Skip to main content

Harmful Algal Blooms in a Changing Ocean

  • Chapter
  • First Online:
Global Ecology and Oceanography of Harmful Algal Blooms

Part of the book series: Ecological Studies ((ECOLSTUD,volume 232))

Abstract

Climate change research has progressed rapidly over the last two decades, with model projections of future climate conditions gaining enough consensus to enable downscaling these changes to regional scales. While the field of HAB research has come far since its early roots, our current understanding is not well suited to utilize advances in climate modeling to project how HABs’ prevalence and character may differ in the future oceans. This situation largely is due to the complexity of interspecies competition, but it also can be attributed to the “insular” nature of HAB research. HAB studies focus more on the HAB organism, often in isolated cultures, than on the phytoplankton community in which it may or may not flourish. Even though GEOHAB fostered comparative research, it most often is not possible to quantitatively compare among published HAB studies because nonuniform methods are used. Most HAB observational programs are triggered only when toxic species abundances become high enough to threaten human health, so the specific conditions that catalyze these bloom developments cannot be described. It is difficult then to project how changing environmental conditions may influence the development of HABs, particularly given that these events generally are comparatively rare within the context of dynamic coastal ecosystems. Participants in an international workshop considered these issues and identified a number of specific steps, presented in small part here, that will help HAB research to obtain compelling evidence that climate change is impacting HAB distribution, prevalence, or character. New HAB research strategies are needed if we are to develop informed projections for HABs under anticipated end-of-century conditions in the future oceans.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson DM, Rengefors K (2006) Community assembly and seasonal succession of marine dinoflagellates in a temperate estuary: the importance of life cycle events. Limnol Oceanogr 51(2):860–873

    Article  Google Scholar 

  • Aoki K, Onitsuka G, Shimizu M et al (2014) Variability of factors driving spatial and temporal dispersion in river plume and Chattonella antiqua bloom in the Yatsushiro Sea, Japan. Mar Pollut Bull 81(1):131–139

    Article  CAS  PubMed  Google Scholar 

  • Auro ME, Cochlan WP (2013) Nitrogen utilization and toxin production by two diatoms of the Pseudo-nitzschia pseudodelicatissima complex: P. cuspidata and P. fryxelliana. J Phycol 49(1):156–169

    Article  CAS  PubMed  Google Scholar 

  • Bates SS, Trainer VL (2006) The ecology of harmful diatoms. In: Granéli E, Turner JT (eds) Ecology of harmful algae. Springer, Berlin, pp 81–93

    Chapter  Google Scholar 

  • Beardall J, Raven JA (2004) The potential effects of global climate change on microbial photosynthesis, growth and ecology. Phycologia 43:26–40

    Article  Google Scholar 

  • Beardall J, Stojkovic S, Larsen S (2009) Living in a high CO2 world: impacts of global climate change on marine phytoplankton. Plant Ecol Divers 2(2):191–205

    Article  Google Scholar 

  • Behrenfeld MJ, O’Malley RT, Siegel DA et al (2006) Climate-driven trends in contemporary ocean productivity. Nature 444(7120):752–755

    Article  CAS  Google Scholar 

  • Bernard S, Kudela R, Velo-Suárez L (2014) Developing global capabilities for the observation and prediction of harmful algal blooms. In: Djavidnia S, Cheung V, Ott M et al (eds) Oceans and society, blue planet. Cambridge Scholars Publishing, Newcastle upon Tyne, pp 46–52

    Google Scholar 

  • Bissenger JE, Montagnes SJ, Atkinson D (2008) Predicting marine phytoplankton maximum growth rates from temperature: improving on the Eppley curve using quantile regression. Limnol Oceanogr 53:487–493

    Article  Google Scholar 

  • Boyd PW, Rynearson T, Armstrong EA et al (2013) Marine phytoplankton temperature versus growth responses from polar to tropical waters – outcome of a scientific community-wide study. PLoS One 8(5):e63091. https://doi.org/10.1371/journal.pone.0063091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buskey EJ, Liu H, Collumb C, Bersano JGF (2001) The decline and recovery of a persistent Texas brown tide algal bloom in the Laguna Madre (Texas, USA). Estuaries 24:337–346

    Article  Google Scholar 

  • Campbell L, Olson RJ, Sosik HM et al (2010) First harmful Dinophysis (Dinophyceae, Dinophysiales) bloom in the US is revealed by automated imaging flow cytometry. J Phycol 46(1):66–75

    Article  Google Scholar 

  • Carreto JI, Carignan MO (2011) Mycosporine-like amino acids: relevant secondary metabolites. Chemical and ecological aspects. Mar Drugs 9(3):387–446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho ES, Kotaki Y, Park JG (2001) The comparison between toxic Pseudo-nitzschia multiseries (Hasle) Hasle and non-toxic P. pungens (Grunow) Hasle isolated from Jinhae Bay, Korea. Algae 16:275–285

    Google Scholar 

  • Colin SP, Dam H (2002) Latitudinal differentiation in the effects of the toxic dinoflagellate Alexandrium spp. on the feeding and reproduction of populations of the copepod Acartia hudsonica. Harmful Algae 1:113–125

    Article  Google Scholar 

  • Dason JS, Colman B (2004) Inhibition of growth in two dinoflagellates by rapid changes in external pH. Can J Bot 82(4):515–520

    Article  CAS  Google Scholar 

  • Djavidnia S, Cheung V, Ott M et al (eds) (2014) Oceans and society, blue planet. Cambridge Scholars Publishing, Newcastle upon Tyne, p 285

    Google Scholar 

  • Dyhrman ST, Anderson DM (2003) Urease activity in cultures and field populations of the toxic dinoflagellate Alexandrium. Limnol Oceanogr 48(2):647–655

    Article  CAS  Google Scholar 

  • Eckford-Soper L, Daugbjerg N (2016) The ichthyotoxic genus Pseudochattonella (Dictyochophyceae): distribution, toxicity, enumeration, ecological impact, succession and life history – a review. Harmful Algae 58:51–58

    Article  PubMed  Google Scholar 

  • Engström-Ost J, Viitasalo M, Jodonasdottir S et al (2002) Calanoid copepods feed and produce eggs in the presence of toxic cyanobacteria Nodularia spumigena. Limnol Oceanogr 47:878–885

    Article  Google Scholar 

  • Eppley RW (1972) Temperature and phytoplankton growth in the sea. Fish Bull 70:1063–1085

    Google Scholar 

  • Etheridge SM, Roesler CS (2005) Effects of temperature, irradiance, and salinity on photosynthesis, growth rates, total toxicity, and toxin composition for Alexandrium fundyense isolates from the Gulf of Maine. Deep Sea Res II 52:2491–2500

    Article  Google Scholar 

  • Farrell H, Gentien P, Fernand L et al (2012) Scales characterising a high density thin layer of Dinophysis acuta Ehrenberg and its transport within a coastal jet. Harmful Algae 15:36–46

    Article  Google Scholar 

  • Figueiras FG, Pitcher GC, Estrada M (2006) Harmful algal bloom dynamics in relation to physical processes. In: Granéli E, Turner JT (eds) Ecology of harmful algae. Springer, Berlin, pp 127–138

    Chapter  Google Scholar 

  • Flynn KJ, Stoecker DK, Mitra A et al (2013) Misuse of the phytoplankton-zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. J Plankton Res 35(1):3–11

    Article  Google Scholar 

  • Flynn KJ, Mitra A, Glibert PM et al (2018) Mixotrophy in HABs: by whom, on whom, why, and what next. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 113–132

    Chapter  Google Scholar 

  • Fu FX, Tatters AO, Hutchins DA (2012) Global change and the future of harmful algal blooms in the ocean. Mar Ecol Prog Ser 470:207–233

    Article  CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  CAS  PubMed  Google Scholar 

  • Gjosaeter J, Lekve K, Stenseth NC, Leinaas HP, Christie H, Dahl E, Danielssen DS, Edvardsen B, Olsgard F, Oug E, Paasche E (2000) A long-term perspective on the Chrysochromulina bloom on the Norwegian Skagerrak coast 1988: a catastrophe or an innocent incident? Mar Ecol Prog Ser 207:201–218

    Article  Google Scholar 

  • Glibert PM, Al-Azri A, Allen JI et al (2018a) Key questions and recent research advances on harmful algal blooms in relation to nutrients and eutrophication. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 229–259

    Chapter  Google Scholar 

  • Glibert PM, Beusen AHW, Harrison JA et al (2018b) Changing land-, sea- and airscapes: sources of nutrient pollution affecting habitat suitability for harmful algae. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 53–76

    Chapter  Google Scholar 

  • Glibert PM, Heil CA, Wilkerson F et al (2018c) Nutrients and HABs: dynamic kinetics and flexible nutrition. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 93–112

    Chapter  Google Scholar 

  • Granéli E, Turner JT (eds) (2006) Ecology of harmful algae. Springer, Berlin, p 413

    Google Scholar 

  • Häder DP, Helbling W, Williamson CE et al (2010) Effects of UV radiation on aquatic ecosystems and interactions with climate change. Photochem Photobiol Sci 10:242–260. https://doi.org/10.1039/C0PP90036B

    Article  Google Scholar 

  • Hallegraeff GM, Blackburn SI, Doblin MA et al (2012) Global toxicology, ecophysiology and population relationships of the chainforming PST dinoflagellate Gymnodinium catenatum. Harmful Algae 14:130–143

    Article  CAS  Google Scholar 

  • Hallegraeff GM, Marshall JA, Valentine J (1998) Short cyst-dormancy period of an Australian isolate of the toxic dinoflagellate Alexandrium catenella. Mar Freshw Res 49:415–420

    Article  Google Scholar 

  • Hansen PJ (2002) Effect of high pH on the growth and survival of marine phytoplankton: implications for species succession. Aquat Microb Ecol 28(3):279–288

    Article  Google Scholar 

  • Hansson L-A, Nicolle A, Granéli W et al (2013) Food-chain length alters community responses to global change in aquatic systems. Nat Clim Chang 3(3):228–233

    Article  Google Scholar 

  • Hinga KR (2002) Effects of pH on coastal marine phytoplankton. Mar Ecol Prog Ser 238:281–300

    Article  Google Scholar 

  • Hubbart B, Pitcher GC, Krock B et al (2012) Toxigenic phytoplankton and concomitant toxicity in the mussel Choromytilus meridionalis off the west coast of South Africa. Harmful Algae 20:30–41

    Article  CAS  Google Scholar 

  • Intergovermental Panel on Climate Change (IPCC) (2013) Climate change 2013: the physical science basis. In: Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, NY

    Google Scholar 

  • Itakura S, Yamaguchi M (2005) Morphological and physiological differences between the cysts of Alexandrium catenella and A. tamarense (Dinophyceae) in the Seto Inland Sea, Japan. Plankton Biol Ecol 57:85–91

    Google Scholar 

  • Jeffrey SW, MacTavish HS, Dunlap WC et al (1999) Occurrence of UVA- and UVB-absorbing compounds in 152 species (206 strains) of marine microalgae. Mar Ecol Prog Ser 189:35–51

    Article  CAS  Google Scholar 

  • Jeong HJ, Yoo YD, Kim JS et al (2010) Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci J 45(2):65–91

    Article  CAS  Google Scholar 

  • Jester R, Lefebvre KA, Langlois G et al (2009) A shift in the dominant toxin-producing algal species in central California alters phycotoxins in food webs. Harmful Algae 8(2):291–298

    Article  CAS  Google Scholar 

  • Kahru M, Elmgren R, Savchuk OP (2016) Changing seasonality of the Baltic Sea. Biogeosciences 13(4):1009–1018

    Article  Google Scholar 

  • Kamykowski D, McCollum SA (1986) The temperature acclimatized swimming speed of selected marine dinoflagellates. J Plankton Res 8:275–287

    Article  Google Scholar 

  • Koski M, Rosenberg M, Viitasalo M et al (1999) Is Prymnesium patelliferum toxic for copepods? – Grazing, egg production, and egestion of the calanoid copepod Eurytemora affinis in mixtures of “good” and “bad” food. ICES J Mar Sci 56:131–139

    Article  Google Scholar 

  • Kremp A, Godhe A, Egardt J et al (2012) Intraspecific variability in the response of bloom-forming marine microalgae to changed climate conditions. Ecol Evol 2(6):1195–1207

    Article  PubMed  PubMed Central  Google Scholar 

  • Kudela RM, Seeyave S, Cochlan WP (2010) The role of nutrients in regulation and promotion of harmful algal blooms in upwelling systems. Prog Oceanogr 85(1–2):122–135

    Article  Google Scholar 

  • Lelong A, Hégaret H, Soudant P et al (2012) Pseudo-nitzschia (Bacillariophyceae) species, domoic acid and amnesic shellfish poisoning: revisiting previous paradigms. Phycologia 51(2):168–216

    Article  CAS  Google Scholar 

  • Leong SCY, Murata A, Nagashima Y et al (2004) Variability in toxicity of the dinoflagellate Alexandrium tamarense in response to different nitrogen sources and concentrations. Toxicon 43(4):407–415

    Article  CAS  PubMed  Google Scholar 

  • Levasseur M, Gamache T, St.-Pierre I et al. (1995) Does the cost of NO3 reduction affect the production of harmful compounds by Alexandrium excavatum? In: Lassus, P, Arzul G, Erard E et al (eds), Harmful marine algal blooms. Technique et Documentation-Lavoisier, Intercept Ltd, pp 463–468

    Google Scholar 

  • Lewis NI, Bates SS, McLachlan JL et al (1993) Temperature effects on growth, domoic acid production, and morphology of the diatom Nitzschia-pungens f. multiseries. In: Smayda TJ, Shimizu Y (eds) Toxic phytoplankton blooms in the sea, 3. Elsevier Science Publ B V, Amsterdam, pp 601–606

    Google Scholar 

  • Longhurst A (1998) Ecological geography of the sea. Academic Press, San Diego, p 398

    Google Scholar 

  • Lonnstedt OM, Munday PL, McCormick MI, Ferrari MCO et al (2013) Ocean acidification and responses to predators: can sensory redundancy reduce the apparent impacts of elevated CO2 on fish? Ecol Evol 3(10):3565–3575

    PubMed  PubMed Central  Google Scholar 

  • Lundholm N, Hansen PJ, Kotaki Y (2004) Effect of pH on growth and domoic acid production by potentially toxic diatoms of the genera Pseudo-nitzschia and Nitzschia. Mar Ecol Prog Ser 273:1–15

    Article  CAS  Google Scholar 

  • McCabe RM, Hickey BM, Kudela RM et al (2016) An unprecedented coastwide toxic algal bloom linked to anomalous ocean conditions. Geophys Res Lett 43(19):10366–10376

    Article  PubMed  PubMed Central  Google Scholar 

  • McGillicuddy DJ, Townsend DW, He R et al (2011) Suppression of the 2010 Alexandrium fundyense bloom by changes in physical, biological, and chemical properties of the Gulf of Maine. Limnol Oceanogr 56(6):2411–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McManus MA, Kudela RM, Silver MW et al (2008) Cryptic blooms: are thin layers the missing connection? Estuar Coasts 31(2):396–401

    Article  Google Scholar 

  • Mitra A, Flynn KJ (2006) Accounting for variation in prey selectivity by zooplankton. Ecol Model 199(1):82–92

    Article  Google Scholar 

  • Mohlin M, Roleda MY, Pattanaik B et al (2012) Interspecific resource competition-combined effects of radiation and nutrient limitation on two diazotrophic filamentous cyanobacteria. Microb Ecol 63(4):736–750

    Article  PubMed  Google Scholar 

  • Moore SK, Johnstone JA, Banas NS et al (2015) Present-day and future climate pathways affecting Alexandrium blooms in Puget Sound, WA, USA. Harmful Algae 48:1–11

    Article  CAS  PubMed  Google Scholar 

  • Moore SK, Mantua NJ, Hickey BM et al (2009) Recent trends in paralytic shellfish toxins in Puget Sound, relationships to climate, and capacity for prediction of toxic events. Harmful Algae 8(3):463–477

    Article  CAS  Google Scholar 

  • Nimer NA, Iglesias-Rodríguez MD, Merrett MJ (1997) Bicarbonate utilization by marine phytoplankton species. J Phycol 33(4):625–631

    Article  CAS  Google Scholar 

  • Ogata T, Kodama M, Ishimaru T (1989) Effect of water temperature and light intensity on growth rate and toxin production of toxic dinoflagellates. In: Okaichi T, Anderson DM, Nemoto T (eds) Red tides, biology, environmental science and toxicology. Elsevier, New York, NY, pp 423–426

    Google Scholar 

  • Okolodkov YB (1999) Species range types of recent marine dinoflagellates recorded from the Arctic. Grana 38(2–3):162–169

    Article  Google Scholar 

  • Okolodkov YB (2005) The global distributional patterns of toxic, bloom dinoflagellates recorded from the Eurasian Arctic. Harmful Algae 4(2):351–369

    Article  Google Scholar 

  • Paczkowska J, Rowe OF, Schlüter L et al (2017) Allochthonous matter: an important factor shaping the phytoplankton community in the Baltic Sea. J Plankton Res 39(1):23–34

    Article  CAS  PubMed  Google Scholar 

  • Peacock MB, Kudela RM (2014) Evidence for active vertical migration by two dinoflagellates experiencing iron, nitrogen, and phosphorus limitation. Limnol Oceanogr 59(3):660–673

    Article  CAS  Google Scholar 

  • Pettersson LH, Pozdnyakov D (2013) Biology and ecology of harmful algal species. In: Pettersson LH, Pozdnyakov D (eds) Monitoring of harmful algal blooms. Springer, Berlin, pp 25–47

    Chapter  Google Scholar 

  • Pitcher GC, Horstman DA, Calder D et al (1993) The first record of diarrhetic shellfish poisoning on the South-African coast. S Afr J Sci 89(10):512–514

    Google Scholar 

  • Preston CM, Harris A, Ryan JP et al (2011) Underwater application of quantitative PCR on an ocean mooring. PLoS One 6(8):e22522. https://doi.org/10.1371/journal.pone.0022522

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Raine R (2014) A review of the biophysical interactions relevant to the promotion of HABs in stratified systems: the case study of Ireland. Deep Sea Res Part II 101:21–31

    Article  Google Scholar 

  • Raven JA, Geide RJ (1988) Temperature and algal growth. New Phytol 110:411–416

    Article  Google Scholar 

  • Rhodes LL, O’Kelly CJO, Hall JA (1994) Comparison of growth characteristics of New Zealand isolates of the prymnesiophytes Chrysochromulina quadrikonta and C. camella with those of the ichthyotoxic species C. polylepis. J Plankton Res 16:69–82

    Article  Google Scholar 

  • Rines JEB, Donaghay PL, Dekshenieks MM et al (2002) Thin layers and camouflage: hidden Pseudo-nitzschia spp. (Bacillariophyceae) populations in a fjord in the San Juan Islands, Washington, USA. Mar Ecol Prog Ser 225:123–137

    Article  Google Scholar 

  • Roemmich D, Gould WJ, Gilson J (2012) 135 years of global ocean warming between the Challenger expedition and the Argo Programme. Nat Clim Chang 2(6):425–428

    Article  Google Scholar 

  • Ryan JP, McManus MA, Sullivan JM (2010) Interacting physical, chemical and biological forcing of phytoplankton thin-layer variability in Monterey Bay, California. Cont Shelf Res 30(1):7–16

    Article  Google Scholar 

  • Schultz M, Kjørboe T (2009) Active prey selection in two pelagic copepods feeding on potentially toxic and non-toxic dinoflagellates. J Plankton Res 31:553–561

    Article  Google Scholar 

  • Smayda TJ (1992) Global epidemic of noxious phytoplankton blooms and food chain consequences in large ecosystems. In: Sherman K, Alexander L, Gold BD (eds) Food chains, yields, models, and management of large marine ecosystems. Westview Press, San Francisco, pp 275–307

    Google Scholar 

  • Smayda TJ (1997) What is a bloom? A commentary. Limnol Oceanogr 42(5):1132–1136

    Article  Google Scholar 

  • Smayda TJ (1998) Patterns of variability characterizing marine phytoplankton, with examples from Narragansett Bay. ICES J Mar Sci 55(4):562–573

    Article  Google Scholar 

  • Smayda TJ, Trainer VL (2010) Dinoflagellate blooms in upwelling systems: seeding, variability, and contrasts with diatom bloom behaviour. Prog Oceanogr 85(1–2):92–107

    Article  Google Scholar 

  • Stocker TF, Qin D, Plattner G-K, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (2013) Climate change 2013: the physical science basis. In: IPCC (ed) Contribution of working group I to the fifth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge and New York, NY, p 1535

    Google Scholar 

  • Strom SL (2002) Novel interactions between phytoplankton and microzooplankton: their influence on the coupling between growth and grazing rates in the sea. Hydrobiologia 180:41–54

    Article  Google Scholar 

  • Strom SL, Harvey EL, Fredrickson KA et al (2013) Broad salinity tolerance as a refuge from predation in the harmful raphidophyte alga Heterosigma akashiwo (Raphidophyceae). J Phycol 49(1):20–31

    Article  PubMed  Google Scholar 

  • Sun J, Hutchins DA, Feng Y et al (2011) Effects of changing pCO2 and phosphate availability on domoic acid production and physiology of the marine harmful bloom diatom Pseudo-nitzschia multiseries. Limnol Oceanogr 56(3):829–840

    Article  CAS  Google Scholar 

  • Tatters AO, Fu FX, Hutchins DA (2012) High CO2 and silicate limitation synergistically increase the toxicity of Pseudo-nitzschia fraudulenta. PLoS One 7(2):e32116. https://doi.org/10.1371/journal.pone.0032116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor M, McIntyre L, Ritson M et al (2013) Outbreak of diarrhetic shellfish poisoning associated with mussels, British Columbia, Canada. Mar Drugs 11(5):1669–1676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trainer V, Yoshida M (eds) (2014) Proceedings of the workshop on economic impacts of harmful algal blooms on fisheries and aquaculture. PICES Sci Rep No 47, p 85

    Google Scholar 

  • Trainer VL, Bates SS, Lundholm N et al (2012) Pseudo-nitzschia physiological ecology, phylogeny, toxicity, monitoring and impacts on ecosystem health. Harmful Algae 14:271–300

    Article  Google Scholar 

  • Trainer VL, Moore L, Bill BD et al (2013) Diarrhetic shellfish toxins and other lipophilic toxins of human health concern in Washington State. Mar Drugs 11(6):1815–1835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner JT (2006) Harmful algae interactions with marine planktonic grazers. In: Granéli E, Turner JT (eds) Ecology of harmful algae. Springer, Berlin, pp 259–270

    Chapter  Google Scholar 

  • Van Dolah ER, Paolisso M, Sellner K et al (2016) Employing a socio-ecological systems approach to engage harmful algal bloom stakeholders. Aquat Ecol 50(3):577–594

    Article  Google Scholar 

  • Wells ML (2003) The level of iron enrichment required to initiate diatoms blooms in HNLC waters. Mar Chem 82:101–114

    Article  CAS  Google Scholar 

  • Wells ML, Trainer VL, Smayda et al (2015) Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49:68–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Dam HG, Avery DE (2011) Differential responses of populations of the copepod Acartia hudsonica to toxic and nutritionally insufficient food algae. Harmful Algae 10(6):723–731

    Article  Google Scholar 

Download references

Acknowledgments

This is NOAA ECOHAB contribution number 920.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark L. Wells .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wells, M.L., Karlson, B. (2018). Harmful Algal Blooms in a Changing Ocean. In: Glibert, P., Berdalet, E., Burford, M., Pitcher, G., Zhou, M. (eds) Global Ecology and Oceanography of Harmful Algal Blooms . Ecological Studies, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-70069-4_5

Download citation

Publish with us

Policies and ethics