Skip to main content

A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption

  • Chapter
  • First Online:
Book cover Advances on Computational Intelligence in Energy

Abstract

Within the framework of big data, energy issues are highly significant. Despite the significance of energy, theoretical studies focusing primarily on the issue of energy within big data analytics in relation to computational intelligent algorithms are scarce. The purpose of this study is to explore the theoretical aspects of energy issues in big data analytics in relation to computational intelligent algorithms since this is critical in exploring the emperica aspects of big data. In this chapter, we present a theoretical study of energy issues related to applications of computational intelligent algorithms in big data analytics. This work highlights that big data analytics using computational intelligent algorithms generates a very high amount of energy, especially during the training phase. The transmission of big data between service providers, users and data centres emits carbon dioxide as a result of high power consumption. This chapter proposes a theoretical framework for big data analytics using computational intelligent algorithms that has the potential to reduce energy consumption and enhance performance. We suggest that researchers should focus more attention on the issue of energy within big data analytics in relation to computational intelligent algorithms, before this becomes a widespread and urgent problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. IEA (2016, 5 May, 2017) World Energy Outlook. Available: http://www.iea.org/newsroom/news/2016/november/world-energy-outlook-2016.html

  2. Horn M, Mirzatuny M (2013) Mining big data to transform electricity. In: Broadband networks, smart grids and climate change. Springer, Berlin, pp 47–58

    Google Scholar 

  3. Shojafar M, Cordeschi N, Amendola D, Baccarelli E (2015) Energy-saving adaptive computing and traffic engineering for real-time-service data centers. In: 2015 IEEE international conference on communication workshop (ICCW), pp 1800–1806

    Google Scholar 

  4. Yu S, Wang C, Liu K, Zomaya AY (2016) Editorial for IEEE access special section on theoretical foundations for big data applications: challenges and opportunities. IEEE Access 4:5730–5732

    Article  Google Scholar 

  5. Salinas S, Chen X, Ji J, Li P (2016) A tutorial on secure outsourcing of large-scale computations for big data. IEEE Access 4:1406–1416

    Article  Google Scholar 

  6. Wu K, Barker RJ, Kim MA, Ross KA (2013) Navigating big data with high-throughput, energy-efficient data partitioning. In: ACM SIGARCH computer architecture news, 2013, pp 249–260

    Article  Google Scholar 

  7. Li C, Zu Y, Hou B (2016) A feature selection method of power consumption data. In: International conference on computational science and its applications, 2016, pp 547–554

    Google Scholar 

  8. Baker T, Al-Dawsari B, Tawfik H, Reid D, Ngoko Y (2015) GreeDi: an energy efficient routing algorithm for big data on cloud. Ad Hoc Netw 35:83–96

    Article  Google Scholar 

  9. Chiroma H, Abdul-Kareem S, Khan A, Nawi NM, Gital AYU, Shuib L et al (2015) Global warming: predicting OPEC carbon dioxide emissions from petroleum consumption using neural network and hybrid cuckoo search algorithm. PloS One 10:e0136140

    Article  Google Scholar 

  10. Li R, Harai H, Asaeda H (2015) An aggregatable name-based routing for energy-efficient data sharing in big data era. IEEE Access 3:955–966

    Article  Google Scholar 

  11. Dean J, Ghemawat S (2004) MapReduce: simplified data processing on large clusters. In: OSDI’04 Proceedings of the 6th conference on symposium on operating systems design and implementation (Int J Eng Sci Invent). URL: http://static.googleusercontent.com/media/research.google.com (diunduh pada 2015-05-10), pp 10–100

  12. Kambatla K, Kollias G, Kumar V, Grama A (2014) Trends in big data analytics. J Parallel Distrib Comput 74:2561–2573

    Article  Google Scholar 

  13. Fernández MR, García AC, Alonso IG, Casanova EZ (2016) Using the Big Data generated by the Smart Home to improve energy efficiency management. Energ Effi 9:249–260

    Article  Google Scholar 

  14. Abawajy J (2015) Comprehensive analysis of big data variety landscape. Int J Parallel Emergent Distrib Syst 30:5–14

    Article  MathSciNet  Google Scholar 

  15. Wang D, Yu W, Chai T (2015) Guest editorial: special issue on computational intelligence for industrial data processing and analysis. Neurocomputing 358–360

    Article  Google Scholar 

  16. Cuadra L, Salcedo-Sanz S, Nieto-Borge J, Alexandre E, Rodríguez G (2016) Computational intelligence in wave energy: comprehensive review and case study. Renew Sustain Energy Rev 58:1223–1246

    Article  Google Scholar 

  17. Hu J, Vasilakos AV (2016) Energy big data analytics and security: challenges and opportunities. IEEE Trans Smart Grid 7:2423–2436

    Article  Google Scholar 

  18. Engelbrecht AP (2007) Introduction to computational intelligence. In: Computational intelligence: an introduction, 2nd edn, pp 1–13

    Google Scholar 

  19. Păun G (2005) Bio-inspired computing paradigms (natural computing). In: Unconventional programming paradigms, pp 97–97

    Google Scholar 

  20. Fister Jr I, Yang X-S, Fister I, Brest J, Fister D (2013) A brief review of nature-inspired algorithms for optimization. arXiv preprint arXiv:1307.4186

  21. Yang X-S, He X (2016) Nature-inspired optimization algorithms in engineering: overview and applications. In: Nature-inspired computation in engineering. Springer, Berlin, pp 1–20

    Chapter  Google Scholar 

  22. Fister Jr I, Mlakar U, Brest J, Fister I (2016) A new population-based nature-inspired algorithm every month: is the current era coming to the end. In: StuCoSReC: proceedings of the 2016 3rd student computer science research conference. University of Primorska, Koper, pp 33–37

    Google Scholar 

  23. Yang X-S (2014) Cuckoo search and firefly algorithm: overview and analysis. In: Cuckoo search and firefly algorithm. Springer, Berlin, pp 1–26

    Google Scholar 

  24. Yang X-S, Deb S (2009) Cuckoo search via Lévy flights. In: World congress on nature & biologically inspired computing, NaBIC 2009, pp 210–214

    Google Scholar 

  25. Yang X-S (2012) Flower pollination algorithm for global optimization. In: International conference on unconventional computing and natural computation, 2012, pp 240–249

    Chapter  Google Scholar 

  26. Karaboga D (2005) An idea based on honey bee swarm for numerical optimization. Technical report-tr06. Erciyes University, Engineering Faculty, Computer Engineering Department

    Google Scholar 

  27. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Proceedings of the sixth international symposium on micro machine and human science, MHS’95, pp 39–43

    Google Scholar 

  28. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor, MI. Reprinted in 1998

    Google Scholar 

  29. Chen M, Mao S, Liu Y (2014) Big data: a survey. Mob Netw Appl 19:171–209

    Article  Google Scholar 

  30. Chen CP, Zhang C-Y (2014) Data-intensive applications, challenges, techniques and technologies: a survey on Big Data. Inf Sci 275:314–347

    Article  Google Scholar 

  31. Gupta A, Gupta S, Ge R, Zong Z (2015) CRUSH: data collection and analysis framework for power capped data intensive computing. In: 2015 sixth international green computing conference and sustainable computing conference (IGSC), pp 1–6

    Google Scholar 

  32. Yang H-C, Parker DS (2009) Traverse: simplified indexing on large map-reduce-merge clusters. In: International conference on database systems for advanced applications, 2009, pp 308–322

    Google Scholar 

  33. Jlassi A, Martineau P (2016) Benchmarking Hadoop performance in the cloud-an in depth study of resource management and energy consumption. In: The 6th international conference on cloud computing and services science

    Google Scholar 

  34. Rabl T, Gómez-Villamor S, Sadoghi M, Muntés-Mulero V, Jacobsen H-A, Mankovskii S (2012) Solving big data challenges for enterprise application performance management. Proc VLDB Endowment 5:1724–1735

    Article  Google Scholar 

  35. Rong H, Zhang H, Xiao S, Li C, Hu C (2016) Optimizing energy consumption for data centers. Renew Sustain Energy Rev 58:674–691

    Article  Google Scholar 

  36. Kumar R, Mieritz L (2007) Conceptualizing green IT and data center power and cooling issues. Gartner research paper, 2007

    Google Scholar 

  37. Johnson P, Marker T (2009) Data centre energy efficiency product profile. Pitt & Sherry, report to equipment energy efficiency committee (E3) of The Australian Government Department of the Environment, Water, Heritage and the Arts (DEWHA)

    Google Scholar 

  38. Karpowicz M, Niewiadomska-Szynkiewicz E, Arabas P, Sikora A (2016) Energy and power efficiency in cloud. In: Resource management for big data platforms. Springer, Berlin, pp 97–127

    Google Scholar 

  39. Barroso LA, Clidaras J, Hölzle U (2013) The datacenter as a computer: an introduction to the design of warehouse-scale machines. Synth Lect Comput Archit 8:1–154

    Article  Google Scholar 

  40. Lefurgy C, Rajamani K, Rawson F, Felter W, Kistler M, Keller TW (2003) Energy management for commercial servers. Computer 36:39–48

    Article  Google Scholar 

  41. Mastelic T, Oleksiak A, Claussen H, Brandic I, Pierson J-M, Vasilakos AV (2015) Cloud computing: survey on energy efficiency. ACM Comput Surv (CSUR) 47:33

    Article  Google Scholar 

  42. Wang L, Khan SU (2013) Review of performance metrics for green data centers: a taxonomy study. J Supercomput 63:639–656

    Article  Google Scholar 

  43. Dongarra J, Beckman P, Moore T, Aerts P, Aloisio G, Andre J-C et al (2011) The international exascale software project roadmap. Int J High Perform Comput Appl 25:3–60

    Article  Google Scholar 

  44. Khalifa S, Elshater Y, Sundaravarathan K, Bhat A, Martin P, Imam F et al (2016) The six pillars for building big data analytics ecosystems. ACM Comput Surv (CSUR) 49:33

    Article  Google Scholar 

  45. Cheng S, Liu B, Shi Y, Jin Y, Li B (2016) Evolutionary computation and big data: key challenges and future directions. In: International conference on data mining and big data, pp 3–14

    Chapter  Google Scholar 

  46. Gandomi A, Haider M (2015) Beyond the hype: big data concepts, methods, and analytics. Int J Inf Manage 35:137–144

    Article  Google Scholar 

  47. Hashem IAT, Chang V, Anuar NB, Adewole K, Yaqoob I, Gani A et al (2016) The role of big data in smart city. Int J Inf Manage 36:748–758

    Article  Google Scholar 

  48. Chiroma H, Abdul-Kareem S, Abubakar A (2014) A framework for selecting the optimal technique suitable for application in a data mining task. In: Future information technology. Springer, Berlin, pp 163–169

    Google Scholar 

  49. Jiang H, Wang K, Wang Y, Gao M, Zhang Y (2016) Energy big data: a survey. IEEE Access 4:3844–3861

    Article  Google Scholar 

  50. Hu H, Wen Y, Chua T-S, Li X (2014) Toward scalable systems for big data analytics: a technology tutorial. IEEE Access 2:652–687

    Article  Google Scholar 

  51. Kang D, Kim S, Lee T, Hwang J, Lee S, Jang S et al (2016) Energy information analysis using data algorithms based on big data platform. In: High performance computing and communications; IEEE 14th international conference on smart city; IEEE 2nd international conference on data science and systems (HPCC/SmartCity/DSS), 2016 IEEE 18th international conference on, pp 1530–1531

    Google Scholar 

  52. Alsheikh MA, Niyato D, Lin S, Tan H-P, Han Z (2016) Mobile big data analytics using deep learning and apache spark. IEEE Network 30:22–29

    Article  Google Scholar 

  53. Lee H, Grosse R, Ranganath R, Ng AY (2009) Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. In: Proceedings of the 26th annual international conference on machine learning, pp 609–616

    Google Scholar 

  54. Hinton GE, Osindero S, Teh Y-W (2006) A fast learning algorithm for deep belief nets. Neural Comput 18:1527–1554

    Article  MathSciNet  Google Scholar 

  55. Wang Y, Li B, Luo R, Chen Y, Xu N, Yang H (2014) Energy efficient neural networks for big data analytics. In: Design, automation and test in Europe conference and exhibition (DATE), 2014, pp 1–2

    Google Scholar 

  56. Hu M, Li H, Wu Q, Rose GS (2012) Hardware realization of BSB recall function using memristor crossbar arrays. In: Proceedings of the 49th annual design automation conference, pp 498–503

    Google Scholar 

  57. Yoo H, Park S, Bong K, Shin D, Lee J, Choi S (2015) A 1.93 TOPS/W scalable deep learning/inference processor with tetra-parallel MIMD architecture for big data applications. In: IEEE international solid-state circuits conference, pp 80–81

    Google Scholar 

  58. Mehdipour F, Noori H, Javadi B (2016) Chapter two-energy-efficient big data analytics in datacenters. Adv Comput 100:59–101

    Article  Google Scholar 

  59. Park S-W, Park J, Bong K, Shin D, Lee J, Choi S et al (2015) An energy-efficient and scalable deep learning/inference processor with tetra-parallel MIMD architecture for big data applications. IEEE Trans Biomed Circuits Syst 9:838–848

    Google Scholar 

  60. Liang B, Jin S, Tang W, Sheng W, Liu K (2016) A parallel algorithm of optimal power flow on Hadoop platform. In: Power and energy engineering conference (APPEEC), 2016 IEEE PES Asia-Pacific, pp 566–570

    Google Scholar 

  61. Polato I, Barbosa D, Hindle, Kon F (2016) Hadoop energy consumption reduction with hybrid HDFS. In: Proceedings of the 31st annual ACM symposium on applied computing, pp 406–411

    Google Scholar 

  62. Nan Z, Hanyong H, Haiyan Z (2016) Efficient stereo index technology for fast combination query of electric power big data. In: 2016 IEEE international conference on computer communication and the internet (ICCCI), pp 329–333

    Google Scholar 

  63. Baccarelli E, Cordeschi N, Mei A, Panella M, Shojafar M, Stefa J (2016) Energy-efficient dynamic traffic offloading and reconfiguration of networked data centers for big data stream mobile computing: review, challenges, and a case study. IEEE Network 30:54–61

    Article  Google Scholar 

  64. Zhu N, Rao L, Liu X, Liu J, Guan H (2011) Taming power peaks in mapreduce clusters. In: ACM SIGCOMM computer communication review, pp 416–417

    Article  Google Scholar 

  65. Lee S, Jo J-Y, Kim Y (2016) Performance improvement of mapreduce process by promoting deep data locality. In: 2016 IEEE international conference on data science and advanced analytics (DSAA), pp 292–301

    Google Scholar 

  66. Iqbal R, Doctor F, More B, Mahmud S, Yousuf U (2016) Big data analytics: computational intelligence techniques and application areas. Int J Inf Manage

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haruna Chiroma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chiroma, H. et al. (2019). A Theoretical Framework for Big Data Analytics Based on Computational Intelligent Algorithms with the Potential to Reduce Energy Consumption. In: Herawan, T., Chiroma, H., Abawajy, J. (eds) Advances on Computational Intelligence in Energy. Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-69889-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69889-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69888-5

  • Online ISBN: 978-3-319-69889-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics