Skip to main content

Genomics and Genetic Manipulation of Protozoan Parasites Affecting Farm Animals

  • Chapter
  • First Online:
Parasitic Protozoa of Farm Animals and Pets

Abstract

In this chapter we present a brief but state-of-the-art account of the genomics and current gene manipulation methods that can be used to improve our understanding of the genetics and the biology of an arbitrary group of 17 protozoan parasites responsible for diseases that affect animals worldwide, including babesiosis, toxoplasmosis, theileriosis, cryptosporidiosis, eimeriosis, trypanosomiasis, and trichomoniasis. Complete genomes are available for all parasites discussed, except for Besnoitia, an apicomplexan parasite responsible for dermatitis and other disorders with high infection rates, but low mortality. Dramatic differences in genome sizes are evident among the group of parasites under study, consistent with the distinct dependency of parasitic lifestyle for each organism. In addition, linear regression analysis correlating the ratios of the number of genes per genome and genome size among all the selected protozoan parasites suggests a strong association between these two parameters, in alignment with the notion that smaller protozoan genomes are generally more compact than larger genomes. A brief description of the methods for genome manipulations, including transient and stable transfections and gene editing methods, is provided. These methods, required to understand gene function and for improving control measures, have been successfully developed so far in most parasites selected. Rapid progress of genomic and gene manipulation techniques will likely result in the constant emergence of novel integrated methods for the interrogation and modification of genomes, leading to our better understanding of parasite lifestyle and, ultimately, to the rational design of improved methods for the control of animal infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aarthi S, Raj GD, Raman M, Blake D, Subramaniam C, Tomley F. Expressed sequence tags from Eimeria brunetti—preliminary analysis and functional annotation. Parasitol Res. 2011;108(4):1059–62.

    Article  CAS  PubMed  Google Scholar 

  • AbouLaila M, Yokoyama N, Igarashi I. RNA interference (rnai) for some genes from Babesia bovis. RJAB. 2016;2:81–92. ISSN.2356:9433.

    Google Scholar 

  • Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, et al. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science. 2004;304(5669):441–5.

    Google Scholar 

  • Adamson R, Lyons K, Sharrard M, Kinnaird J, Swan D, Graham S, et al. Transient transfection of Theileria annulata. Mol Biochem Parasitol. 2001;114(1):53–61.

    Article  CAS  PubMed  Google Scholar 

  • Agüero F, Abdellah KB, Tekiel V, Sánchez DO, González A. Generation and analysis of expressed sequence tags from Trypanosoma cruzi trypomastigote and amastigote cDNA libraries. Mol Biochem Parasitol. 2004;136(2):221–5.

    Article  PubMed  CAS  Google Scholar 

  • Al-Khedery B, Allred DR. Antigenic variation in Babesia bovis occurs through segmental gene conversion of the ves multigene family, within a bidirectional locus of active transcription. Mol Microbiol. 2006;59(2):402–14.

    Article  CAS  PubMed  Google Scholar 

  • Archer SK, Inchaustegui D, Queiroz R, Clayton C. The cell cycle regulated transcriptome of Trypanosoma brucei. PLoS One. 2011;6(3):e18425.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arjmand M, Madrakian A, Khalili G, Najafi A, Zamani Z, Akbari Z. Metabolomics-based study of logarithmic and stationary phases of promastigotes in Leishmania major by 1H NMR spectroscopy. Iran Biomed J. 2016;20(2):77.

    PubMed  PubMed Central  Google Scholar 

  • Asada M, Tanaka M, Goto Y, Yokoyama N, Inoue N, Kawazu S-i. Stable expression of green fluorescent protein and targeted disruption of thioredoxin peroxidase-1 gene in Babesia bovis with the WR99210/dhfr selection system. Mol Biochem Parasitol. 2012a;181(2):162–70.

    Article  CAS  PubMed  Google Scholar 

  • Asada M, Goto Y, Yahata K, Yokoyama N, Kawai S, Inoue N, et al. Gliding motility of Babesia bovis merozoites visualized by time-lapse video microscopy. PLoS One. 2012b;7(4):e35227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asada M, Yahata K, Hakimi H, Yokoyama N, Igarashi I, Kaneko O, et al. Transfection of Babesia bovis by double selection with WR99210 and blasticidin-S and its application for functional analysis of thioredoxin peroxidase-1. PLoS One. 2015;10(5):e0125993.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Atwood J, Weatherly D, Minning T, Bundy B, Cavola C, Opperdoes F, et al. The Trypanosoma cruzi proteome. Science. 2005;309(5733):473–6.

    Article  CAS  PubMed  Google Scholar 

  • Barrett MP, Bakker BM, Breitling R. Metabolomic systems biology of trypanosomes. Parasitology. 2010;137(09):1285–90.

    Article  CAS  PubMed  Google Scholar 

  • Bellofatto V, Cross GA. Expression of a bacterial gene in a trypanosomatid protozoan. Science. 1989;244(4909):1167–70.

    Article  CAS  PubMed  Google Scholar 

  • Benchimol M, de Almeida LGP, Vasconcelos AT, et al. Draft genome sequence of Tritrichomonas foetus strain K. Genome Announc. 2017;5(16):e00195-17. https://doi.org/10.1128/genomeA.00195-17.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bishop R, Shah T, Pelle R, Hoyle D, Pearson T, Haines L, et al. Analysis of the transcriptome of the protozoan Theileria parva using MPSS reveals that the majority of genes are transcriptionally active in the schizont stage. Nucleic Acids Res. 2005;33(17):5503–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blake DP. Eimeria genomics: where are we now and where are we going? Vet Parasitol. 2015;212(1):68–74.

    Article  CAS  PubMed  Google Scholar 

  • Bouzid M, Hunter PR, Chalmers RM, Tyler KM. Cryptosporidium pathogenicity and virulence. Clin Microbiol Rev. 2013;26(1):115–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braun L, Cannella D, Ortet P, Barakat M, Sautel CF, Kieffer S, et al. A complex small RNA repertoire is generated by a plant/fungal-like machinery and effected by a metazoan-like Argonaute in the single-cell human parasite Toxoplasma gondii. PLoS Pathog. 2010;6(5):e1000920.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bruno S, Duschak VG, Ledesma B, Ferella M, Andersson B, Guarnera EA, et al. Identification and characterization of serine proteinase inhibitors from Neospora caninum. Mol Biochem Parasitol. 2004;136(1):101–7.

    Article  CAS  PubMed  Google Scholar 

  • Cantacessi C, Dantas-Torres F, Nolan MJ, Otranto D. The past, present, and future of Leishmania genomics and transcriptomics. Trends Parasitol. 2015;31(3):100–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, et al. Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science. 2007;315(5809):207–12.

    Article  PubMed  PubMed Central  Google Scholar 

  • Caumo KS, Monteiro KM, Ott TR, Maschio VJ, Wagner G, Ferreira HB, et al. Proteomic profiling of the infective trophozoite stage of Acanthamoeba polyphaga. Acta Trop. 2014;140:166–72.

    Article  CAS  PubMed  Google Scholar 

  • Cerqueira GC, DaRocha WD, Campos PC, Zouain CS, Teixeira SM. Analysis of expressed sequence tags from Trypanosoma cruzi amastigotes. Mem Inst Oswaldo Cruz. 2005;100(4):385–9.

    Article  CAS  PubMed  Google Scholar 

  • Cleary MD, Singh U, Blader IJ, Brewer JL, Boothroyd JC. Toxoplasma gondii asexual development: identification of developmentally regulated genes and distinct patterns of gene expression. Eukaryot Cell. 2002;1(3):329–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creek DJ, Nijagal B, Kim D-H, Rojas F, Matthews KR, Barrett MP. Metabolomics guides rational development of a simplified cell culture medium for drug screening against Trypanosoma brucei. Antimicrob Agents Chemother. 2013;57(6):2768–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Creek DJ, Mazet M, Achcar F, Anderson J, Kim D-H, Kamour R, et al. Probing the metabolic network in bloodstream-form Trypanosoma brucei using untargeted metabolomics with stable isotope labelled glucose. PLoS Pathog. 2015;11(3):e1004689.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cruz A, Beverley SM. Gene replacement in parasitic protozoa. Nature. 1990;348(6297):171.

    Article  CAS  PubMed  Google Scholar 

  • Cui Y, Yu L. Application of the CRISPR/Cas9 gene editing technique to research on functional genomes of parasites. Parasitol Int. 2016;65(6):641–4.

    Article  CAS  PubMed  Google Scholar 

  • De Goeyse I, Jansen F, Madder M, Hayashida K, Berkvens D, Dobbelaere D, et al. Transfection of live, tick derived sporozoites of the protozoan Apicomplexan parasite Theileria parva. Vet Parasitol. 2015;208(3):238–41.

    Article  PubMed  Google Scholar 

  • de Jesus JB, Mesquita-Rodrigues C, Cuervo P. Proteomics advances in the study of Leishmania parasites and leishmaniasis. Proteins and proteomics of Leishmania and Trypanosoma. Berlin: Springer; 2014. p. 323–49.

    Book  Google Scholar 

  • de Koning-Ward TF, Janse CJ, Waters AP. The development of genetic tools for dissecting the biology of malaria parasites. Annu Rev Microbiol. 2000;54(1):157–85.

    Article  PubMed  Google Scholar 

  • de Miguel N, Lustig G, Twu O, Chattopadhyay A, Wohlschlegel JA, Johnson PJ. Proteome analysis of the surface of Trichomonas vaginalis reveals novel proteins and strain-dependent differential expression. Mol Cell Proteomics. 2010;9(7):1554–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • de Vries E, Corton C, Harris B, Cornelissen AW, Berriman M. Expressed sequence tag (EST) analysis of the erythrocytic stages of Babesia bovis. Vet Parasitol. 2006;138(1):61–74.

    Article  PubMed  CAS  Google Scholar 

  • Dillon LA, Okrah K, Hughitt VK, Suresh R, Li Y, Fernandes MC, et al. Transcriptomic profiling of gene expression and RNA processing during Leishmania major differentiation. Nucleic Acids Res. 2015;43:6799–813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • dos Santos ADCM, Kalume DE, Camargo R, Gómez-Mendoza DP, Correa JR, Charneau S, et al. Unveiling the Trypanosoma cruzi nuclear proteome. PLoS One. 2015;10(9):e0138667.

    Article  CAS  Google Scholar 

  • Drummelsmith J, Brochu V, Girard I, Messier N, Ouellette M. Proteome mapping of the protozoan parasite Leishmania and application to the study of drug targets and resistance mechanisms. Mol Cell Proteomics. 2003;2(3):146–55.

    Article  CAS  PubMed  Google Scholar 

  • El-Sayed NM, Alarcon CM, Beck JC, Sheffield VC, Donelson JE. cDNA expressed sequence tags of Trypanosoma brucei rhodesiense provide new insights into the biology of the parasite. Mol Biochem Parasitol. 1995;73(1–2):75–90.

    Article  CAS  PubMed  Google Scholar 

  • Elsheikha HM, Alkurashi M, Kong K, Zhu X-Q. Metabolic footprinting of extracellular metabolites of brain endothelium infected with Neospora caninum in vitro. BMC Res Notes. 2014;7(1):406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gaji RY, Zhang D, Breathnach CC, Vaishnava S, Striepen B, Howe DK. Molecular genetic transfection of the coccidian parasite Sarcocystis neurona. Mol Biochem Parasitol. 2006;150(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  • Gawryluk RM, Chisholm KA, Pinto DM, Gray MW. Compositional complexity of the mitochondrial proteome of a unicellular eukaryote (Acanthamoeba castellanii, supergroup Amoebozoa) rivals that of animals, fungi, and plants. J Proteome. 2014;109:400–16.

    Article  CAS  Google Scholar 

  • Gentil LG, Lasakosvitsch F, Silveira JFD, Santos MRMD, Barbiéri CL. Analysis and chromosomal mapping of Leishmania (Leishmania) amazonensis amastigote expressed sequence tags. Mem Inst Oswaldo Cruz. 2007;102(6):707–11.

    Article  CAS  PubMed  Google Scholar 

  • Goonewardene R, Daily J, Kaslow D, Sullivan TJ, Duffy P, Carter R, et al. Transfection of the malaria parasite and expression of firefly luciferase. Proc Natl Acad Sci. 1993;90(11):5234–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould SB, Woehle C, Kusdian G, Landan G, Tachezy J, Zimorski V, et al. Deep sequencing of Trichomonas vaginalis during the early infection of vaginal epithelial cells and amoeboid transition. Int J Parasitol. 2013;43(9):707–19.

    Article  CAS  PubMed  Google Scholar 

  • Greif G, De Leon MP, Lamolle G, Rodriguez M, Piñeyro D, Tavares-Marques LM, et al. Transcriptome analysis of the bloodstream stage from the parasite Trypanosoma vivax. BMC Genomics. 2013;14(1):149.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hayashida K, Hara Y, Abe T, Yamasaki C, Toyoda A, Kosuge T, et al. Comparative genome analysis of three eukaryotic parasites with differing abilities to transform leukocytes reveals key mediators of Theileria-induced leukocyte transformation. MBio. 2012;3:e00204-212. https://doi.org/10.1128/mBio.00204-12. PubMed: 22951932. 2012.

    Article  CAS  Google Scholar 

  • Howe D. Initiation of a Sarcocystis neurona expressed sequence tag (EST) sequencing project: a preliminary report. Vet Parasitol. 2001;95(2):233–9.

    Article  CAS  PubMed  Google Scholar 

  • Howe DK, Gaji RY, Mroz-Barrett M, Gubbels M-J, Striepen B, Stamper S. Sarcocystis neurona merozoites express a family of immunogenic surface antigens that are orthologues of the Toxoplasma gondii surface antigens (SAGs) and SAG-related sequences. Infect Immun. 2005;73(2):1023–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang K-Y, Chien K-Y, Lin Y-C, Hsu W-M, Fong I-K, Huang P-J, et al. A proteome reference map of Trichomonas vaginalis. Parasitol Res. 2009;104(4):927.

    Article  PubMed  Google Scholar 

  • Huang K-Y, Huang P-J, F-M K, Lin R, Alderete JF, Tang P. Comparative transcriptomic and proteomic analyses of Trichomonas vaginalis following adherence to fibronectin. Infect Immun. 2012;80(11):3900–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hublin JSN, Ryan U, Trengove R, Maker G. Metabolomic profiling of faecal extracts from Cryptosporidium parvum infection in experimental mouse models. PLoS One. 2013;8(10):e77803.

    Article  CAS  Google Scholar 

  • Huynh M-H, Carruthers VB. Tagging of endogenous genes in a Toxoplasma gondii strain lacking Ku80. Eukaryot Cell. 2009;8(4):530–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang L-L, Huang B, Han H-Y, Zhao Q, Dong H, Chen Z. Comparison of the proteome of the sporutated oocysts of Eimeria tenella diclazuril sensitive strain with diclazuril resistant strain. Chin J Biotechnol. 2005;21(3):435–9.

    CAS  Google Scholar 

  • Johnson WC, Taus NS, Reif KE, Bohaliga GA, Kappmeyer LS, Ueti MW. Analysis of stage specific protein expression during Babesia bovis development within female Rhipicephalus microplus. J Proteome Res. 2017. https://doi.org/10.1021/acs.jproteome.6b00947.

  • Kepczynski M, Róg T. Functionalized lipids and surfactants for specific applications. Biochim Biophys Acta Biomembr. 2016;1858(10):2362–79.

    Article  CAS  Google Scholar 

  • Kim K, Weiss LM. Toxoplasma gondii: the model apicomplexan. Int J Parasitol Parasites. 2004;34(3):423–32.

    Article  CAS  Google Scholar 

  • Kim K, Soldati D, Boothroyd JC. Gene replacement in Toxoplasma gondii with chloramphenicol acetyltransferase as selectable marker. Science. 1993;262:911.

    Article  CAS  PubMed  Google Scholar 

  • Kishima M, Dolan T, Njamunggeh R, Nkonge C, Spooner P. Humoral immune responses to Theileria parva in cattle as measured by two-dimensional western blotting. Parasitol Res. 1995;81(4):334–42.

    Article  CAS  PubMed  Google Scholar 

  • Kolev NG, Franklin JB, Carmi S, Shi H, Michaeli S, Tschudi C. The transcriptome of the human pathogen Trypanosoma brucei at single-nucleotide resolution. PLoS Pathog. 2010;6(9):e1001090.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kolev NG, Tschudi C, Ullu E. RNA interference in protozoan parasites: achievements and challenges. Eukaryot Cell. 2011;10(9):1156–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong H-H, Hwang M-Y, Kim H-K, Chung D-I. Expressed sequence tags (ESTs) analysis of Acanthamoeba healyi. Korean J Parasitol. 2001;39(2):151–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovarova J. Unravelling metabolism of Leishmania by metabolomics: University of Glasgow; 2016.

    Google Scholar 

  • Kumar A, Misra P, Sisodia B, Shasany AK, Sundar S, Dube A. Mass spectrometry-based proteomic analysis of Leishmania donovani soluble proteins in Indian clinical isolate. Pathog Dis. 2014;70(1):84–7.

    Article  CAS  PubMed  Google Scholar 

  • Laban A, Wirth DF. Transfection of Leishmania enriettii and expression of chloramphenicol acetyltransferase gene. Proc Natl Acad Sci. 1989;86(23):9119–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal K, Bromley E, Oakes R, Prieto JH, Sanderson SJ, Kurian D, et al. Proteomic comparison of four Eimeria tenella life-cycle stages: Unsporulated oocyst, sporulated oocyst, sporozoite and second-generation merozoite. Proteomics. 2009;9(19):4566–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lander ES. The heroes of CRISPR. Cell. 2016;164(1):18–28.

    Article  CAS  PubMed  Google Scholar 

  • Lau AO. An overview of the Babesia, Plasmodium and Theileria genomes: a comparative perspective. Mol Biochem Parasitol. 2009;164(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  • Lau AO, Tibbals DL, McElwain TF. Babesia bovis: the development of an expression oligonucleotide microarray. Exp Parasitol. 2007;117(1):93–8.

    Article  CAS  PubMed  Google Scholar 

  • Laughery JM, Lau AO, White SN, Howell JM, Suarez CE. Babesia bovis: transcriptional analysis of rRNA gene unit expression. Exp Parasitol. 2009;123(1):45–50.

    Article  CAS  PubMed  Google Scholar 

  • Lee MG-S, Van der Ploeg LH. Homologous recombination and stable transfection in the parasitic protozoan Trypanosoma brucei. Science. 1990;250(4987):1583–8.

    Article  CAS  PubMed  Google Scholar 

  • Lee EG, Kim JH, Shin YS, Shin GW, Suh MD, Kim DY, et al. Establishment of a two-dimensional electrophoresis map for Neospora caninum tachyzoites by proteomics. Proteomics. 2003;3(12):2339–50.

    Article  CAS  PubMed  Google Scholar 

  • Lee E-G, Kim J-H, Shin Y-S, Shin G-W, Kim Y-H, Kim G-S, et al. Two-dimensional gel electrophoresis and immunoblot analysis of Neospora caninum tachyzoites. J Vet Sci. 2004;5(2):139–46.

    PubMed  Google Scholar 

  • Lee E-G, Kim J-H, Shin Y-S, Shin G-W, Kim Y-R, Palaksha K, et al. Application of proteomics for comparison of proteome of Neospora caninum and Toxoplasma gondii tachyzoites. J Chromatogr B. 2005;815(1):305–14.

    Article  CAS  Google Scholar 

  • Levick MP, Blackwell JM, Connor V, Coulson RM, Miles A, Smith HE, et al. An expressed sequence tag analysis of a full-length, spliced-leader cDNA library from Leishmania major promastigotes. Mol Biochem Parasitol. 1996;76(1–2):345–8.

    Article  CAS  PubMed  Google Scholar 

  • Li L, Brunk BP, Kissinger JC, Pape D, Tang K, Cole RH, et al. Gene discovery in the apicomplexa as revealed by EST sequencing and assembly of a comparative gene database. Genome Res. 2003;13(3):443–54.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Shah-Simpson S, Okrah K, Belew AT, Choi J, Caradonna KL, et al. Transcriptome remodeling in Trypanosoma cruzi and human cells during intracellular infection. PLoS Pathog. 2016;12(4):e1005511.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lv Z, Wu Z, Zhang L, Ji P, Cai Y, Luo S, et al. Genome mining offers a new starting point for parasitology research. Parasitol Res. 2015;114(2):399–409.

    Article  PubMed  Google Scholar 

  • Ma D, Liu F. Genome editing and its applications in model organisms. Genomics Proteomics Bioinformatics. 2015;13(6):336–44.

    Article  PubMed  Google Scholar 

  • Manger ID, Hehl A, Parmley S, Sibley LD, Marra M, Hillier L, et al. Expressed sequence tag analysis of the bradyzoite stage of Toxoplasma gondii: identification of developmentally regulated genes. Infect Immun. 1998;66(4):1632–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mauzy MJ, Enomoto S, Lancto CA, Abrahamsen MS, Rutherford MS. The Cryptosporidium parvum transcriptome during in vitro development. PLoS One. 2012;7(3):e31715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meissner M, Agop-Nersesian C, Sullivan WJ. Molecular tools for analysis of gene function in parasitic microorganisms. Appl Microbiol Biotechnol. 2007;75(5):963–75.

    Article  CAS  PubMed  Google Scholar 

  • Menezes JPBD, Almeida TFD, Petersen ALOA, Guedes CES, Mota M, Lima JGB, et al. Proteomic analysis reveals differentially expressed proteins in macrophages infected with Leishmania amazonensis or Leishmania major. Microb Infect. 2013;15(8):579–91.

    Article  CAS  Google Scholar 

  • Mesplet M, Palmer GH, Pedroni MJ, Echaide I, Florin-Christensen M, Schnittger L, et al. Genome-wide analysis of peptidase content and expression in a virulent and attenuated Babesia bovis strain pair. Mol Biochem Parasitol. 2011;179(2):111–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Min W, Lillehoj HS, Ashwell CM, Van Tassell CP, Dalloul RA, Matukumalli LK, et al. Expressed sequence tag analysis of Eimeria-stimulated intestinal intraepithelial lymphocytes in chickens. Mol Biotechnol. 2005;30(2):143–9.

    Article  PubMed  Google Scholar 

  • Miska K, Fetterer R, Rosenberg G. Analysis of transcripts from intracellular stages of Eimeria acervulina using expressed sequence tags. J Parasitol. 2008;94(2):462–6.

    Article  CAS  PubMed  Google Scholar 

  • Mogollon CM, van Pul FJ, Imai T, Ramesar J, Chevalley-Maurel S, de Roo GM, et al. Rapid generation of marker-free P. falciparum fluorescent reporter lines using modified CRISPR/Cas9 constructs and selection protocol. PLoS One. 2016;11(12):e0168362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nene V, Lee D, Kang’a S, Skilton R, Shah T, de Villiers E, et al. Genes transcribed in the salivary glands of female Rhipicephalus appendiculatus ticks infected with Theileria parva. Insect Biochem Mol Biol. 2004;34(10):1117–28.

    Article  PubMed  Google Scholar 

  • Ng JSY, Ryan U, Trengove RD, Maker GL. Development of an untargeted metabolomics method for the analysis of human faecal samples using Cryptosporidium-infected samples. Mol Biochem Parasitol. 2012;185(2):145–50.

    Article  CAS  PubMed  Google Scholar 

  • Ngô HM, Yang M, Joiner KA. Are rhoptries in Apicomplexan parasites secretory granules or secretory lysosomal granules? Mol Microbiol. 2004;52(6):1531–41.

    Article  PubMed  CAS  Google Scholar 

  • Oakes RD, Kurian D, Bromley E, Ward C, Lal K, Blake DP, et al. The rhoptry proteome of Eimeria tenella sporozoites. Int J Parasitol. 2013;43(2):181–8.

    Article  CAS  PubMed  Google Scholar 

  • Oura C, Tait A, Shiels B. Theileria annulata: identification, by differential mRNA display, of modulated host and parasite gene expression in cell lines that are competent or attenuated for differentiation to the merozoite. Exp Parasitol. 2001;98(1):10–9.

    Article  CAS  PubMed  Google Scholar 

  • Oura CA, McKellar S, Swan DG, Okan E, Shiels BR. Infection of bovine cells by the protozoan parasite Theileria annulata modulates expression of the ISGylation system. Cell Microbiol. 2006;8(2):276–88.

    Article  CAS  PubMed  Google Scholar 

  • Oyhenart J, Breccia JD. Evidence for repeated gene duplications in Tritrichomonas foetus supported by EST analysis and comparison with the Trichomonas vaginalis genome. Vet Parasitol. 2014;206(3–4):267–76.

    Article  CAS  PubMed  Google Scholar 

  • Paba J, Santana JM, Teixeira AR, Fontes W, Sousa MV, Ricart CA. Proteomic analysis of the human pathogen Trypanosoma cruzi. Proteomics. 2004;4(4):1052–9.

    Article  CAS  PubMed  Google Scholar 

  • Panigrahi AK, Ogata Y, Zíková A, Anupama A, Dalley RA, Acestor N, et al. A comprehensive analysis of Trypanosoma brucei mitochondrial proteome. Proteomics. 2009;9(2):434–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pedroni MJ, Sondgeroth KS, Gallego-Lopez GM, Echaide I, Lau AO. Comparative transcriptome analysis of geographically distinct virulent and attenuated Babesia bovis strains reveals similar gene expression changes through attenuation. BMC Genomics. 2013;14(1):763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng Z, Omaruddin R, Bateman E. Stable transfection of Acanthamoeba castellanii. Biochim Biophys Acta. 2005;1743(1):93–100.

    Article  CAS  PubMed  Google Scholar 

  • Peng D, Kurup SP, Yao PY, Minning TA, Tarleton RL. CRISPR-Cas9-mediated single-gene and gene family disruption in Trypanosoma cruzi. MBio. 2015;6(1):e02097–14.

    CAS  Google Scholar 

  • Qin M, Liu XY, Tang XM, Suo JX, Tao GR, Suo X. Transfection of Eimeria mitis with yellow fluorescent protein as reporter and the endogenous development of the transgenic parasite. PLoS One. 2014;9(12):e114188.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rachinsky A, Guerrero FD, Scoles GA. Proteomic profiling of Rhipicephalus (Boophilus) microplus midgut responses to infection with Babesia bovis. Vet Parasitol. 2008;152(3):294–313.

    Article  CAS  PubMed  Google Scholar 

  • Radke JR, Behnke MS, Mackey AJ, Radke JB, Roos DS, White MW. The transcriptome of Toxoplasma gondii. BMC Biol. 2005;3(1):26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Reid AJ, Vermont SJ, Cotton JA, Harris D, Hill-Cawthorne GA, Könen-Waisman S, et al. Comparative genomics of the apicomplexan parasites Toxoplasma gondii and Neospora caninum: Coccidia differing in host range and transmission strategy. PLoS Pathog. 2012;8(3):e1002567.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savadye D. Establishment of an expressed sequence-tag database, mapping of theileria parva schizont cDNAs and molecular characterisation of a parasite-specific protein: University of Zimbabwe; 1999.

    Google Scholar 

  • Saxena A, Lahav T, Holland N, Aggarwal G, Anupama A, Huang Y, et al. Analysis of the Leishmania donovani transcriptome reveals an ordered progression of transient and permanent changes in gene expression during differentiation. Mol Biochem Parasitol. 2007;152(1):53–65.

    Article  CAS  PubMed  Google Scholar 

  • Scheltema RA, Decuypere S, T'kindt R, Dujardin J-C, Coombs GH, Breitling R. The potential of metabolomics for Leishmania research in the post-genomics era. Parasitology. 2010;137(09):1291–302.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz RS, Fetterer RH, Rosenberg GH, Miska KB. Coccidian merozoite transcriptome analysis from Eimeria maxima in comparison to Eimeria tenella and Eimeria acervulina. J Parasitol. 2010;96(1):49–57.

    Article  CAS  PubMed  Google Scholar 

  • Shen B, Brown KM, Lee TD, Sibley LD. Efficient gene disruption in diverse strains of Toxoplasma gondii using CRISPR/CAS9. MBio. 2014;5(3):e01114-14.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin Y-S, Shin G-W, Kim Y-R, Lee E-Y, Yang H-H, Palaksha K, et al. Comparison of proteome and antigenic proteome between two Neospora caninum isolates. Vet Parasitol. 2005;134(1):41–52.

    Article  CAS  PubMed  Google Scholar 

  • Shompole S, McElwain TF, Jasmer DP, Hines SA, Katende J, Musoke AJ, et al. Identification of Babesia bigemina infected erythrocyte surface antigens containing epitopes conserved among strains. Parasite Immunol. 1994;16(3):119–27.

    Article  CAS  PubMed  Google Scholar 

  • Siddiki A. Sporozoite proteome analysis of Cryptosporidium parvum by one-dimensional SDS-PAGE and liquid chromatography tandem mass spectrometry. J Vet Sci. 2013;14(2):107–14.

    Article  PubMed  PubMed Central  Google Scholar 

  • Siddiki A, Wastling JM. Charting the proteome of Cryptosporidium parvum sporozoites using sequence similarity-based BLAST searching. J Vet Sci. 2009;10(3):203–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidik SM, Huet D, Ganesan SM, Huynh MH, Wang T, Nasamu AS, Thiru P, Saeij JP, Carruthers VB, Niles JC, Lourido S. A genome-wide CRISPR screen in Toxoplasma identifies essential Apicomplexan genes. Cell. 2016;166(6):1423–1435.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva MG, Graça T, Suarez CE, Knowles DP. Repertoire of Theileria equi immunodominant antigens bound by equine antibody. Mol Biochem Parasitol. 2013;188(2):109–15.

    Article  CAS  PubMed  Google Scholar 

  • Silva JC, Cornillot E, McCracken C, Usmani-Brown S, Dwivedi A, Ifeonu OO, et al. Genome-wide diversity and gene expression profiling of Babesia microti isolates identify polymorphic genes that mediate host-pathogen interactions. Sci Rep. 2016a;6:35284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Silva MG, Knowles DP, Suarez CE. Identification of interchangeable cross-species function of elongation factor-1 alpha promoters in Babesia bigemina and Babesia bovis. Parasit Vectors. 2016b;9(1):576.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Singh S, Dubey VK. Quantitative proteome analysis of Leishmania donovani under Spermidine starvation. PLoS One. 2016;11(4):e0154262.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Smolarz B, WilczyÅ„ski J, Nowakowska D. DNA repair mechanisms and Toxoplasma gondii infection. Arch Microbiol. 2014;196(1):1–8.

    Article  CAS  PubMed  Google Scholar 

  • Snelling WJ, Lin Q, Moore JE, Millar BC, Tosini F, Pozio E, et al. Proteomics analysis and protein expression during sporozoite excystation of Cryptosporidium parvum (Coccidia, Apicomplexa). Mol Cell Proteomics. 2007;6(2):346–55.

    Article  CAS  PubMed  Google Scholar 

  • Soldati D, Boothroyd JC. Transient transfection and expression in the obligate intracellular parasite Toxoplasma gondii. Science. 1993;260:349.

    Article  CAS  PubMed  Google Scholar 

  • Strong WB, Nelson RG. Preliminary profile of the Cryptosporidium parvum genome: an expressed sequence tag and genome survey sequence analysis. Mol Biochem Parasitol. 2000;107(1):1–32.

    Article  CAS  PubMed  Google Scholar 

  • Suarez CE, McElwain TF. Transient transfection of purified Babesia bovis merozoites. Exp Parasitol. 2008;118(4):498–504.

    Article  CAS  PubMed  Google Scholar 

  • Suarez CE, McElwain TF. Stable expression of a GFP-BSD fusion protein in Babesia bovis merozoites. Int J Parasitol. 2009;39(3):289–97.

    Article  CAS  PubMed  Google Scholar 

  • Suarez CE, McElwain TF. Transfection systems for Babesia bovis: a review of methods for the transient and stable expression of exogenous genes. Vet Parasitol. 2010;167(2):205–15.

    Article  CAS  PubMed  Google Scholar 

  • Suarez CE, Palmer GH, Florin-Christensen M, Hines SA, Hötzel I, McElwain TF. Organization, transcription, and expression of rhoptry associated protein genes in the Babesia bigemina rap-1 locus. Mol Biochem Parasitol. 2003;127(2):101–12.

    Article  CAS  PubMed  Google Scholar 

  • Suarez CE, Palmer GH, LeRoith T, Florin-Christensen M, Crabb B, McElwain TF. Intergenic regions in the rhoptry associated protein-1 (rap-1) locus promote exogenous gene expression in Babesia bovis. Int J Parasitol Parasites. 2004;34(10):1177–84.

    Article  CAS  Google Scholar 

  • Suarez CE, Norimine J, Lacy P, McElwain TF. Characterization and gene expression of Babesia bovis elongation factor-1α. Int J Parasitol Parasites. 2006;36(8):965–73.

    Article  CAS  Google Scholar 

  • Suarez C, Lacy P, Laughery J, Gonzalez MG, McElwain T. Optimization of Babesia bovis transfection methods. Parassitologia. 2007;49:67.

    PubMed  Google Scholar 

  • Suarez CE, Johnson WC, Herndon DR, Laughery JM, Davis WC. Integration of a transfected gene into the genome of Babesia bovis occurs by legitimate homologous recombination mechanisms. Mol Biochem Parasitol. 2015;202(2):23–8.

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto C, Conrad PA, Mutharia L, Dolan T, Brown W, Goddeeris B, et al. Phenotypic characterization of Theileria parva schizonts by two-dimensional gel electrophoresis. Parasitol Res. 1989a;76(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto C, Mutharia LM, Conrad PA, Dolan TT, Brown WC, Goddeeris BM, et al. Protein changes in bovine lymphoblastoid cells induced by infection with the intracellular parasite Theileria parva. Mol Biochem Parasitol. 1989b;37(2):159–69.

    Article  CAS  PubMed  Google Scholar 

  • Sugimoto C, Mutharia L, Brown W, Pearson T, Dolan T, Conrad PA. Analysis of Theileria parva immunodominant schizont surface antigen by two-dimensional polyacrylamide gel electrophoresis and immunoblotting. Parasitol Res. 1992;78(1):82–5.

    Article  CAS  PubMed  Google Scholar 

  • Sundberg L-R, Pulkkinen K. Genome size evolution in macroparasites. Int J Parasitol. 2015;45(5):285–8.

    Article  PubMed  Google Scholar 

  • Ten Asbroek AL, Ouellette M, Borst P. Targeted insertion of the neomycin phosphotransferase gene into the tubulin gene cluster of Trypanosoma brucei. Nature. 1990;348:174–5.

    Article  PubMed  Google Scholar 

  • Urbaniak MD, Guther MLS, Ferguson MA. Comparative SILAC proteomic analysis of Trypanosoma brucei bloodstream and procyclic lifecycle stages. PLoS One. 2012;7(5):e36619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Dijk M, Waters A, Janse C. Stable transfection of malaria parasite blood stages. Science. 1995;268(5215):1358.

    Article  PubMed  Google Scholar 

  • Veras PST, Bezerra de Menezes JP. Using proteomics to understand how Leishmania parasites survive inside the host and establish infection. Int J Mol Sci. 2016;17(8):1270.

    Article  PubMed Central  CAS  Google Scholar 

  • Verdun RE, Di Paolo N, Urmenyi TP, Rondinelli E, Frasch AC, Sanchez DO. Gene discovery through expressed sequence tag sequencing in Trypanosoma cruzi. Infect Immun. 1998;66(11):5393–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vichido R, Falcon A, Ramos JA, Alvarez A, Figueroa JV, Norimine J, et al. Expression analysis of heat shock protein 20 and Rhoptry-associated protein 1a in sexual stages and Kinetes of Babesia bigemina. Ann N Y Acad Sci. 2008;1149(1):136–40.

    Article  CAS  PubMed  Google Scholar 

  • Vinayak S, Pawlowic MC, Sateriale A, Brooks CF, Studstill CJ, Bar-Peled Y, et al. Genetic modification of the diarrhoeal pathogen Cryptosporidium parvum. Nature. 2015;523(7561):477–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westrop GD, Williams RA, Wang L, Zhang T, Watson DG, Silva AM, et al. Metabolomic analyses of Leishmania reveal multiple species differences and large differences in amino acid metabolism. PLoS One. 2015;10(9):e0136891.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Witschi M, Xia D, Sanderson S, Baumgartner M, Wastling J, Dobbelaere D. Proteomic analysis of the Theileria annulata schizont. Int J Parasitol Parasites. 2013;43(2):173–80.

    Article  CAS  Google Scholar 

  • Woehle C, Kusdian G, Radine C, Graur D, Landan G, Gould SB. The parasite Trichomonas vaginalis expresses thousands of pseudogenes and long non-coding RNAs independently from functional neighbouring genes. BMC Genomics. 2014;15(1):906.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wright AV, Nuñez JK, Doudna JA. Biology and applications of CRISPR systems: harnessing nature’s toolbox for genome engineering. Cell. 2016;164(1):29–44.

    Article  CAS  PubMed  Google Scholar 

  • Xia D, Sanderson SJ, Jones AR, Prieto JH, Yates JR, Bromley E, et al. The proteome of Toxoplasma gondii: integration with the genome provides novel insights into gene expression and annotation. Genome Biol. 2008;9(7):R116.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, et al. The genome of Cryptosporidium hominis. Nature. 2004;431(7012):1107–12.

    Article  CAS  PubMed  Google Scholar 

  • Zhang W-W, Matlashewski G. CRISPR-Cas9-mediated genome editing in Leishmania donovani. MBio. 2015;6(4):e00861-15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang H, Guo F, Zhou H, Zhu G. Transcriptome analysis reveals unique metabolic features in the Cryptosporidium parvum Oocysts associated with environmental survival and stresses. BMC Genomics. 2012;13(1):647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou C-X, Zhou D-H, Elsheikha HM, Liu G-X, Suo X, Zhu X-Q. Global metabolomic profiling of mice brains following experimental infection with the cyst-forming Toxoplasma gondii. PLoS One. 2015;10(10):e0139635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhou C-X, Zhou D-H, Elsheikha HM, Zhao Y, Suo X, Zhu X-Q. Metabolomic profiling of mice serum during toxoplasmosis progression using liquid chromatography-mass spectrometry. Sci Rep. 2016;6:19557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos E. Suarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suarez, C.E., Alzan, H.F., Cooke, B.M. (2018). Genomics and Genetic Manipulation of Protozoan Parasites Affecting Farm Animals. In: Florin-Christensen, M., Schnittger, L. (eds) Parasitic Protozoa of Farm Animals and Pets. Springer, Cham. https://doi.org/10.1007/978-3-319-70132-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-70132-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-70131-8

  • Online ISBN: 978-3-319-70132-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics