 

  22. V. Infante, D.F.O. Braga, F. Duarte, P.M.G. Moreira, M. de Freitas, P.M.S.T. de Castro, Study of the fatigue behaviour of dissimilar aluminium joints produced by friction stir welding. Int. J. Fatigue 82, 310–316 (2016)

    Article  Google Scholar 

  23. R.R. Boyer, Attributes, characteristics, and applications of titanium and its alloys. JOM 62(5), 21–24 (2010)

    Article  Google Scholar 

  24. F. Berto, A. Campagnolo, P. Lazzarin, Fatigue strength of severely notched specimens made of Ti-6Al-4V under multiaxial loading. Fatigue Fract. Eng. Mater. Struct. 38, 503–517 (2015)

    Article  Google Scholar 

  25. National Institute of Standards Technology–NIST, Measurement Science Roadmap for Metal-Based Additive Manufacturing–Workshop Summary Report, May 2013

    Google Scholar 

  26. J. Kabbara, M. Gorelik, FAA perspectives on additive manufacturing, in On-Demand Mobility and Follow Up Workshop, (Lockheed Martin Global Vision Center, Arlington, Virginia, USA, 8–9 Mar 2016)

    Google Scholar 

  27. C. Veiga, J.P. Davim, A.J.R. Loureiro, Properties and applications of titanium alloys: a brief review. Rev. Advanc. Mater. Sci. 32(2), 133–148 (2012)

    Google Scholar 

  28. P. Edwards, M. Ramulu, Fracture toughness and fatigue crack growth in Ti-6Al-4V friction stir welds. Fatigue Fract. Eng. Mater. Struct. 38, 970–982 (2015)

    Article  Google Scholar 

  29. P. Edwards, M. Ramulu, Effect of build direction on the fracture toughness and fatigue crack growth in selective laser melted Ti-6Al-4V. Fatigue Fract. Eng. Mater. Struct. 38, 1228–1236 (2015)

    Article  Google Scholar 

  30. P. Sander, Printing the future with revolutionary additive layer manufacturing. Airbus Fast Mag. 55, 4–11 (2015)

    Google Scholar 

  31. G. Marsh, Metals shed weight to compete. Mater. Today 4(1), 25–29 (2001)

    Article  Google Scholar 

  32. J. Pleitner, Airbus customers benefit from fiber metal laminates—application of smart structures in the aircraft industry, in ILA Berlin Air Show, (Berlin, Germany, 2006)

    Google Scholar 

  33. R. Thévenin, Airbus composite structures—perspectives on safe maintenance practice, in Commercial Aircraft Composite Repair Committee (CACRC) and related FAA/EASA/Industry Workshop on Composite Damage Tolerance and Maintenance, (Amsterdam, Netherlands, 7–11 May 2007

    Google Scholar 

  34. O.H.P.M. Fontes, F.L. Bastian, E.M. Castrodeza, Crack growth resistance curves of glare 3 5/4 0.3 fiber-metal laminates at low temperature. Fatigue Fract. Eng. Mater. Struct. 38, 268–275 (2015)

    Article  Google Scholar 

  35. Y. Huang, J.Z. Liu, X. Huang, J.Z. Zhang, G.Q. Yue, Fatigue crack growth and delamination behaviours of advanced Al-Li alloy laminate under single tensile overload. Fatigue Fract. Eng. Mater. Struct. 39, 47–56 (2016)

    Article  Google Scholar 

  36. J. Hale, Boeing 787 from the ground up, Boeing Aero magazine, vol. 24, quarter 04, pp. 15–23 (2006)

    Google Scholar 

  37. G. Ferrer, C. Chamfroy, S.S. Dupouy, A350 XWB composite repairs: analysis and repair of in-service damage to composite structure. Airbus Fast Mag. 57, 16–21 (2016)

    Google Scholar 

  38. A. Warren, R. Heslehurst, E. Wilson, Composites and MIL-STD-1530C. Int. J. Struct. Integr. 5(1), 2–16 (2014)

    Article  Google Scholar 

  39. M. Price, A. Murphy, J. Butterfield, R. McCool, R. Fleck, Integrating digital manufacturing, processing, and design of composite structures, in 10th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, (Fort Worth. Texas, USA 13–15, 9068 (2010)

    Google Scholar 

  40. W. Sippel, M. Gruber, Aviation Rulemaking Advisory Committee (ARAC) tasking on 25.571, in FAA/Bombardier/TCCA/EASA/Industry Composite Transport Damage Tolerance and Maintenance Workshop, (Dorval, Montreal, Canada, 15–17 Sept 2015)

    Google Scholar 

  41. Federal Register, Notice of new task assignment for the Aviation Rulemaking Advisory, pp. 4029–4032 (2015)

    Google Scholar 

  42. Federal Aviation Administration–FAA, Advisory circular AC No. 20-107B, Composite aircraft structure (2009)

    Google Scholar 

  43. European Aviation Safety Agency–EASA, Composite aircraft structure, AMC 20–29 (2010)

    Google Scholar 

  44. W. Seneviratne, Fatigue life determination of a damage-tolerant composite airframe. Ph.D. thesis, Wichita State University (2008)

    Google Scholar 

  45. Federal Aviation Administration–FAA, Advisory circular ac no. 25.571-1d, damage tolerance and fatigue evaluation of structure (2011)

    Google Scholar 

  46. A. Fawcett, Composite structure fatigue and damage tolerance experience, in FAA/Bombardier/TCCA/EASA/Industry Composite Transport Damage Tolerance and Maintenance Workshop, Dorval, Montreal, Canada, (Dorval, Montreal, Canada, 15–17 Sept 2015)

    Google Scholar 

  47. J. Tomblin, W. Seneviratne, Determining the fatigue life of composite aircraft structures using life and load-enhancement factors, Report DOT/FAA/AR-10/6, Federal Aviation Administration (2011)

    Google Scholar 

  48. J. Rouchon, Fatigue and Damage Tolerance Evaluation Of Structures: The Composite Materials Response, Report NLR-TP-2009-221 (NLR, Netherlands Aerospace Centre, 2009)

    Google Scholar 

  49. J.W. Giancaspro, W. Taam, Computational Method for Load Enhancement Factors, July 31 2012. US Patent 8,234,093

    Google Scholar 

  50. W. Seneviratne, J. Tomblin, Load-life-damage hybrid approach for substantiation of composite aircraft structures, FAA JAMS, Technical Review Meeting (Seattle. USA, May, WA, 2010)

    Google Scholar 

  51. L. Ilcewicz, Composite damage tolerance and maintenance safety issues, in FAA/EASA/Industry Workshop on Composite Damage Tolerance & Maintenance, (Amsterdam, Netherlands, 9–11 May 2007)

    Google Scholar 

  52. V. Faivre, E. Morteau, Damage tolerant composite fuselage sizing: Characterisation of accidental damage threat. Airbus Fast Mag. 48, 10–16 (2011)

    Google Scholar 

  53. L. Ilcewicz, High energy wide area blunt impact HEWABI as related to safety and certification, in FAA/Bombardier/TCCA/EASA/Industry Composite Transport Damage Tolerance and Maintenance Workshop, (Dorval (Canada, Sept, Montreal, 2015), pp. 15–17

    Google Scholar 

  54. L. Ilcewicz, L. Cheng, FAA composite plan. Aviation safety (AVS) initiatives of interest, in Composite Safety Meeting & Workshop, (Wellington, NZ, 1–4 Mar 2016)

    Google Scholar 

  55. P.J. Withers, Presentation to the Workshop on Materials State Awareness, August 6–7, 2014, in rapporteur, Applying Materials State Awareness to Condition-Based Maintenance and System Life Cycle Management: Summary of a Workshop, ed. by R.J. Katt The National Academies Press (2016)

    Google Scholar 

  56. D. Westlund, The FAA: Keeping up with aerocomposites evolution, CompositesWorld– CW Magazine (2016)

    Google Scholar 

  57. L. Ratier, C. Fualdes, Airbus composite fatigue and damage tolerance certification experiences, in FAA/ Bombardier/TCCA/EASA/Industry Composite Transport Damage Tolerance and Maintenance Workshop (Montreal, Canada, Sept, Dorval, 2015), pp. 15–17

    Google Scholar 

  58. R.S. Whitehead, H.P. Kan, R. Cordero, E.S. Saether, Certification testing methodology for composite structure, DOT/FAA/CT-86/39, vols I and II. Federal Aviation Administration (1986)

    Google Scholar 

  59. W. Seneviratne, J. Tomblin, Certification of composite-metal hybrid structures using a single full-scale test article, in 12th International Conference on Durability of Composite Systems—DURACOSYS, (Arlington, TX, USA, 12–15 June 2016)

    Google Scholar 

  60. A. Gilioli, C. Sbarufatti, A. Manes, M. Giglio, Compression after impact test (CAI) on NOMEX honeycomb sandwich panels with thin aluminum skins. Compos. Part B Eng. 67, 313–325 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio M. O. Tavares .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tavares, S.M.O., de Castro, P.M.S.T. (2019). Materials. In: Damage Tolerance of Metallic Aircraft Structures. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-70190-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70190-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70189-9

  • Online ISBN: 978-3-319-70190-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics