Skip to main content

Fatigue Crack Growth

  • Chapter
  • First Online:
Damage Tolerance of Metallic Aircraft Structures

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSCOMPUTAT))

  • 877 Accesses

Abstract

Readers of this book will have previous knowledge of fracture mechanics, and as such no effort will be made to delve here into fundamental concepts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    English translation in 2011: D. Gross, T. Seelig, ‘Fracture Mechanics: with an Introduction to Micromechanics’, Springer, 2011.

  2. 2.

    English translation in 2016: H. A. Richard, M. Sander, ‘Fatigue Crack Growth: Detect—Assess—Avoid’, Springer, 2016.

  3. 3.

    English version in 2016: J. T. P. de Castro, M. A. Meggiolaro, ‘Fatigue Design Techniques’, 3 vols., CreateSpace, 2016.

References

  1. C. Dharan, B. Kang, I. Finnie, Finnie’s Notes on Fracture Mechanics, (Springer Science+Business Media, 2016)

    Google Scholar 

  2. A.T. Zehnder, Fracture Mechanics (Springer Science+Business Media, 2012 )

    Google Scholar 

  3. T.L. Anderson, Fracture Mechanics: Fundamentals and Applications, 4th edn. (CRC Press, 2017)

    Google Scholar 

  4. E.E. Gdoutos, Fracture Mechanics: An Introduction (Springer, 2005)

    Google Scholar 

  5. P.P. Milella, Fatigue and Corrosion in Metals (Springer, 2013)

    Google Scholar 

  6. D. Gross, T. Seelig, Bruchmechanik: mit einer Einführung in die Mikromechanik, 6th edn. (Springer-Verlag, 2016)

    Google Scholar 

  7. H.A. Richard, M. Sander, Ermüdungsrisse: Erkennen, sicher beurteilen, vermeiden (Springer, 2009)

    Google Scholar 

  8. J.T.P. de Castro, M.A. Meggiolaro, Fadiga: Técnicas e Práticas de Dimensionamento Estrutural sob Cargas Reais de Serviço, Volume I - Iniciação de Trincas; Volume II - Propagação de Trincas, Efeitos Térmicos e Estocásticos (CreateSpace Independent Publishing Platform, 2009)

    Google Scholar 

  9. A. Arteiro, P.M.S.T. de Castro, Mecânica da Fratura e Fadiga: Exemplos de Cálculo e Aplicação (FEUP edições, 2014)

    Google Scholar 

  10. J.W. Bristow, P.E. Irving, Safety factors in civil aircraft design requirements. Eng. Fail. Anal. 14, 459–470 (2007)

    Article  Google Scholar 

  11. S.M.O. Tavares, P.M.S.T. de Castro, Fatigue crack growth of aircraft structures: sensitivity to materials parameters. Int. J. Terraspace Sci. Eng. 6(2), 71–75 (2014)

    Google Scholar 

  12. R. Jones, Fatigue crack growth and damage tolerance. Fatigue Fract. Eng. Mater. Struct. 37(5), 463–483 (2014)

    Article  Google Scholar 

  13. J. Ge, Y. Sun, S. Zhou, L. Zhang, Y. Zhang, Q. Zhang, A hybrid frequency-time domain method for predicting multiaxial fatigue life of 7075–T6 aluminium alloy under random loading. Fatigue Fract. Eng. Mater. Struct. 38, 247–256 (2015)

    Article  Google Scholar 

  14. C.V. Haden, D.G. Harlow, Statistical characterization of the geometric properties of particles in 7075–T6 aluminium alloy. Fatigue Fract. Eng. Mater. Struct. 37, 1281–1290 (2014)

    Article  Google Scholar 

  15. P. Heuler, H. Klätschke, Generation and use of standardised load spectra and load-time histories. Int. J. Fatigue 27(8), 974–990 (2005)

    Article  Google Scholar 

  16. Fatigue technology—FTI, Tooling Catalog. Revision 7 (Seattle, WA, USA, 2014)

    Google Scholar 

  17. P.F.P. de Matos, P.M.G.P. Moreira, P.P. Camanho, P.M.S.T. de Castro, Numerical simulation of cold working of rivet holes. Finite Elem. Anal. Des. 41(9–10), 989–1007 (2005)

    Article  Google Scholar 

  18. Y. Fu, E. Ge, H. Su, J. Xu, R. Li, Cold expansion technology of connection holes in aircraft structures: a review and prospect. Chin. J. Aeronaut. 28(4), 961–973 (2015)

    Article  Google Scholar 

  19. D.L. Andrew, P.N. Clark, D. Hoeppner, Investigation of cold expansion of short edge margin holes with pre-existing cracks in 2024–T351 aluminium alloy. Fatigue Fract. Eng. Mater. Struct. 37, 406–416 (2014)

    Article  Google Scholar 

  20. G.M. Vallières, D.L. DuQuesnay, Fatigue life of cold-expanded fastener holes with interference-fit fasteners at short edge margins. Fatigue Fract. Eng. Mater. Struct. 38(2015), 574–582 (2015)

    Article  Google Scholar 

  21. A. Ali, X. An, C.A. Rodopoulos, M.W. Brown, P. Ohara, A. Levers, S. Gardiner, The effect of controlled shot peening on the fatigue behaviour of 2024–T3 aluminium friction stir welds. Int. J. Fatigue 29(8), 1531–1545 (2007)

    Article  Google Scholar 

  22. G. Ivetic, (guest-editor), Special issue: advances in laser shock peening theory and practice around the world—present solutions and future challenges. Int. J. Struct. Integr. 2(1) (2011)

    Google Scholar 

  23. C.A. Rodopoulos, J. Bridges, The use of ultrasonic impact treatment to extend the fatigue life of integral aerospace structures, in Engineering Against Fracture: Proceedings of the 1st Conference, ed. by S. Pantelakis, C. Rodopoulos (Springer, 2009), pp. 421–430

    Google Scholar 

  24. R. Jones, N. Matthews, C.A. Rodopoulos, K. Cairns, S. Pitt, On the use of supersonic particle deposition to restore the structural integrity of damaged aircraft structures. Int. J. Fatigue 33, 1257–1267 (2011)

    Article  Google Scholar 

  25. R. Jones, L. Molent, S. Barter, N. Matthews, D. Tamboli, Supersonic particle deposition as a means for enhancing the structural integrity of aircraft structures. Int. J. Fatigue 68, 260–268 (2014)

    Article  Google Scholar 

  26. N. Matthews, R. Jones, G.C. Sih, Application of supersonic particle deposition to enhance the structural integrity of aircraft structures. Sci. China: Phys. Mech. Astron. 57(1), 12–18 (2014)

    Google Scholar 

  27. Congressional Record-House, Conference report on H.R. 4546, Bob Stump National Defense Authorization Act for Fiscal Year 2003 (see: Sec. 1067. Prevention and mitigation of corrosion of military equipment and infrastructure.) (2002) pp. H8092–H8535

    Google Scholar 

  28. US Department of Defense—DoD, Corrosion prevention and mitigation strategic plan. September 2011

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sérgio M. O. Tavares .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 The Author(s)

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tavares, S.M.O., de Castro, P.M.S.T. (2019). Fatigue Crack Growth. In: Damage Tolerance of Metallic Aircraft Structures. SpringerBriefs in Applied Sciences and Technology(). Springer, Cham. https://doi.org/10.1007/978-3-319-70190-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70190-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70189-9

  • Online ISBN: 978-3-319-70190-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics