Skip to main content

Changing Land-, Sea-, and Airscapes: Sources of Nutrient Pollution Affecting Habitat Suitability for Harmful Algae

  • Chapter
  • First Online:
Global Ecology and Oceanography of Harmful Algal Blooms

Abstract

Globally, nutrient loading to surface waters is large and increasing, with sources from land-based pollution to aquaculture and atmospheric deposition. Spatial differences in amounts and forms of nutrients released to receiving waters are large, with Asia, Western Europe, and North America exporting the highest loads of nutrients, especially of inorganic nitrogen (N). Export of N is increasing more rapidly than that of phosphorus (P) on a global basis, leading to stoichiometrically imbalanced nutrient conditions. Under such conditions, some types of harmful algal blooms (HABs) can thrive. Differences in coastal typology affect the retentive nature of different coastal types, while dam and reservoir constructions have further altered riverine flows and differentially retain different nutrients. A coastal eutrophication index comparing information on the changes in N and P relative to silicon (Si) and modeling projections of future outcomes using several modeling approaches show that the likelihood for increased nutrient pollution and, correspondingly, for continued regional and global expansion of HABs is great.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alcamo J, Van Vuuren D, Cramer W (2006) Changes in ecosystem services and their drivers across the scenarios. In: Carpenter SR, Pingali PL, Bennett EM et al (eds) Ecosystems and human well-being: scenarios. Island Press, Washington, DC, pp 297–373

    Google Scholar 

  • Alonso-Rodríguez R, Páez-Osuna F (2003) Nutrients, phytoplankton and harmful algal blooms in shrimp ponds: a review with special reference to the situation in the Gulf of California. Aquaculture 219:317–336

    Article  Google Scholar 

  • Anderson DM (2014) HABs in a changing world: a perspective on harmful algal blooms, their impacts, and research and management in a dynamic era of climatic and environmental change. In: Kim H-G, Reguera B, Hallegraeff GM et al (eds) Harmful algae 2012: Proceedings of the 15th International conference on harmful algae: October 29–November 2, 2012, CECO, Changwon, Gyeongnam, pp 3–17

    Google Scholar 

  • Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704–726

    Article  Google Scholar 

  • Arndt S, Regnier P, Vanderborght JP (2009) Seasonally-resolved nutrient export fluxes and filtering capacities in a macrotidal estuary. J Mar Syst 78:42–58

    Article  Google Scholar 

  • Berdalet E, Kudela R, Banas NS et al (2018) GlobalHAB: fostering international coordination on harmful algal bloom research in aquatic systems. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp. 425–447

    Chapter  Google Scholar 

  • Berg GM, Balode M, Purina I et al (2003) Plankton community composition in relation to availability and uptake of oxidized and reduced nitrogen. Aquat Microb Ecol 30:263–274

    Article  Google Scholar 

  • Bernard CY, Dürr HH, Heinze C et al (2011) Contribution of riverine nutrients to the silicon biogeochemistry of the global ocean – a model study. Biogeosciences 8:551–564

    Article  CAS  Google Scholar 

  • Bernard CY, Laruelle GG, Slomp CP et al (2010) Impact of changes in river nutrient fluxes on the global marine silicon cycle: a model comparison. Biogeosciences 7:441–453

    Article  CAS  Google Scholar 

  • Beusen AHW, Deckers ALM, Bouwman AF et al (2005) Estimation of global river transport of sediments and associated particulate C, N and P. Global Biogeochem Cycles 19:1–17

    Article  CAS  Google Scholar 

  • Beusen AHW, Slomp CP, Bouwman AF (2013) Global land-ocean linkage: direct inputs of nitrogen to coastal waters via submarine groundwater discharge. Environ Res Lett 8:034035

    Article  CAS  Google Scholar 

  • Beusen AHW, Bouwman AF, Dürr HH et al (2009) Global patterns of dissolved silica export to the coastal zone: results from a spatially explicit global model. Global Biogeochem Cycles 23:GB0A02. https://doi.org/10.1029/2008GB003281

    Article  CAS  Google Scholar 

  • Beusen AHW, Bouwman AF, Van Beek LPH et al (2016) Global riverine N and P transport to ocean increased during the 20th century despite increased retention along the aquatic continuum. Biogeosciences 13:2441–2451

    Article  CAS  Google Scholar 

  • Beusen AHW, Van Beek LPH, Bouwman AF et al (2015) Coupling global models for hydrology and nutrient loading to simulate nitrogen and phosphorus retention in surface water – description of IMAGE–GNM and analysis of performance. Geosci Model Dev 8:4045–4067. https://doi.org/10.5194/gmd-8-4045-2015

    Article  CAS  Google Scholar 

  • Billen G, Garnier J (2007) River basin nutrient delivery to the coastal sea: assessing its potential to sustain new production of non-siliceous algae. Mar Chem 106:148–160. doi:10.1016.j.marchem.2006.1012.1017

    Google Scholar 

  • Billen G, Garnier J, Deligne C et al (1999) Estimates of early-industrial inputs of nutrients to river systems: implication for coastal eutrophication. Sci Total Environ 243/244:43–52

    Article  CAS  Google Scholar 

  • Bouwman AF, Beusen AHW, Billen G (2009) Human alteration of the global nitrogen and phosphorus soil balances for the period 1970-2050. Global Biogeochem Cycles 23. https://doi.org/10.1029/2009GB003576

  • Bouwman AF, Beusen AHW, Glibert PM et al (2013a) Mariculture: significant and expanding cause of coastal nutrient enrichment. Environ Res Lett 8:044026. https://doi.org/10.1088/1748-9326/8/4/044026

    Article  Google Scholar 

  • Bouwman AF, Beusen AHW, Lassaletta L et al (2017) Lessons from temporal and spatial patterns in global use of N and P fertilizer on cropland. Sci Rep. https://doi.org/10.1038/srep40366

  • Bouwman AF, Beusen AHW, Overbeek CC et al (2013b) Hindcasts and future projections of global inland and coastal nitrogen and phosphorus loads due to finfish aquaculture. Rev Fish Sci 21:112–156. https://doi.org/10.1080/10641262.2013.790340

    Article  CAS  Google Scholar 

  • Bouwman AF, Pawłowski M, Liu C et al (2011) Global hindcasts and future projections of coastal nitrogen and phosphorus loads due to shellfish and seaweed aquaculture. Rev Fish Sci 19:331–357. https://doi.org/10.1080/10641262.2011.603849

    Article  CAS  Google Scholar 

  • Boyd PW, Doney SC (2003) The impact of climate change and feedback processes on the ocean carbon cycle. In: Fasham MJR (ed) Ocean biogeochemistry – the role of the ocean carbon cycle in global change. Springer, Berlin, pp 157–193

    Google Scholar 

  • Boyer EW, Howarth RW, Galloway JN et al (2006) Riverine nitrogen export from the continents to the coasts. Global Biogeochem Cycles 20:GB1S91. https://doi.org/10.1029/2005GB002537

    Article  CAS  Google Scholar 

  • Constant KM, Sheldrick, WF (1992) World nitrogen survey. World Bank Technical paper 174, Washington, DC

    Google Scholar 

  • Cork S, Peterson G, Petschel-Held G (2005) Four scenarios. In: Carpenter SR, Pingali PL, Bennett EM et al (eds) Ecosystems and human well-being: scenarios, findings of the scenario working group, Millennium Ecosystem Assessment. Island Press, Washington DC, pp 223–294

    Google Scholar 

  • Doney SC (2010) The growing human footprint on coastal and open ocean biogeochemistry. Science 328:1512–1516

    Article  CAS  PubMed  Google Scholar 

  • Duce RA, LaRoche J, Altieri K et al (2008) Impacts of atmospheric nitrogen on the open ocean. Science 320:893–897

    Article  CAS  PubMed  Google Scholar 

  • Dumont E, Harrison JA, Kroeze C et al (2005) Global distribution and sources of dissolved inorganic nitrogen export to the coastal zone: results from a spatially explicit, global model. Global Biogeochem Cycles 19:GB4S02

    Article  CAS  Google Scholar 

  • Dürr HH, Laruelle GG, Van Kempen C et al (2011) World-wide typology of near-shore coastal systems: defining the estuarine filter of river inputs to the ocean. Estuar Coasts 34:441–458. https://doi.org/10.1007/s12237-12011-19381-y

    Article  Google Scholar 

  • Ellis L (2008) A China environmental health project research brief: environmental health and China’s concentrated animal feeding operations (CAFOs). https://www.wilsoncenter.org/sites/default/files/factory_farms_feb28.pdf

  • FAO (2012a) Cultured aquatic species. FAO, Rome. http://fao.stat.fao.org

    Google Scholar 

  • FAO (2012b) FAOSTAT database collections. FAO, Rome. http://faostat.fao.org

    Google Scholar 

  • FAO (2016) Total fishery production 1950–2014. FishStatJ – Universal software for fishery statistical time series, Rome. http://www.fao.org/fishery/statistics/software/fishstatj/en

    Google Scholar 

  • Flynn KJ, Stoecker DK, Mitra A et al (2013) Misuse of the phytoplankton-zooplankton dichotomy: the need to assign organisms as mixotrophs within plankton functional types. J Plankton Res 35:3–11

    Article  Google Scholar 

  • Fowler D, Coyle M, Skiba U et al (2013) The global nitrogen cycle in the twenty-first century. Philos Trans R Soc B 368(1621):20130164. https://doi.org/10.1098/rstb.2013.0164

    Article  CAS  Google Scholar 

  • Fu M, Wang Z, Pu X et al (2012) Changes in nutrient concentrations and N:P:Si ratios and their possible impacts on the Huanghai Sea ecosystem. Acta Oceanol Sinica 31:101–112

    Article  CAS  Google Scholar 

  • Galloway JN, Cowling EB (2002) Reactive nitrogen and the world: 200 years of change. Ambio 31:64–71

    Article  PubMed  Google Scholar 

  • Galloway JN, Cowling EB, Seitzinger SP et al (2002) Reactive nitrogen: too much of a good thing? Ambio 31:60–63

    Article  PubMed  Google Scholar 

  • Galloway JN, Townsend AR, Erisman JW et al (2008) Transformation of the nitrogen cycle: recent trends, questions and potential solutions. Science 320:889–892

    Article  CAS  PubMed  Google Scholar 

  • Galloway JN, Winiwarter W, Leip A et al (2014) Nitrogen footprints: past, present and future. Environ Res Lett 9:115003 (11 p). https://doi.org/10.1088/1748-9326/9/11/115003

    Article  Google Scholar 

  • Garnier J, Beusen AHW, Thieu V et al (2010) N:P:Si nutrient export ratios and ecological consequences in coastal seas evaluated by the ICEP approach. Global Biogeochem Cycles 24:GB0A05. https://doi.org/10.1029/2009GB003583

    Article  CAS  Google Scholar 

  • GEOHAB (1998) Global ecology and oceanography of harmful algal blooms: a plan for co-ordinated scientific research and co-operation to develop international capabilities for assessment, prediction and mitigation. Cullen J (ed) Asian Natural Environmental Science Center, The University of Tokyo. 43 pp

    Google Scholar 

  • GEOHAB (2010) GEOHAB Asia, global ecology and oceanography of harmful algal blooms in Asia: a regional comparative programme. Furuya K, Glibert PM, Zhou M et al (eds) IOC and SCOR, Baltimore and Paris, 69 pp

    Google Scholar 

  • Glibert PM (2017) Eutrophication, harmful algae and biodiversity – challenging paradigms in a world of complex nutrient changes. Mar Pollut Bull 124:591–606. https://doi.org/10.1016/j.marpolbul.2017.04.027

    Article  CAS  PubMed  Google Scholar 

  • Glibert PM, Allen JI, Artioli Y et al (2014a) Vulnerability of coastal ecosystems to changes in harmful algal bloom distribution in response to climate change: projections based on model analysis. Glob Chang Biol 20:3845–3858. https://doi.org/10.1111/gcb.12662

    Article  PubMed  Google Scholar 

  • Glibert PM, Al-Azri A, Allen JI et al (2018) Key questions and recent research advances on harmful algal blooms in relation to nutrients and eutrophication. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 229–259

    Chapter  Google Scholar 

  • Glibert PM, Burford MA (2017) Globally changing nutrient loads and harmful algal blooms: recent advances, new paradigms, and continuing challenges. Oceanography 30(1):58–69. https://doi.org/10.5670/oceanog.2017.110

    Article  Google Scholar 

  • Glibert PM, Garside C, Fuhrman J et al (1991) Time- and size-dependent coupling of organic and inorganic nitrogen uptake and NH4 + regeneration in the plume of the Chesapeake Bay, and its regulation by large heterotrophs. Limnol Oceanogr 36:895–909

    Article  Google Scholar 

  • Glibert PM, Harrison JA, Heil CA et al (2006) Escalating worldwide use of urea – a global change contributing to coastal eutrophication. Biogeochemistry 77:441–463

    Article  CAS  Google Scholar 

  • Glibert PM, Manager R, Sobota DJ et al (2014b) The Haber-Bosch–harmful algal bloom (HB-HAB) link. Environ Res Lett 9:105001 (13 p). https://doi.org/10.1088/1748-9326/9/10/105001

    Article  CAS  Google Scholar 

  • Glibert PM, Mayorga E, Seitzinger S (2008) Prorocentrum minimum tracks anthropogenic nitrogen and phosphorus inputs on a global basis: application of spatially explicit nutrient export models. Harmful Algae 8:33–38

    Article  CAS  Google Scholar 

  • Glibert PM, Seitzinger S, Heil CA et al (2005) The role of eutrophication in the global proliferation of harmful algal blooms: new perspectives and new approaches. Oceanography 18:198–209

    Article  Google Scholar 

  • Glibert PM, Wilkerson FP, Dugdale RC et al (2016) Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnol Oceanogr 61:165–197

    Article  CAS  Google Scholar 

  • Grill G, Lehner B, Lumsdon AE et al (2015) An index-based framework for assessing patterns and trends in river fragmentation and flow regulation by global dams at multiple scales. Environ Res Lett 10:015001

    Article  Google Scholar 

  • Harrison JA, Bouwman AF, Mayorga E et al (2010) Magnitudes and sources of dissolved inorganic phosphorus inputs to surface fresh waters and the coastal zone: a new global model. Global Biogeochem Cycles 24:GB1003. https://doi.org/10.1029/2009GB003590

    Article  CAS  Google Scholar 

  • Harrison JA, Caraco NF, Seitzinger SP (2005a) Global patterns and sources of dissolved organic matter export to the coastal zone: results from a spatially explicit, global model. Global Biogeochem Cycles 19:GB4S04

    Google Scholar 

  • Harrison JA, Frings P, Beusen AHW, Conley DJ, McCrackin ML (2012) Global importance, patterns, and controls of dissolved silica retention in lakes and reservoirs. Glob Biogeochem Cycles. https://doi.org/10.1029/2011GB004228

  • Harrison JA, Seitzinger SP, Caraco N et al (2005b) Dissolved inorganic phosphorous export to the coastal zone: results from a new, spatially explicit, global model (NEWS-SRP). Global Biogeochem Cycles 19:GB4S03

    Google Scholar 

  • Harrison WG, Head EJH, Conover RJ et al (1985) The distribution and metabolism of urea in the eastern Canadian Arctic. Deep Sea Res 32:23–42

    Article  CAS  Google Scholar 

  • Heffer P, Prud’homme M (2013) Fertilizer outlook 2013-2017. In: 81st IFA annual conference, Chicago, USA, 20–22 May, 2013. www.fertilizer.org. Accessed 22 Jun 2014

  • Heinze C, Maier-Reimer E, Winguth AME et al (1999) A global oceanic sediment model for long-term climate studies. Global Biogeochem Cycles 13:221–250

    Article  CAS  Google Scholar 

  • Heisler J, Glibert PM, Burkholder JM et al (2008) Eutrophication and harmful algal blooms: a scientific consensus. Harmful Algae 8:3–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hickey BM, Banas NS (2003) Oceanography of the US Pacific northwest coastal ocean and estuaries with application to coastal ecology. Estuaries 26:1010–1031

    Article  Google Scholar 

  • Holt JT, Harle J, Proctor R et al (2009) Modelling the global coastal ocean. Phil Trans Roy Soc A: Math, Phys, Eng Sci 367:939–951

    Article  Google Scholar 

  • Honkanen T, Helminen H (2000) Impacts of fish farming on eutrophication: comparisons among different characteristics of ecosystem. Int Rev Hydrobiol 85:673–686

    Article  Google Scholar 

  • Houlton BZ, Boyer E, Finzi A et al (2013) Intentional versus unintentional nitrogen use in the United States: trends, efficiency and implications. Biogeochemistry 114:11–23

    Article  Google Scholar 

  • Howarth RW (2006) Atmospheric deposition and nitrogen pollution in coastal marine ecosystems. In: Visgilio G, Whitelaw DM (eds) Acid in the environment: lessons learned and future pro spects. Springer, New York, NY, pp 97–116

    Google Scholar 

  • Howarth RW (2008) Coastal nitrogen pollution: a review of sources and trends globally and regionally. Harmful Algae 8:14–20

    Article  CAS  Google Scholar 

  • International Fertilizer Association (IFA) (2014) IFA database. www.fertilizer.org/ifa/Home-Page/STATISTICS

  • International Food Policy Research Institute (IFPRI) (2003) Outlook for fish to 2020, meeting global demand. WorldFish Center, Penang, Malaysia, p 28

    Google Scholar 

  • Jaworski NA, Howarth RW, Hetling LJ (1997) Atmospheric deposition of nitrogen oxides onto the landscape contributes to coastal eutrophication in the northeast United States. Environ Sci Technol 31:1995–2004

    Article  CAS  Google Scholar 

  • Jia Y, Yu G, Gao Y et al (2016) Global inorganic nitrogen dry deposition inferred from ground- and space-based measurements. Sci Rep 6:19810. https://doi.org/10.1038/srep19810

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanakidou M, Myriokefalitakis S, Daskalakis N et al (2016) Past, present, and future atmospheric nitrogen deposition. Am Meterol Soc J. https://doi.org/10.1175/JAS-D-15-0278.1

  • Kaufman ZG, Lively JS, Carpenter EJ (1983) Uptake of nitrogenous nutrients by phytoplankton in a barrier island estuary: Great South Bay, New York. Estuar Coast Shelf Sci 17:483–493

    Article  CAS  Google Scholar 

  • Kaushik SJ, Cowey CB (1991) Dietary factors affecting nitrogen excretion by fish. In: Cowey CB, Cho CY (eds) Nutritional strategies and aquaculture waste. Proceedings of 1st international symposium on nutritional strategies in management of aquaculture waste. University of Guelph, Ontario, pp 3–19

    Google Scholar 

  • Kudela RM, Cochlan WP (2000) Nitrogen and carbon uptake kinetics and the influence of irradiance for a red tide bloom off southern California. Aquat Microb Ecol 21:31–47

    Article  Google Scholar 

  • Laruelle GG (2009) Quantifying nutrient cycling and retention in coastal waster at the global scale. PhD dissertation, Geologica Ultraiectina. Mededelingen van de Faculteit Geowetenschappen Universiteit Utrecht No. 312, Utrecht University, Utrecht, p 226

    Google Scholar 

  • Laruelle GG, Goossens N, Arndt S et al (2017) Air–water CO2 evasion from US East Coast estu aries. Biogeosciences 14:2441–2468. https://doi.org/10.5194/bg-14-2441-2017

    Article  Google Scholar 

  • Lehner B, Liermann CR, Revenga C et al (2011) High-resolution mapping of the world’s reservoirs and dams for sustainable river-flow management. Front Ecol Environ 9:494–502

    Article  Google Scholar 

  • Li J, Glibert PM, Zhou M et al (2009) Relationships between nitrogen and phosphorus forms and ratios and the development of dinoflagellate blooms in the East China Sea. Mar Ecol Prog Ser 383:11–26

    Article  CAS  Google Scholar 

  • Liermann CR, Nilsson C, Robertson J et al (2012) Implications of dam obstruction for global freshwater fish diversity. Bioscience 62:539–548

    Article  Google Scholar 

  • Maavara T (2017) Perturbations to nutrient and carbon cycles by river damming. PhD thesis, University of Waterloo, p 174

    Google Scholar 

  • Maavara T, Dürr HH, Van Cappellen P (2014) Worldwide retention of nutrient silicon by river damming: from sparse data set to global estimate. Global Biogeochem Cycles 28:842–855

    Article  CAS  Google Scholar 

  • Maavara T, Parsons CT, Ridenour C et al (2015) Global phosphorus retention by river damming. Proc Natl Acad Sci USA 112:15603–15608

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mallin MA, McIver MR, Robuck AR et al (2015) Industrial swine and poultry production causes chronic nutrient and fecal microbial stream pollution. Water Air Soil Pollut 226:407. https://doi.org/10.1007/s11270-015-2669-y

    Article  CAS  Google Scholar 

  • McKee BA, Aller RC, Allison M et al (2004) Transport and transformation of dissolved and particulate materials on continental margins influenced by major rivers: benthic boundary layer and seabed processes. Cont Shelf Res 24:899–926

    Article  Google Scholar 

  • Moore SK, Trainer VL, Mantua NJ et al (2008) Impacts of climate variability and future change on harmful algal blooms and human health. Environ Health 7:S4. https://doi.org/10.1186/1476-069X-7-S2-S4

    Article  PubMed  PubMed Central  Google Scholar 

  • Nixon SW, Ammerman JW, Atkinson LP et al (1996) The fate of nitrogen and phosphorus at the land–sea margin of the North Atlantic Ocean. Biogeochemistry 3:141–180

    Article  Google Scholar 

  • Pitcher GC, Figueiras FG, Hickey BM et al (2010) The physical oceanography of upwelling systems and the development of harmful algal blooms. Prog Oceanogr 85:5–32

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Regnier P, Arndt S, Goossens N et al (2013) Modelling estuarine biogeochemical dynamics: from the local to the global scale. Aquat Geochem 19:591–626

    Article  CAS  Google Scholar 

  • Rodellas V, Garcia-Orellana J, Masqué P et al (2015) Submarine groundwater discharge as a major source of nutrients to the Mediterranean Sea. Proc Natl Acad Sci USA 112(13):3926–3930

    Article  CAS  PubMed  Google Scholar 

  • Seitzinger SP, Harrison JA, Dumont E et al (2005) Sources and delivery of carbon, nitrogen, and phosphorus to the coastal zone: an overview of Global Nutrient Export from Watersheds (NEWS) models and their application. Global Biogeochem Cycles 19:GB4S01. https://doi.org/10.1029/2005gb002606

    Article  Google Scholar 

  • Seitzinger SP, Mayorga E, Bouwman AF et al (2010) Global river nutrient export: a scenario ana lysis of past and future trends. Global Biogeochem Cycles 24:GB0A08. https://doi.org/10.1029/2009GB003587

    Article  CAS  Google Scholar 

  • Sharples J, Middelburg JJ, Fennel K, Jickells TD (2017) What proportion of riverine nutrients reaches the open ocean? Global Biogeochem Cycles 31:39–58. https://doi.org/10.1002/2016GB005483

    Article  CAS  Google Scholar 

  • Sinha E, Michalak AM, Balaji V (2017) Eutrophication will increase during the 21st century as a result of prcipitaiton changes. Science 357:405–408

    Article  CAS  PubMed  Google Scholar 

  • Smil V (2001) Enriching the Earth: Fritz Haber, Carl Bosch, and the transformation of world food. The MIT Press, Cambridge, MA, p 338

    Google Scholar 

  • Solomon S, Qin D, Manning M et al (eds) (2007) Climate change 2007: the physical science basis. Cambridge University Press, Cambridge and New York, NY

    Google Scholar 

  • Sutton MA, Bleeker A, Howard CM et al (2013) Our nutrient world: the challenge to produce more food and energy with less pollution. Centre for Ecology and Hydrology, Edinburgh

    Google Scholar 

  • Switzer T (2008) Urea loading from a spring storm – Knysna estuary, South Africa. Harmful Algae 8:66–69

    Article  CAS  Google Scholar 

  • Syvitski JPM, Vörösmarty CJ, Kettner AJ et al (2005) Impacts on the flux of terrestrial sediment to the global ocean. Science 308:376–380

    Article  CAS  PubMed  Google Scholar 

  • Tilman D, Clark M (2014) Global diets link environmental sustainability and human health. Nature 515:518–522. https://doi.org/10.1038/nature13959

    Article  PubMed  CAS  Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division (2014) World urbanization prospects: the 2014 revision, highlights (ST/ESA/SER.A/352). https://esa.un.org/unpd/wup/publications/files/wup2014-highlights.pdf

  • Verdegen MCJ (2013) Nutrient discharge from aquaculture operations in function of system design and production environment. Rev Aquacult 5:158–171

    Article  Google Scholar 

  • Volta C, Arndt S, Savenije HHG et al (2014) C-GEM (v 1.0): a new, cost-efficient biogeochemical model for estuaries and its application to a funnel-shaped system. Geosci Model Dev 7:1271–1295. https://doi.org/10.5194/gmd-7-1271-2014

    Article  CAS  Google Scholar 

  • Volta C, Laruelle GG, Regnier P (2016) Regional carbon and CO2 budgets of North Sea tidal estuaries. Estuar Coast Shelf Sci 176:76–90

    Article  CAS  Google Scholar 

  • Vörösmarty CJ, Meybeck M, Fekete BE et al (2003) Anthropogenic sediment retention: major global impact from registered river impoundments. Global Planet Change 39:169–190

    Article  Google Scholar 

  • Vörösmarty CJ, McIntyre PB, Gessner MO et al (2010) Global threats to human water security and river biodiversity. Nature 467:555–561

    Article  CAS  Google Scholar 

  • Wang S, Tang D, He F et al (2008) Occurrences of harmful algal blooms (HABs) associated with ocean environments in the South China Sea. Hydrobiologia 596:79–93

    Article  Google Scholar 

  • Wells ML, Karlson B (2018) Harmful algal blooms in a changing ocean. In: Glibert PM, Berdalet E, Burford M et al (eds) Global ecology and oceanography of harmful algal blooms. Springer, Cham, pp 77–90

    Chapter  Google Scholar 

  • Wells ML, Trainer VL, Smayda TJ et al (2015) Harmful algal blooms and climate change: learning from the past and present to forecast the future. Harmful Algae 49:68–93

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarfl C, Lumsdon AE, Berlekamp J et al (2015) A global boom in hydropower dam construction. Aquat Sci 77:161–170

    Article  Google Scholar 

  • Zhang J, Wu Y, Zhang YY (2015) Plant nutrients and trace elements from the Changjiang water sheds and East China Sea Shelf. In: Zhang J (ed) Ecological continuum from the Changjiang (Yangtze River) watersheds to the East China Sea continental margin. Springer International Publishing, Switzerland, pp 93–118

    Google Scholar 

Download references

Acknowledgments

This effort is a contribution of SCOR Working Group 132 on Land-Based Nutrient Pollution and Harmful Algal Blooms and is also contribution number 5404 from the University of Maryland Center for Environmental Science. This work received support from the Global Environment Fund, UNEP, and UNESCO-IOC funding to A. Bouwman, A. Beusen, and J. Harrison, as well as USDA Water Sustainability and Climate, USDA Earth Systems Modeling, and NSF INFEWS funding to Harrison. Laruelle is Chargé de recherches du F.R.S.-FNRS at the Université Libre de Bruxelles. Dürr received funding from the Canada Excellence Research Chair in Ecohydrology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia M. Glibert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Glibert, P.M., Beusen, A.H.W., Harrison, J.A., Dürr, H.H., Bouwman, A.F., Laruelle, G.G. (2018). Changing Land-, Sea-, and Airscapes: Sources of Nutrient Pollution Affecting Habitat Suitability for Harmful Algae. In: Glibert, P., Berdalet, E., Burford, M., Pitcher, G., Zhou, M. (eds) Global Ecology and Oceanography of Harmful Algal Blooms . Ecological Studies, vol 232. Springer, Cham. https://doi.org/10.1007/978-3-319-70069-4_4

Download citation

Publish with us

Policies and ethics