Skip to main content

Autonomic Dysfunction in Shock

  • Chapter
Hemodynamic Monitoring

Part of the book series: Lessons from the ICU ((LEICU))

  • 4133 Accesses

Abstract

Circulatory shock is accompanied, and likely to be preceded, by profound alterations in autonomic function. In stable conditions, sympathetic and parasympathetic limbs of the autonomic nervous system work in a highly coordinated manner, by virtue of physical and biochemical afferent signals being transduced into coordinated neural activity to maintain homeostasis in multiple organs innervated by specialized autonomic nerves. In this chapter, we assess how normal autonomic activity is regulated and the practical implications of how perturbation of the autonomic nervous system fuels further detrimental changes in shock. We will also highlight how autonomic regulation of cardiovascular and extra-cardiovascular physiology contributes to circulatory shock and define autonomic dysfunction practically in a clinical context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Paton JF, Boscan P, Pickering AE, Nalivaiko E. The yin and yang of cardiac autonomic control: Vago-sympathetic interactions revisited. Brain Res Brain Res Rev. 2005;49(3):555–65.

    Article  CAS  PubMed  Google Scholar 

  2. Machhada A, Marina N, Korsak A, Stuckey DJ, Lythgoe MF, Gourine AV. Origins of the vagal drive controlling left ventricular contractility. J Physiol. 2016;594(14):4017–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Machhada A, Trapp S, Marina N, Stephens RCM, Whittle J, Lythgoe MF, et al. Vagal determinants of exercise capacity. Nat Commun. 2017;8:15097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wehrwein EA, Joyner MJ. Regulation of blood pressure by the arterial baroreflex and autonomic nervous system. Handb Clin Neurol. 2013;117:89–102.

    Article  PubMed  Google Scholar 

  5. Toner A, Jenkins N, Ackland GL, POM-O Study Investigators. Baroreflex impairment and morbidity after major surgery. Br J Anaesth. 2016;117(3):324–31.

    Article  CAS  PubMed  Google Scholar 

  6. Sharshar T, Gray F, de la Grandmaison GL, Hopklnson NS, Ross E, Dorandeu A, et al. Apoptosis of neurons in cardiovascular autonomic centres triggered by inducible nitric oxide synthase after death from septic shock. Lancet. 2003;362(9398):1799–805.

    Google Scholar 

  7. Kara T, Narkiewicz K, Somers VK. Chemoreflexes – physiology and clinical implications. Acta Physiol Scand. 2003;177(3):377–84.

    Article  CAS  PubMed  Google Scholar 

  8. Toledo C, Andrade DC, Lucero C, Schultz HD, Marcus N, Retamal M, et al. Contribution of peripheral and central chemoreceptors to sympatho-excitation in heart failure. J Physiol. 2017;595(1):43–51.

    Article  CAS  PubMed  Google Scholar 

  9. Querido JS, Wehrwein EA, Hart EC, Charkoudian N, Henderson WR, Sheel AW. Baroreflex control of muscle sympathetic nerve activity as a mechanism for persistent sympathoexcitation following acute hypoxia in humans. Am J Physiol Regul Integr Comp Physiol. 2011;301(6):R1779–85.

    Article  CAS  PubMed  Google Scholar 

  10. Ackland GL, Kazymov V, Marina N, Singer M, Gourine AV. Peripheral neural detection of danger-associated and pathogen-associated molecular patterns. Crit Care Med. 2013;41(6):e85–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, et al. The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA. 2016;315(8):801–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Schmidt H, Muller-Werdan U, Nuding S, Hoffmann T, Francis DP, Hoyer D, et al. Impaired chemoreflex sensitivity in adult patients with multiple organ dysfunction syndrome – the potential role of disease severity. Intensive Care Med. 2004;30(4):665–72.

    Article  PubMed  Google Scholar 

  13. Schmidt H, Müller-Werdan U, Hoffmann T, Francis DP, Piepoli MF, Rauchhaus M, et al. Autonomic dysfunction predicts mortality in patients with multiple organ dysfunction syndrome of different age groups*. Crit Care Med. 2005;33(9):1994–2002.

    Article  PubMed  Google Scholar 

  14. Ernst G. Heart-rate variability-more than heart beats? Front Public Health. 2017;5:240.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Thayer JF, Lane RD. The role of vagal function in the risk for cardiovascular disease and mortality. Biol Psychol. 2007;74(2):224–42.

    Article  PubMed  Google Scholar 

  16. Elenkov IJ, Wilder RL, Chrousos GP, Vizi ES. The sympathetic nerve – an integrative interface between two supersystems: the brain and the immune system. Pharmacol Rev. 2000;52(4):595–638.

    CAS  PubMed  Google Scholar 

  17. Andersson U, Tracey KJ. Reflex principles of immunological homeostasis. Annu Rev Immunol. 2012;30:313–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Neukirchen M, Kienbaum P. Sympathetic nervous system: evaluation and importance for clinical general anesthesia. Anesthesiology. 2008;109(6):1113–31.

    Article  PubMed  Google Scholar 

  19. Wolthuis RA, Bergman SA, Nicogossian AE. Physiological effects of locally applied reduced pressure in man. Physiol Rev. 1974;54(3):566–95.

    Article  CAS  PubMed  Google Scholar 

  20. van de Borne P, Montano N, Pagani M, Oren R, Somers VK. Absence of low-frequency variability of sympathetic nerve activity in severe heart failure. Circulation. 1997;95(6):1449–54.

    Article  PubMed  Google Scholar 

  21. Chan JY, Ou CC, Wang LL, Chan SH. Heat shock protein 70 confers cardiovascular protection during endotoxemia via inhibition of nuclear factor-kappaB activation and inducible nitric oxide synthase expression in the rostral ventrolateral medulla. Circulation. 2004;110(23):3560–6.

    Article  CAS  PubMed  Google Scholar 

  22. de Montmollin E, Aboab J, Mansart A, Annane D. Bench-to-bedside review: Beta-adrenergic modulation in sepsis. Crit Care. 2009;13(5):230.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ninomiya I, Nisimaru N, Irisawa H. Sympathetic nerve activity to the spleen, kidney, and heart in response to baroceptor input. Am J Phys. 1971;221(5):1346–51.

    Article  CAS  Google Scholar 

  24. Floras JS, Butler GC, Ando SI, Brooks SC, Pollard MJ, Picton P. Differential sympathetic nerve and heart rate spectral effects of nonhypotensive lower body negative pressure. Am J Physiol Regul Integr Comp Physiol. 2001;281(2):R468–75.

    Article  CAS  PubMed  Google Scholar 

  25. Ocon AJ, Medow MS, Taneja I, Stewart JM. Respiration drives phase synchronization between blood pressure and RR interval following loss of cardiovagal baroreflex during vasovagal syncope. Am J Physiol Heart Circ Physiol. 2011;300(2):H527–40.

    Article  CAS  PubMed  Google Scholar 

  26. Ackland GL, Whittle J, Toner A, Machhada A, Del Arroyo AG, Sciuso A, et al. Molecular mechanisms linking autonomic dysfunction and impaired cardiac contractility in critical illness. Crit Care Med. 2016;44(8):e614–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Klemcke HG, Joe B, Rose R, Ryan KL. Life or death? A physiogenomic approach to understand individual variation in responses to hemorrhagic shock. Curr Genomics. 2011;12(6):428–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Convertino VA, Sather TM. Vasoactive neuroendocrine responses associated with tolerance to lower body negative pressure in humans. Clin Physiol. 2000;20(3):177–84.

    Article  CAS  PubMed  Google Scholar 

  29. Wijeysundera DN, Butler GC, Ando S, Pollard M, Picton P, Floras JS. Attenuated cardiac baroreflex in men with presyncope evoked by lower body negative pressure. Clin Sci (Lond). 2001;100(3):303–9.

    Article  CAS  Google Scholar 

  30. Convertino VA, Rickards CA, Ryan KL. Autonomic mechanisms associated with heart rate and vasoconstrictor reserves. Clin Auton Res. 2012;22(3):123–30.

    Article  PubMed  Google Scholar 

  31. Ellison GM, Torella D, Karakikes I, Purushothaman S, Curcio A, Gasparri C, et al. Acute beta-adrenergic overload produces myocyte damage through calcium leakage from the ryanodine receptor 2 but spares cardiac stem cells. J Biol Chem. 2007;282(15):11397–409.

    Article  CAS  PubMed  Google Scholar 

  32. Annane D, Trabold F, Sharshar T, Jarrin I, Blanc AS, Raphael JC, et al. Inappropriate sympathetic activation at onset of septic shock: a spectral analysis approach. Am J Respir Crit Care Med. 1999;160(2):458–65.

    Article  CAS  PubMed  Google Scholar 

  33. Norris PR, Ozdas A, Cao H, Williams AE, Harrell FE, Jenkins JM, et al. Cardiac uncoupling and heart rate variability stratify ICU patients by mortality: a study of 2088 trauma patients. Ann Surg. 2006;243(6):804–12; discussion 812–4.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Hughson RL, Shoemaker JK. Autonomic responses to exercise: deconditioning/inactivity. Auton Neurosci. 2015;188:32–5.

    Article  PubMed  Google Scholar 

  35. Kumar A, Schupp E, Bunnell E, Ali A, Milcarek B, Parrillo JE. Cardiovascular response to dobutamine stress predicts outcome in severe sepsis and septic shock. Crit Care (London, England). 2008;12(2):R35.

    Article  Google Scholar 

  36. Vallet B, Chopin C, Curtis SE, Dupuis BA, Fourrier F, Mehdaoui H, et al. Prognostic value of the dobutamine test in patients with sepsis syndrome and normal lactate values: a prospective, multicenter study. Crit Care Med. 1993;21(12):1868–75.

    Article  CAS  PubMed  Google Scholar 

  37. Rhodes A, Lamb FJ, Malagon I, Newman PJ, Grounds RM, Bennett ED. A prospective study of the use of a dobutamine stress test to identify outcome in patients with sepsis, severe sepsis, or septic shock. Crit Care Med. 1999;27(11):2361–6.

    Article  CAS  PubMed  Google Scholar 

  38. Jellema WT, Groeneveld AB, Wesseling KH, Thijs LG, Westerhof N, van Lieshout JJ. Heterogeneity and prediction of hemodynamic responses to dobutamine in patients with septic shock. Crit Care Med. 2006;34(9):2392–8.

    Article  CAS  PubMed  Google Scholar 

  39. Morelli A, Ertmer C, Westphal M, Rehberg S, Kampmeier T, Ligges S, et al. Effect of heart rate control with esmolol on hemodynamic and clinical outcomes in patients with septic shock: a randomized clinical trial. JAMA. 2013;310(16):1683–91.

    Article  PubMed  Google Scholar 

  40. Cruickshank M, Henderson L, MacLennan G, Fraser C, Campbell M, Blackwood B, et al. Alpha-2 agonists for sedation of mechanically ventilated adults in intensive care units: a systematic review. Health Technol Assess. 2016;20(25):v–xx, 1–117

    Article  PubMed  Google Scholar 

  41. Schweickert WD, Pohlman MC, Pohlman AS, Nigos C, Pawlik AJ, Esbrook CL, et al. Early physical and occupational therapy in mechanically ventilated, critically ill patients: a randomised controlled trial. Lancet. 2009;373(9678):1874–82.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gareth L. Ackland .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 European Society of Intensive Care Medicine

About this chapter

Cite this chapter

Ackland, G.L. (2019). Autonomic Dysfunction in Shock. In: Pinsky, M.R., Teboul, JL., Vincent, JL. (eds) Hemodynamic Monitoring. Lessons from the ICU. Springer, Cham. https://doi.org/10.1007/978-3-319-69269-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-69269-2_8

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-69268-5

  • Online ISBN: 978-3-319-69269-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics